1
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
2
|
Junco-Muñoz ML, Mejía-Rodríguez O, Cervantes-Alfaro JM, Téllez-Anguiano ADC, López-Vázquez MÁ, Olvera-Cortés ME. Correlates of Theta and Gamma Activity during Visuospatial Incidental/Intentional Encoding and Retrieval Indicate Differences in Processing in Young and Elderly Healthy Participants. Brain Sci 2024; 14:786. [PMID: 39199479 PMCID: PMC11352628 DOI: 10.3390/brainsci14080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Incidental visuospatial learning acquired under incidental conditions is more vulnerable to aging than in the intentional case. The theta and gamma correlates of the coding and retrieval of episodic memory change during aging. Based on the vulnerability of incidental coding to aging, different theta and gamma correlates could occur under the incidental versus intentional coding and retrieval of visuospatial information. Theta and gamma EEG was recorded from the frontotemporal regions, and incidental/intentional visuospatial learning was evaluated in young (25-60 years old) and elderly (60-85 years old) participants. The EEG recorded during encoding and retrieval was compared between incidental low-demand, incidental high-demand, and intentional conditions through an ANCOVA considering the patient's gender, IQ, and years of schooling as covariates. Older adults exhibited worse performances, especially in place-object associations. After the intentional study, older participants showed a further increase in false-positive errors. Higher power at the theta and gamma bands was observed for frontotemporal derivations in older participants for both encoding and retrieval. Under retrieval, only young participants had lower power in terms of errors compared with correct responses. In conclusion, the different patterns of power and coherence support incidental and intentional visuospatial encoding and retrieval in young and elderly individuals. The correlates of power with behavior are sensitive to age and performance.
Collapse
Affiliation(s)
- Mariana Lizeth Junco-Muñoz
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico
| | - Oliva Mejía-Rodríguez
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico;
| | | | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| |
Collapse
|
3
|
Tan E, Troller-Renfree SV, Morales S, Buzzell GA, McSweeney M, Antúnez M, Fox NA. Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Dev Cogn Neurosci 2024; 67:101404. [PMID: 38852382 PMCID: PMC11214181 DOI: 10.1016/j.dcn.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
The theta band is one of the most prominent frequency bands in the electroencephalography (EEG) power spectrum and presents an interesting paradox: while elevated theta power during resting state is linked to lower cognitive abilities in children and adolescents, increased theta power during cognitive tasks is associated with higher cognitive performance. Why does theta power, measured during resting state versus cognitive tasks, show differential correlations with cognitive functioning? This review provides an integrated account of the functional correlates of theta across different contexts. We first present evidence that higher theta power during resting state is correlated with lower executive functioning, attentional abilities, language skills, and IQ. Next, we review research showing that theta power increases during memory, attention, and cognitive control, and that higher theta power during these processes is correlated with better performance. Finally, we discuss potential explanations for the differential correlations between resting/task-related theta and cognitive functioning, and offer suggestions for future research in this area.
Collapse
Affiliation(s)
- Enda Tan
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA.
| | | | - Santiago Morales
- Department of Psychology, University of Southern California, CA 90007, USA
| | - George A Buzzell
- Department of Psychology, Florida International University, FL 33199, USA
| | - Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Martín Antúnez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
4
|
Köster M. The theta-gamma code in predictive processing and mnemonic updating. Neurosci Biobehav Rev 2024; 158:105529. [PMID: 38176633 DOI: 10.1016/j.neubiorev.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Predictive processing has become a leading theory about how the brain works. Yet, it remains an open question how predictive processes are realized in the brain. Here I discuss theta-gamma coupling as one potential neural mechanism for prediction and model updating. Building on Lisman and colleagues SOCRATIC model, theta-gamma coupling has been associated with phase precession and learning phenomena in medio-temporal lobe of rodents, where it completes and retains a sequence of places or items (i.e., predictive models). These sequences may be updated upon prediction errors (i.e., model updating), signaled by dopaminergic inputs from prefrontal networks. This framework, spanning the molecular to the network level, matches excitingly well with recent findings on predictive processing, mnemonic updating, and perceptual foraging for the theta-gamma code in human cognition. In sum, I use the case of theta-gamma coupling to link the predictive processing account, a very general concept of how the brain works, to specific neural processes which may implement predictive processing and model updating at the cognitive, network, cellular and molecular level.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| |
Collapse
|
5
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
6
|
Köster M, Langeloh M, Michel C, Hoehl S. Young infants process prediction errors at the theta rhythm. Neuroimage 2021; 236:118074. [PMID: 33878378 DOI: 10.1016/j.neuroimage.2021.118074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
Examining how young infants respond to unexpected events is key to our understanding of their emerging concepts about the world around them. From a predictive processing perspective, it is intriguing to investigate how the infant brain responds to unexpected events (i.e., prediction errors), because they require infants to refine their predictions about the environment. Here, to better understand prediction error processes in the infant brain, we presented 9-month-olds (N = 36) a variety of physical and social events with unexpected versus expected outcomes, while recording their electroencephalogram (EEG). We found a pronounced response in the ongoing 4-5 Hz theta rhythm for the processing of unexpected (in contrast to expected) events, for a prolonged time window (2 s) and across all scalp-recorded electrodes. The condition difference in the theta rhythm was not related to the condition difference in infants' event-related activity to unexpected (versus expected) events in the negative central (Nc) component (0.4-0.6 s), a component, which is commonly analyzed in infant violation of expectation studies using EEG. These findings constitute critical evidence that the theta rhythm is involved in the processing of prediction errors from very early in human brain development. We discuss how the theta rhythm may support infants' refinement of basic concepts about the physical and social environment.
Collapse
Affiliation(s)
- Moritz Köster
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany; Faculty of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| | - Miriam Langeloh
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany; Department of Psychology, Heidelberg University, Hauptstraße 47 - 51, 69117 Heidelberg, Germany
| | - Christine Michel
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany; Faculty of Education, Leipzig University, Marschnerstrasse 31, 04109 Leipzig, Germany
| | - Stefanie Hoehl
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany; Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| |
Collapse
|
7
|
Vidal-Piñeiro D, Sneve MH, Amlien IK, Grydeland H, Mowinckel AM, Roe JM, Sørensen Ø, Nyberg LH, Walhovd KB, Fjell AM. The Functional Foundations of Episodic Memory Remain Stable Throughout the Lifespan. Cereb Cortex 2021; 31:2098-2110. [PMID: 33251549 PMCID: PMC7945016 DOI: 10.1093/cercor/bhaa348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6–82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Markus H Sneve
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Inge K Amlien
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Håkon Grydeland
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Athanasia M Mowinckel
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - James M Roe
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Øystein Sørensen
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Lars H Nyberg
- Umeå Centre for Functional Brain Imaging, S-90187 Umeå, Sweden.,Physiology Section, Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden
| | - Kristine B Walhovd
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 04024 Oslo, Norway
| | - Anders M Fjell
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 04024 Oslo, Norway
| |
Collapse
|
8
|
Güntekin B, Uzunlar H, Çalışoğlu P, Eroğlu-Ada F, Yıldırım E, Aktürk T, Atay E, Ceran Ö. Theta and alpha oscillatory responses differentiate between six-to seven-year-old children and adults during successful visual and auditory memory encoding. Brain Res 2020; 1747:147042. [PMID: 32758480 DOI: 10.1016/j.brainres.2020.147042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The healthy maturation of the brain is one of the intriguing topics that need to be investigated to understand human brain and child development. The present study aimed to investigate the development of memory processes both for auditory and visual memory using electroencephalography (EEG)-Brain Dynamics methodologies. Sixteen healthy children between the ages of 6 and 7 years and eighteen healthy young adults (age: 21.32 ± 3.28 years) were included in the study. EEG was recorded from 18 channels during the visual and auditory memory paradigms. Two different subtests of the WISC-IV IQ test were applied to all children. Event-related theta (4-7 Hz), alpha (8-13 Hz) power and phase-locking were analyzed. The young adults had higher memory performance than the children for both auditory and visual paradigms. The children had increased theta phase-locking and left alpha power in response to the remembered objects in comparison to the forgotten objects. The young adults had higher theta and alpha phase-locking than the children over the frontal and central locations (p < 0.05), and the children had higher parietal-occipital alpha phase-locking than the young adults. There was an increase in alpha power in children, whereas young adults had decreased post-stimulus alpha power in response to memory paradigms. The present study showed that frontocentral theta and alpha phase-locking had an essential role in brain maturation and successful memory performance. Event-related theta and alpha responses could be one of the important indicators of the mature and healthy brain, and these responses could change depending on the maturation state and age.
Collapse
Affiliation(s)
- Bahar Güntekin
- Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey; Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey.
| | - Hakan Uzunlar
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Pervin Çalışoğlu
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Figen Eroğlu-Ada
- Istanbul Medipol University, Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Tuba Aktürk
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Enver Atay
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Ömer Ceran
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| |
Collapse
|
9
|
Georgieva S, Lester S, Noreika V, Yilmaz MN, Wass S, Leong V. Toward the Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic EEG. Front Neurosci 2020; 14:352. [PMID: 32410940 PMCID: PMC7199478 DOI: 10.3389/fnins.2020.00352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
Electroencephalography (EEG) is perhaps the most widely used brain-imaging technique for pediatric populations. However, EEG signals are prone to distortion by motion. Compared to adults, infants' motion is both more frequent and less stereotypical yet motion effects on the infant EEG signal are largely undocumented. Here, we present a systematic assessment of naturalistic motion effects on the infant EEG signal. EEG recordings were performed with 14 infants (12 analyzed) who passively watched movies whilst spontaneously producing periods of bodily movement and rest. Each infant produced an average of 38.3 s (SD = 14.7 s) of rest and 18.8 s (SD = 17.9 s) of single motion segments for the final analysis. Five types of infant motions were analyzed: Jaw movements, and Limb movements of the Hand, Arm, Foot, and Leg. Significant movement-related distortions of the EEG signal were detected using cluster-based permutation analysis. This analysis revealed that, relative to resting state, infants' Jaw and Arm movements produced significant increases in beta (∼15 Hz) power, particularly over peripheral sites. Jaw movements produced more anteriorly located effects than Arm movements, which were most pronounced over posterior parietal and occipital sites. The cluster analysis also revealed trends toward decreased power in the theta and alpha bands observed over central topographies for all motion types. However, given the very limited quantity of infant data in this study, caution is recommended in interpreting these findings before subsequent replications are conducted. Nonetheless, this work is an important first step to inform future development of methods for addressing EEG motion-related artifacts. This work also supports wider use of naturalistic paradigms in social and developmental neuroscience.
Collapse
Affiliation(s)
- Stanimira Georgieva
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Suzannah Lester
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Valdas Noreika
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Meryem Nazli Yilmaz
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Wass
- Department of Psychology, University of East London, London, United Kingdom
| | - Victoria Leong
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Division of Psychology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Köster M, Langeloh M, Hoehl S. Visually Entrained Theta Oscillations Increase for Unexpected Events in the Infant Brain. Psychol Sci 2019; 30:1656-1663. [PMID: 31603724 PMCID: PMC6843601 DOI: 10.1177/0956797619876260] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infants form basic expectations about their physical and social environment, as indicated by their attention toward events that violate their expectations. Yet little is known about the neuronal processing of unexpected events in the infant brain. Here, we used rhythmic visual brain stimulation in 9-month-olds (N = 38) to elicit oscillations of the theta (4 Hz) and the alpha (6 Hz) rhythms while presenting events with unexpected or expected outcomes. We found that visually entrained theta oscillations sharply increased for unexpected outcomes, in contrast to expected outcomes, in the scalp-recorded electroencephalogram. Visually entrained alpha oscillations did not differ between conditions. The processing of unexpected events at the theta rhythm may reflect learning processes such as the refinement of infants’ basic representations. Visual brain-stimulation techniques provide new ways to investigate the functional relevance of neuronal oscillatory dynamics in early brain development.
Collapse
Affiliation(s)
- Moritz Köster
- Institute of Psychology, Free University Berlin.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Miriam Langeloh
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, Heidelberg University
| | - Stefanie Hoehl
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Psychology, University of Vienna
| |
Collapse
|
11
|
Do Carmo-Blanco N, Allen JJB. Neural correlates of cue predictiveness during intentional and incidental associative learning: A time-frequency study. Int J Psychophysiol 2019; 143:80-87. [PMID: 31254544 DOI: 10.1016/j.ijpsycho.2019.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/05/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
Abstract
Incidental learning allows us to extract statistical relations between events in our daily lives without the intention to learn them. Whereas anticipation during intentional associative learning has been linked to increased and decreased theta band activity, comparatively little research has focused on incidental learning. The study of such a pervasive mechanism of incidental learning faces the challenge of finding an appropriate paradigm. Similarly, while posterior alpha band activity has been shown to facilitate attention to a predictable target location, it is not clear whether alpha power could mediate attention given other predictive information; e.g., when the only available information provided by the cue is the likelihood of the target outcome. Here we used a stimulus-stimulus associative learning task to investigate whether a cue carries information on its contingent relationship with a target outcome, not only when their relationship is learned intentionally but also when it could be learned incidentally. Moreover, by presenting the target outcome in a visual search task, we were also able to study whether anticipatory attention can be modulated by the intentional or the incidental knowledge of the likelihood of a target outcome given a predictive (or non-predictive) cue. Participants were exposed to streams of cue-target outcome trials, where one of two possible cues and one of two possible outcomes were displayed. Intention to learn was manipulated by asking participants to assess whether one of the target outcomes (the intentional one) was more likely to appear following one of the cues (the intentional one). Any learning regarding the other cue-outcome relationship would be incidental. We found that frontal and temporal theta band activity were sensitive to the predictive value of a cue (predictive cues elicited lower theta power). Moreover, left temporal theta was sensitive to the intention to learn associations (theta activity elicited by intentional learning cues was higher). Alpha power, by contrast, was not modulated by cue predictiveness of the target outcome. These findings suggest that theta band activity carries information about the predictive value of a cue. The topographical differences between theta for intentional and incidental learning suggest distinct cortical networks activated depending on whether the relationship between a cue and an outcome has been learned intentionally or incidentally.
Collapse
Affiliation(s)
| | - John J B Allen
- University of Arizona, Department of Psychology, Tucson, AZ, USA
| |
Collapse
|
12
|
Köster M, Martens U, Gruber T. Memory entrainment by visually evoked theta-gamma coupling. Neuroimage 2019; 188:181-187. [DOI: 10.1016/j.neuroimage.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/10/2018] [Accepted: 12/01/2018] [Indexed: 11/26/2022] Open
|
13
|
Köster M, Finger H, Graetz S, Kater M, Gruber T. Theta-gamma coupling binds visual perceptual features in an associative memory task. Sci Rep 2018; 8:17688. [PMID: 30523336 PMCID: PMC6283876 DOI: 10.1038/s41598-018-35812-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
It is an integral function of the human brain to sample novel information from the environment and to integrate them into existing representations. Recent evidence suggests a specific role for the theta rhythm (4-8 Hz) in mnemonic processes and the coupling between the theta and the gamma rhythm (40-120 Hz) in ordering and binding perceptual features during encoding. Furthermore, decreases in the alpha rhythm (8-12 Hz) are assumed to gate perceptual information processes in semantic networks. In the present study, we used an associative memory task (object-color combinations) with pictures versus words as stimuli (high versus low visual information) to separate associative memory from visual perceptual processes during memory formation. We found increased theta power for later remembered versus later forgotten items (independent of the color judgement) and an increase in phase-amplitude coupling between frontal theta and fronto-temporal gamma oscillations, specific for the formation of picture-color associations. Furthermore, parietal alpha suppression and gamma power were higher for pictures compared to words. These findings support the idea of a theta-gamma code in binding visual perceptual features during encoding. Furthermore, alpha suppression likely reflects perceptual gating processes in semantic networks and is insensitive to mnemonic and associative binding processes. Gamma oscillations may promote visual perceptual information in visual cortical networks, which is integrated into existing representations by prefrontal control processes, working at a theta pace.
Collapse
Affiliation(s)
- Moritz Köster
- Institute of Psychology, Osnabrück University, 49074, Osnabrück, Germany.
- Institute of Psychology, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Holger Finger
- Institute of Cognitive Science, Osnabrück University, 49069, Osnabrück, Germany
| | - Sebastian Graetz
- Institute of Psychology, Osnabrück University, 49074, Osnabrück, Germany
| | - Maren Kater
- Institute of Psychology, Osnabrück University, 49074, Osnabrück, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, 49074, Osnabrück, Germany
| |
Collapse
|