1
|
Wang T, Cui S, Liu X, Han L, Duan X, Feng S, Zhang S, Li G. LncTUG1 ameliorates renal tubular fibrosis in experimental diabetic nephropathy through the miR-145-5p/dual-specificity phosphatase 6 axis. Ren Fail 2023; 45:2173950. [PMID: 36794657 PMCID: PMC9937007 DOI: 10.1080/0886022x.2023.2173950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The renal interstitial fibrosis contributes to the progression and deterioration of diabetic nephropathy (DN). Long noncoding RNA taurine-up-regulated gene 1 (TUG1) in kidneys may be down-regulated by hyperglycemia. We aim to explore its role in tubular fibrosis caused by high glucose and the possible target genes of TUG1. In this study, a streptozocin-induced accelerated DN mouse model and a high glucose-stimulated HK-2 cells model was established to evaluate TUG1 expression. Potential targets of TUG1 were analyzed by online tools and confirmed by luciferase assay. A rescue experiment and gene silencing assay were used to investigate whether TUG1 plays its regulation role via miR-145-5p/dual-specificity phosphatase 6 (DUSP6) in HK2 cells. The effects of TUG1 on inflammation and fibrosis in high glucose treated tubular cells were evaluated by in vitro study, as well as in vivo DN mice model through AAV-TUG1 delivery. Results showed TUG1was downregulated in HK2 cells incubated with high glucose while miR-145-5p was upregulated. Overexpression of TUG1 alleviated renal injury by suppressing inflammation and fibrosis in vivo. Overexpression of TUG1 inhibited HK-2 cell fibrosis and relieved the inflammation. A mechanism study demonstrated that TUG1 directly sponged to miR-145-5p, and DUSP6 was identified as a target downstream of miR-145-5p. In addition, miR-145-5 overexpression and DUSP6 inhibition countervailed the impacts of TUG1. Our findings revealed that TUG1 overexpression alleviates kidney injury in DN mice and decreases the inflammatory response and fibrosis of high glucose-stimulated HK-2 cells via miR-145-5p/DUSP6 axis.
Collapse
Affiliation(s)
- Taoxia Wang
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Shubei Cui
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| | - Xiaoli Liu
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Li Han
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Xiaoting Duan
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Shuning Feng
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China,Sen Zhang State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guiying Li
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China,CONTACT Guiying Li Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, No.81, Congtai Road, Congtai District, Handan city, 056000, Hebei Province, China
| |
Collapse
|
2
|
Jiang C, Saiki Y, Hirota S, Iwata K, Wang X, Ito Y, Murakami K, Imura T, Inoue J, Masamune A, Hirayama A, Goto M, Furukawa T. Ablation of Dual-Specificity Phosphatase 6 Protects against Nonalcoholic Fatty Liver Disease via Cytochrome P450 4A and Mitogen-Activated Protein Kinase. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1988-2000. [PMID: 37741451 DOI: 10.1016/j.ajpath.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.
Collapse
Affiliation(s)
- Can Jiang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shuto Hirota
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kosei Iwata
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xinyue Wang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Ito
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Murakami
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
3
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
4
|
Lu Q, Guo Z, Zhang J, Wang K, Tian Q, Liu S, Li K, Xu C, Li C, Lv Z, Zhang Z, Yang X, Yang F. Performance of whole-genome promoter nucleosome profiling of maternal plasma cell-free DNA for prenatal noninvasive prediction of fetal macrosomia: a retrospective nested case-control study in mainland China. BMC Pregnancy Childbirth 2022; 22:698. [PMID: 36088304 PMCID: PMC9463826 DOI: 10.1186/s12884-022-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fetal macrosomia is common occurrence in pregnancy, which is associated with several adverse prognosis both of maternal and neonatal. While, the accuracy of prediction of fetal macrosomia is poor. The aim of this study was to develop a reliable noninvasive prediction classifier of fetal macrosomia. Methods A total of 3600 samples of routine noninvasive prenatal testing (NIPT) data at 12+ 0–27+ 6 weeks of gestation, which were subjected to low-coverage whole-genome sequencing of maternal plasma cell-free DNA (cfDNA), were collected from three independent hospitals. We identified set of genes with significant differential coverages by comparing the promoter profiling between macrosomia cases and controls. We selected genes to develop classifier for noninvasive predicting, by using support vector machine (SVM) and logistic regression models, respectively. The performance of each classifier was evaluated by area under the curve (AUC) analysis. Results According to the available follow-up results, 162 fetal macrosomia pregnancies and 648 matched controls were included. A total of 1086 genes with significantly differential promoter profiling were found between pregnancies with macrosomia and controls (p < 0.05). With the AUC as a reference,the classifier based on SVM (CMA-A2) had the best performance, with an AUC of 0.8256 (95% CI: 0.7927–0.8586). Conclusions Our study provides that assessing the risk of fetal macrosomia by whole-genome promoter nucleosome profiling of maternal plasma cfDNA based on low-coverage next-generation sequencing is feasible. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-05027-w.
Collapse
|
5
|
Liu R, Peters M, Urban N, Knowlton J, Napierala T, Gabrysiak J. Mice lacking DUSP6/8 have enhanced ERK1/2 activity and resistance to diet-induced obesity. Biochem Biophys Res Commun 2020; 533:17-22. [DOI: 10.1016/j.bbrc.2020.08.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
|
6
|
Ferguson BS, Nam H, Morrison RF. Dual-specificity phosphatases regulate mitogen-activated protein kinase signaling in adipocytes in response to inflammatory stress. Cell Signal 2019; 53:234-245. [DOI: 10.1016/j.cellsig.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
|
7
|
Chang S, Lu X, Wang S, Wang Z, Huo J, Huang J, Shangguan S, Li S, Zou J, Bao Y, Guo J, Wang F, Niu B, Zhang T, Qiu Z, Wu J, Wang L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects. FASEB J 2018; 33:4688-4702. [PMID: 30592646 DOI: 10.1096/fj.201801536r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Folate deficiency in early development leads to disturbance in multiple processes, including neurogenesis during which fibroblast growth factor (FGF) pathway is one of the crucial pathways. Whether folic acid (FA) directly affects FGF pathways to influence neurodevelopment and the possible mechanism remains unclear. In this study, we presented evidence that in human FA-insufficient encephalocele, the FGF pathway was interfered. Furthermore, in Brachyury knockout mice devoid of such T-box transcription factors regulating embryonic neuromesodermal bipotency and a key component of FGF pathway, change in expression of Brachyury downstream targets, activator Fgf8 and suppressor dual specificity phosphatase 6 was detected, along with the reduction in expression of other key FGF pathway genes. By using a FA-deficient cell model, we further demonstrated that decrease in Brachyury expression was through alteration in hypermethylation at the Brachyury promoter region under FA deficiency conditions, and suppression of Brachyury promoted the inactivation of the FGF pathway. Correspondingly, FA supplementation partially reverses the effects seen in FA-deficient embryoid bodies. Lastly, in mice with maternal folate-deficient diets, aberrant FGF pathway activity was found in fetal brain dysplasia. Taken together, our findings highlight the effect of FA on FGF pathways during neurogenesis, and the mechanism may be due to the low expression of Brachyury gene via hypermethylation under FA-insufficient conditions.-Chang, S., Lu, X., Wang, S., Wang, Z., Huo, J., Huang, J., Shangguan, S., Li, S., Zou, J., Bao, Y., Guo, J., Wang, F., Niu, B., Zhang, T., Qiu, Z., Wu, J., Wang, L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhigang Wang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junsheng Huo
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China; and
| | - Jian Huang
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China; and
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
8
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
9
|
Jafarnejad SM, Chapat C, Matta-Camacho E, Gelbart IA, Hesketh GG, Arguello M, Garzia A, Kim SH, Attig J, Shapiro M, Morita M, Khoutorsky A, Alain T, Gkogkas CG, Stern-Ginossar N, Tuschl T, Gingras AC, Duchaine TF, Sonenberg N. Translational control of ERK signaling through miRNA/4EHP-directed silencing. eLife 2018; 7:e35034. [PMID: 29412140 PMCID: PMC5819943 DOI: 10.7554/elife.35034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) exert a broad influence over gene expression by directing effector activities that impinge on translation and stability of mRNAs. We recently discovered that the cap-binding protein 4EHP is a key component of the mammalian miRNA-Induced Silencing Complex (miRISC), which mediates gene silencing. However, little is known about the mRNA repertoire that is controlled by the 4EHP/miRNA mechanism or its biological importance. Here, using ribosome profiling, we identify a subset of mRNAs that are translationally controlled by 4EHP. We show that the Dusp6 mRNA, which encodes an ERK1/2 phosphatase, is translationally repressed by 4EHP and a specific miRNA, miR-145. This promotes ERK1/2 phosphorylation, resulting in augmented cell growth and reduced apoptosis. Our findings thus empirically define the integral role of translational repression in miRNA-induced gene silencing and reveal a critical function for this process in the control of the ERK signaling cascade in mammalian cells.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Clément Chapat
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Edna Matta-Camacho
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Idit Anna Gelbart
- The Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Geoffrey G Hesketh
- Centre for Systems BiologyLunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Meztli Arguello
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Aitor Garzia
- Laboratory for RNA Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Sung-Hoon Kim
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Jan Attig
- The Francis Crick InstituteLondonUnited Kingdom
| | - Maayan Shapiro
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Masahiro Morita
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Arkady Khoutorsky
- Department of AnesthesiaMcGill UniversityMontréalCanada
- Alan Edwards Centre for Research on PainMcGill UniversityMontréalCanada
| | - Tommy Alain
- Children’s Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Christos, G Gkogkas
- Patrick Wild Centre, Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Noam Stern-Ginossar
- The Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Thomas Tuschl
- Laboratory for RNA Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Anne-Claude Gingras
- Centre for Systems BiologyLunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| | - Thomas F Duchaine
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| | - Nahum Sonenberg
- Goodman Cancer Research CenterMcGill UniversityMontréalCanada
- Department of BiochemistryMcGill UniversityMontréalCanada
| |
Collapse
|