1
|
Söylemez T, Berger RG, Krings U, Yamaç M. Aflatoxin B 1 (AFB 1) biodegradation by a lignolytic phenoloxidase of Trametes hirsuta. Sci Rep 2025; 15:6330. [PMID: 39984639 PMCID: PMC11845786 DOI: 10.1038/s41598-025-90711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Aflatoxin B1 (AFB1) is a highly potent mycotoxin that poses a serious threat to human and animal health. This study investigated the biodegradation of AFB1 by the supernatant of submerged cultured Trametes hirsuta, with a focus on identifying and characterizing the responsible enzyme(s). The extracellular enzymes of the white-rot mushroom were extracted from the supernatant and pre-separated using anion exchange fast protein liquid chromatography (FPLC). To pinpoint the specific enzyme, the eluted protein fractions exhibiting the highest degradation activity were subjected to detailed biochemical and proteomic analyses. A second purification step, ultrafiltration, yielded an electrophoretically pure enzyme. Sequencing of tryptic peptides using a nano-LC system coupled to a qQTOF mass spectrometer identified the enzyme as a lignolytic phenoloxidase. The enzyme exhibited a molecular mass of 55.6 kDa and achieved an impressive AFB1 degradation rate of 77.9% under optimized experimental conditions. This is the first fungal lignolytic phenoloxidase capable of aflatoxin degradation without requiring hydrogen peroxide as a cofactor, highlighting its unique catalytic mechanism. It may be used in mycotoxin remediation strategies, such as treating the surfaces of contaminated fruits, vegetables, and nuts.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany.
| | - Ralf Günter Berger
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany
| | - Ulrich Krings
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany
| | - Mustafa Yamaç
- Faculty of Science and Letters, Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
2
|
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol 2022; 360:160-170. [PMID: 36273669 DOI: 10.1016/j.jbiotec.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, β-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.
Collapse
Affiliation(s)
- Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Csilla Szűcs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary; Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Aspergillus spp. isolated from the bovine gastrointestinal tract improve organic acid profiles in Urochloa decumbens fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Fabino Neto R, Pessoa FOA, Silva TD, Miyagi ES, Santana Neto VV, Godoy MMD, Lima DKS, Silva JRDM, Brainer MMDA. O efeito de probióticos fúngicos adicionados a uma dieta rica em grãos no trato gastrointestinal de ovinos. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70605p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivou-se avaliar as características microbiológicas e físico-químicas do fluido ruminal e histológicas do trato gástrico intestinal (TGI) de ovinos sob dieta de alto grão com probiótico fungos Aspergillus terreus e/ou Rhizomucor spp. Analisou-se quatro probióticos (sem inóculos, com Rhizomucor spp., com Aspergillus terreus e com mistura dos dois fungos) e dois processamentos de milho (moído/inteiro), em fatorial 4x2 em em Delineamento Inteiramente Casualizados (DIC). Borregos Santa Inês/Dorper foram alojados em oito baias com cinco borregos em cada, durante 75 dias. Coletou-se fluido ruminal para o estudo do perfil microbiológico do rúmen, da característica macroscópica, da concentração de nitrogênio amoniacal e da atividade microbiológica, além dos fragmentos do TGI para análises histológicas. Pelas análises dos fluidos, os animais apresentaram baixo índice de acidose. O odor aromático e a cor castanho-enegrecido predominaram, o que caracteriza ambiente com pH neutro. As amostras do fluido apresentaram alta atividade microbiana. O pH ruminal diferenciou-se (P<0,05) quanto ao tipo de processamento, sendo maior para milho grão moído (MGM). Não houve diferença para nenhuma das comunidades microbiológicas analisadas (P>0,05) (bactérias Lac+ e Lac-, fungos, leveduras e protozoários). Seis gêneros de fungos anaeróbicos facultativos foram identificados num total de 15 observações. O Cladosporium spp. foi o gênero mais prevalente (46,66%), seguido do Aspergillus spp. (26,66%). A largura da base das papilas ruminais apresentou interação significativa, sendo maior para MGM (P<0,05) com Rhizomucor e o controle (P<0,05). O fluido ruminal de ovinos sob dieta de alto concentrado de grão com adição dos fungos Aspergillus terreus e Rhizomucor spp. não tiveram afetadas as características microbiológicas e físico-químicas.
Collapse
|
5
|
Fabino Neto R, Pessoa FOA, Silva TD, Miyagi ES, Santana Neto VV, Godoy MMD, Lima DKS, Silva JRDM, Brainer MMDA. The effect of fungal probiotics added to a high-grain diet on the gastrointestinal tract of sheep. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70605e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to evaluate the microbiological and physicochemical characteristics of the ruminal fluid and histological characteristics of the gastrointestinal tract (GIT) of sheep on a high-grain diet containing the probiotic fungi Aspergillus terreus and Rhizomucor spp. The study included four treatment groups (without probiotic, with Rhizomucor spp., with Aspergillus terreus, and with a mixture of both fungi), and two types of corn (ground/whole), in a Completely Randomized Design (CRD) arranged in 4 x 2 factorial design. Santa Inês x Dorper lambs were housed in eight pens with five lambs each for 75 days. Rumen fluid was collected to study the rumen microbiological profile, macroscopic characteristics, ammonia nitrogen concentration, and microbiological activity. In addition, GIT samples were taken for histological analysis. Fluid analyses showed that the animals presented a low acidosis index. The samples presented a predominantly aromatic odor and blackish-brown color, indicating a neutral pH and high microbial activity. The rumen pH differed (P < 0.05) according to the level of processed corn consumed, being higher for ground grain corn (GGC). There was no difference for any of the microbiological communities analyzed (P > 0.05) (Lac+ and Lac- bacteria, fungi, yeasts, and protozoa). Six genera of facultative anaerobic fungi were identified in 15 observations. Cladosporium spp. was the most prevalent genus (46.66%), followed by Aspergillus spp. (26,66%). The width of the base of rumen papillae showed significant correlation being greater for GCG (P < 0.05) with Rhizomucor and for the control (P < 0.05). The rumen fluid of sheep on a high-grain diet with added Aspergillus terreus and Rhizomucor spp. showed no microbiological and physicochemical changes.
Collapse
|
6
|
Ábrego-Gacía A, Poggi-Varaldo HM, Robles-González V, Ponce-Noyola T, Calva-Calva G, Ríos-Leal E, Estrada-Bárcenas D, Mendoza-Vargas A. Lovastatin as a supplement to mitigate rumen methanogenesis: an overview. J Anim Sci Biotechnol 2021; 12:123. [PMID: 34911584 PMCID: PMC8675506 DOI: 10.1186/s40104-021-00641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/03/2021] [Indexed: 11/23/2022] Open
Abstract
Methane from enteric fermentation is the gas with the greatest environmental impact emitted by ruminants. Lovastatin (Lv) addition to feedstocks could be a strategy to mitigate rumen methane emissions via decreasing the population of methanogenic archaea (MA). Thus, this paper provides the first overview of the effects of Lv supplementation, focusing on the inhibition of methane production, rumen microbiota, and ruminal fermentation. Results indicated that Lv treatment had a strong anti-methanogenic effect on pure strains of MA. However, there are uncertainties from in vitro rumen fermentation trials with complex substrates and rumen inoculum. Solid-state fermentation (SSF) has emerged as a cost-effective option to produce Lv. In this way, SSF of agricultural residues as an Lv-carrier supplement in sheep and goats demonstrated a consistent decrease in ruminal methane emissions. The experimental evidence for in vitro conditions showed that Lv did not affect the volatile fatty acids (VFA). However, in vivo experiments demonstrated that the production of VFA was decreased. Lv did not negatively affect the digestibility of dry matter during in vitro and in vivo methods, and there is even evidence that it can induce an increase in digestibility. Regarding the rumen microbiota, populations of MA were reduced, and no differences were detected in alpha and beta diversity associated with Lv treatment. However, some changes in the relative abundance of the microbiota were induced. Further studies are recommended on: (i) Lv biodegradation products and stability, as well as its adsorption onto the solid matter in the rumen, to gain more insight on the “available” or effective Lv concentration; and (ii) to determine whether the effect of Lv on ruminal fermentation also depends on the feed composition and different ruminants.
Collapse
Affiliation(s)
- Amaury Ábrego-Gacía
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Héctor M Poggi-Varaldo
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico. .,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.
| | - Vania Robles-González
- Instituto de Hidrología, Universidad Tecnológica de la Mixteca, Oaxaca, 69000, Huajuapan de León, Mexico
| | - Teresa Ponce-Noyola
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Graciano Calva-Calva
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Elvira Ríos-Leal
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Daniel Estrada-Bárcenas
- National Collection of Microbial and Cellular Cultures, CINVESTAV-IPN, P.O.Box17-740, 07000, Mexico City, Mexico
| | - Alfredo Mendoza-Vargas
- Unidad de Secuenciación e Identificación de Polimorfismos, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| |
Collapse
|
7
|
Dos Santos TAX, Fernandes LMG, Carvalho PPX, Júnior VSM, Fonseca SA, Chaves AS, Duarte ER. Performance and microbiota of the digestive tract of Nellore calves supplemented with fungi isolated from bovine rumen. Vet World 2021; 14:2686-2693. [PMID: 34903926 PMCID: PMC8654770 DOI: 10.14202/vetworld.2021.2686-2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim In tropical semiarid regions, supplementation with fungi could contribute to rumen modulation, promoting greater production of fibrolytic enzymes and degradation of forage. The objective of this study was to analyze the effect of supplementation with fungi, isolated from the bovine rumen, on the performance and microbiota of the digestive tract of Nellore calves. Materials and Methods The experiment was conducted in randomized blocks evaluating eight Nellore calves that were daily supplemented with isolates of Aspergillus terreus and Trichoderma longibrachiatum, along with eight calves that were not supplemented. After 55 days, the animals were weighed, and samples of rumen fluid and feces were collected for analysis. The characteristics that showed normal distribution were subjected to analysis of variance and compared using Tukey's test. Whereas, the variables that did not show normal distribution were subjected to the Kruskal-Wallis test, and the frequencies of the bacterial and fungal genera were compared using the Chi-square test. Results Supplementation with fungi promoted the reduction in ruminal pH (p<0.05). However, the final live weight; average daily weight gain; total weight gain; rumen protozoa; and the count of Enterobacteriaceae, mycelial fungi, and yeasts of ruminal fluid and feces were not influenced by supplementation (p>0.05). Moreover, the protozoa Eodinium spp. was identified only in supplemented calves (p<0.05). Conclusion Supplementation with the fungi presented the potential for use as possible additives because it did not alter the physiological parameters of the facultative anaerobic microbiota composition in the rumen and feces. In addition, it favored the presence of the ciliate genus Eodinium. However, further studies should be performed to better define suitable dosages for supplementation.
Collapse
Affiliation(s)
| | | | - Pedro Paulo Xavier Carvalho
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Valdo Soares Martins Júnior
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Suze Adriane Fonseca
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Amalia Saturnino Chaves
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Eduardo Robson Duarte
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| |
Collapse
|
8
|
Szűcs C, Kovács E, Bagi Z, Rákhely G, Kovács KL. Enhancing biogas production from agroindustrial waste pre-treated with filamentous fungi. Biol Futur 2021; 72:341-346. [PMID: 34554554 DOI: 10.1007/s42977-021-00083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Biogas is the product of anaerobic digestion (AD) of organic waste and is considered to be one of the most valuable natural renewable energy carriers. Plant biomass represents the most abundant eco-friendly energy reservoir on Earth. However, the tenacious and heterogeneous structure of the lignocellulose-rich elements makes it difficult for the involved microbes to digest the recalcitrant substrates. Both the degradation process and the biogas production yield can be enhanced by appropriate pre-treatment of lignocellulosic materials. Filamentous fungi have been known as proficient colonizers of lignocellulosic plant tissues and have been recognized as producers of exceptionally rich and diverse hydrolytic enzymes. We tested Aspergillus nidulans, Trichoderma reesei, Rhizomucor miehei and Gilbertella persicaria filamentous fungal strains for pre-treatment of various agricultural lignocellulosic wastes. During the pre-treatment phase, the β-glucosidase and endoglucanase activity was measured spectrophotometrically. In the AD step, methane production was monitored by gas chromatography. The preliminary results showed that all the applied strains (Aspergillus nidulans, Trichoderma reesei, Rhizomucor miehei and Gilbertella persicaria) were highly effective in producing both β-glucosidase and endo-(1,4)-β-D-glucanase enzymes, which might explain the greatly improved AD results. Pre-treatment with the above-mentioned filamentous fungi positively affected the biogas production, although the effect strongly depended on the selection of the fungal partner for any given biomass substrate. Depending on the used substrate and the pre-treatment strain, overall methane yields were elevated two-fold relative to the controls.
Collapse
Affiliation(s)
- Csilla Szűcs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos körút 64-66, Szeged, 6720, Hungary
| |
Collapse
|
9
|
Enzymatic profiles of hydrolysis of lignocellulosic materials from Aspergillus terreus strains isolated from the rumen of beef cattle from Brazil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Screening of Fungal Strains for Cellulolytic and Xylanolytic Activities Production and Evaluation of Brewers’ Spent Grain as Substrate for Enzyme Production by Selected Fungi. ENERGIES 2021. [DOI: 10.3390/en14154443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brewer’s spent grain (BSG), the solid residue of beer production, is attracting significant attention as raw material for the production of added value substances, since until recently it was mainly used as animal feed or deposited in landfills, causing serious environmental problems. Therefore, this work aimed at developing a bioprocess using BSG as a substrate for the production of cellulases and xylanases for waste saccharification and bioenergy production. Different fungi were analyzed for their cellulolytic and xylanolytic abilities, through a first screening on solid media by assessment of fungal growth and enzyme production on agar containing carboxylmethylcellulose or xylan as the sole carbon source, respectively. The best cellulase and xylanase producers were subjected to quantitative evaluation of enzyme production in liquid cultures. Aspergillus niger LPB-334 was selected for its ability to produce cellulase and xylanase at high levels and it was cultivated on BSG by solid state fermentation. The cellulase production reached a maximum of 118.04 ± 8.4 U/g of dry substrate after 10 days of fermentation, while a maximum xylanase production of 1315.15 ± 37.5 U/g of dry substrate was reached after 4 days. Preliminary characterization of cellulase and xylanase activities and identification of the enzymes responsible were carried out.
Collapse
|
11
|
Harnvoravongchai P, Singwisut R, Ounjai P, Aroonnual A, Kosiyachinda P, Janvilisri T, Chankhamhaengdecha S. Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp. R63 from tropical dry deciduous forest soil. PLoS One 2020; 15:e0236518. [PMID: 32702033 PMCID: PMC7377481 DOI: 10.1371/journal.pone.0236518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Thermophilic microorganisms and their enzymes have been utilized in various industrial applications. In this work, we isolated and characterized thermophilic anaerobic bacteria with the cellulose and hemicellulose degrading activities from a tropical dry deciduous forest in northern Thailand. Out of 502 isolated thermophilic anaerobic soil bacteria, 6 isolates, identified as Thermoanaerobacterium sp., displayed an ability to utilize a wide range of oligosaccharides and lignocellulosic substrates. The isolates exhibited significant cellulase and xylanase activities at high temperature (65°C). Among all isolates, Thermoanaerobacterium sp. strain R63 exhibited remarkable hydrolytic properties with the highest cellulase and xylanase activities at 1.15 U/mg and 6.17 U/mg, respectively. Extracellular extract of Thermoanaerobacterium sp. strain R63 was thermostable with an optimal temperature at 65°C and could exhibit enzymatic activities on pH range 5.0-9.0. Our findings suggest promising applications of these thermoanaerobic bacteria and their potent enzymes for industrial purposes.
Collapse
Affiliation(s)
| | - Ratiyakorn Singwisut
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Amornrat Aroonnual
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
12
|
Simultaneous hydrogen production and decolorization of denim textile wastewater: kinetics of decolorizing of indigo dye by bacterial and fungal strains. Braz J Microbiol 2020; 51:701-709. [PMID: 32319044 DOI: 10.1007/s42770-019-00157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 10/24/2022] Open
Abstract
This study proposes the treatment and valorization of denim textile effluents through a fermentative hydrogen production process. Also, the study presents the decolorizing capabilities of bacterial and fungal isolates obtained from the fermented textile effluents. The maximum hydrogen production rate was 0.23 L H2/L-d, achieving at the same time color removal. A total of thirty-five bacteria and one fungal isolate were obtained from the fermented effluents and screened for their abilities to decolorize indigo dye, used as a model molecule. From them, isolates identified as Bacillus BT5, Bacillus BT9, Lactobacillus BT20, Lysinibacillus BT32, and Aspergillus H1T showed notable decolorizing capacities. Lactobacillus BT20 reached 90% of decolorization using glucose as co-substrate after 11 days of incubation producing colorless metabolites. Bacillus BT9 was able to utilize the indigo dye as the sole carbon source achieving a maximum decolorization of 60% after 9 days of incubation and producing a red-colored metabolite. In contrast, Bacillus BT5 and Lysinibacillus BT32 exhibited the lowest percentages of decolorization, barely 33% after 16 and 11 days of incubation, respectively. When Aspergillus H1T was grown in indigo dye supplemented with glucose, 96% of decolorization was reached after 2 days. This study demonstrates the valorization of denim textile effluents for the production of hydrogen via dark fermentation with concomitant color removal.
Collapse
|
13
|
Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O'Hara I, Speight R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol 2020; 20:12. [PMID: 32111201 PMCID: PMC7049217 DOI: 10.1186/s12896-020-00609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sugarcane bagasse is a major source of lignocellulosic biomass, yet its economic potential is not fully realised. To add value to bagasse, processing is needed to gain access to the embodied recalcitrant biomaterials. When bagasse is stored in piles in the open for long periods it is colonised by microbes originating from the sugarcane, the soil nearby or spores in the environment. For these microorganisms to proliferate they must digest the bagasse to access carbon for growth. The microbial community in bagasse piles is thus a potential resource for the discovery of useful and novel microbes and industrial enzymes. We used culturing and metabarcoding to understand the diversity of microorganisms found in a uniquely undisturbed bagasse storage pile and screened the cultured organisms for fibre-degrading enzymes. RESULTS Samples collected from 60 to 80 cm deep in the bagasse pile showed hemicellulose and partial lignin degradation. One hundred and four microbes were cultured from different layers and included a high proportion of oleaginous yeast and biomass-degrading fungi. Overall, 70, 67, 70 and 57% of the microbes showed carboxy-methyl cellulase, xylanase, laccase and peroxidase activity, respectively. These percentages were higher in microbes selectively cultured from deep layers, with all four activities found for 44% of these organisms. Culturing and amplicon sequencing showed that there was less diversity and therefore more selection in the deeper layers, which were dominated by thermophiles and acid tolerant organisms, compared with the top of pile. Amplicon sequencing indicated that novel fungi were present in the pile. CONCLUSIONS A combination of culture-dependent and independent methods was successful in exploring the diversity in the bagasse pile. The variety of species that was found and that are known for biomass degradation shows that the bagasse pile was a valuable selective environment for the identification of new microbes and enzymes with biotechnological potential. In particular, lignin-modifying activities have not been reported previously for many of the species that were identified, suggesting future studies are warranted.
Collapse
Affiliation(s)
- Leigh Gebbie
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Tuan Tu Dam
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Rebecca Ainscough
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robin Palfreyman
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Li Cao
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Mark Harrison
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Ian O'Hara
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robert Speight
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
14
|
Bajaj P, Mahajan R. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 2019; 103:8711-8724. [DOI: 10.1007/s00253-019-10146-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
|
15
|
Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, Morgavi DP, Cathala B, Moreau C, Cleret M, Robe P, Klopp C, Laville E. Highly Promiscuous Oxidases Discovered in the Bovine Rumen Microbiome. Front Microbiol 2018; 9:861. [PMID: 29780372 PMCID: PMC5945886 DOI: 10.3389/fmicb.2018.00861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/13/2018] [Indexed: 11/17/2022] Open
Abstract
The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.
Collapse
Affiliation(s)
- Lisa Ufarté
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Gabrielle Potocki-Veronese
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Davide Cecchini
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Alexandra S Tauzin
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Angeline Rizzo
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Bernard Cathala
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Céline Moreau
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Megane Cleret
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Christophe Klopp
- Plateforme Bio-informatique Toulouse Genopole, UBIA INRA, BP 52627, Castanet-Tolosan, France
| | - Elisabeth Laville
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Mann E, Wetzels SU, Wagner M, Zebeli Q, Schmitz-Esser S. Metatranscriptome Sequencing Reveals Insights into the Gene Expression and Functional Potential of Rumen Wall Bacteria. Front Microbiol 2018; 9:43. [PMID: 29410661 PMCID: PMC5787071 DOI: 10.3389/fmicb.2018.00043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Microbiota of the rumen wall constitute an important niche of rumen microbial ecology and their composition has been elucidated in different ruminants during the last years. However, the knowledge about the function of rumen wall microbes is still limited. Rumen wall biopsies were taken from three fistulated dairy cows under a standard forage-based diet and after 4 weeks of high concentrate feeding inducing a subacute rumen acidosis (SARA). Extracted RNA was used for metatranscriptome sequencing using Illumina HiSeq sequencing technology. The gene expression of the rumen wall microbial community was analyzed by mapping 35 million sequences against the Kyoto Encyclopedia for Genes and Genomes (KEGG) database and determining differentially expressed genes. A total of 1,607 functional features were assigned with high expression of genes involved in central metabolism, galactose, starch and sucrose metabolism. The glycogen phosphorylase (EC:2.4.1.1) which degrades (1->4)-alpha-D-glucans was among the highest expressed genes being transcribed by 115 bacterial genera. Energy metabolism genes were also highly expressed, including the pyruvate orthophosphate dikinase (EC:2.7.9.1) involved in pyruvate metabolism, which was covered by 177 genera. Nitrogen metabolism genes, in particular glutamate dehydrogenase (EC:1.4.1.4), glutamine synthetase (EC:6.3.1.2) and glutamate synthase (EC:1.4.1.13, EC:1.4.1.14) were also found to be highly expressed and prove rumen wall microbiota to be actively involved in providing host-relevant metabolites for exchange across the rumen wall. In addition, we found all four urease subunits (EC:3.5.1.5) transcribed by members of the genera Flavobacterium, Corynebacterium, Helicobacter, Clostridium, and Bacillus, and the dissimilatory sulfate reductase (EC 1.8.99.5) dsrABC, which is responsible for the reduction of sulfite to sulfide. We also provide in situ evidence for cellulose and cellobiose degradation, a key step in fiber-rich feed digestion, as well as oxidative stress response and oxygen scavenging at the rumen wall. Archaea, mainly Methanocaldococcus and Methanobrevibacter, were found to be metabolically active with a high number of transcripts matching to methane and carbohydrate metabolism. These findings enhance our understanding of the metabolic function of the bovine rumen wall microbiota.
Collapse
Affiliation(s)
- Evelyne Mann
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefanie U Wetzels
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|