1
|
Habibollah M, Azarakhsh A, Shahab M, Somayeh S, Shahram B, Ali R, Shahram J. Prevalence of Epstein-barr Virus (EBV) among Patients with Oral Squamous Cell Carcinoma from Ahvaz, Iran: A Case-Control Study. ARCHIVES OF RAZI INSTITUTE 2023; 78:1495-1502. [PMID: 38590671 PMCID: PMC10998940 DOI: 10.22092/ari.2023.78.5.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/27/2023] [Indexed: 04/10/2024]
Abstract
Epstein-Barr virus (EBV), one of the most significant causes of lymphoid and epithelial cancers, has been linked to oral carcinogenesis; however, this etiological association remains controversial. To investigate this association, the present study aimed to determine the prevalence of EBV in cancerous and non-cancerous oral tissues from Ahvaz, Iran. In total, 164 blocks of formalin-fixed paraffin-embedded tissues from oral squamous cell carcinoma (OSCC), including 76 tongue squamous cell carcinomas and 88 non-cancerous tongue tissues, were collected from Ahvaz Imam Khomeini Hospital, Ahvaz, Iran, from December 2014 to March 2019, for this case-control study. The tissues were cut into 15-μm-thick sections, and DNA was extracted using a solution of Phenol, Chloroform, and Isoamyl Alcohol. The EBV detection and typing were performed using nested polymerase chain reaction. The EBV was detected in 9 (5.48%) out of the 164 samples studied, including 4 (5.26%) of the 76 SCC cases and 5 (5.68%) of the 88 samples in the control group (P>0.05). The EBV was positive in 2.40% of the 83 male and 8.6% of the 81 female samples (P>0.05). In terms of the histological grades of the case group, 3 (3/57) and 1 (1/13) of the EBV-positive samples were well and moderately differentiated, respectively (P>0.05). For EBV typing, the 9 EBV-positive samples were tested, and it was found that 2 and 7 of the cases were EBV type I and II, respectively. Results of the current study demonstrated the low frequency of EBV in Iranian patients with OSCC, with EBV type II predominating. Further studies are required to clarify the association between EBV and OSCC.
Collapse
Affiliation(s)
- Mirzaei Habibollah
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azaran Azarakhsh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoudvand Shahab
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokri Somayeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagheri Shahram
- Department of Pathology, Shafa Hospital, Ahvaz Jundishapur University of Medicine, Ahvaz, Iran
| | - Ramezani Ali
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jalilian Shahram
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Hernández-Verdin I, Kirasic E, Wienand K, Mokhtari K, Eimer S, Loiseau H, Rousseau A, Paillassa J, Ahle G, Lerintiu F, Uro-Coste E, Oberic L, Figarella-Branger D, Chinot O, Gauchotte G, Taillandier L, Marolleau JP, Polivka M, Adam C, Ursu R, Schmitt A, Barillot N, Nichelli L, Lozano-Sánchez F, Ibañez-Juliá MJ, Peyre M, Mathon B, Abada Y, Charlotte F, Davi F, Stewart C, de Reyniès A, Choquet S, Soussain C, Houillier C, Chapuy B, Hoang-Xuan K, Alentorn A. Molecular and clinical diversity in primary central nervous system lymphoma. Ann Oncol 2023; 34:186-199. [PMID: 36402300 DOI: 10.1016/j.annonc.2022.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is a rare and distinct entity within diffuse large B-cell lymphoma presenting with variable response rates probably to underlying molecular heterogeneity. PATIENTS AND METHODS To identify and characterize PCNSL heterogeneity and facilitate clinical translation, we carried out a comprehensive multi-omic analysis [whole-exome sequencing, RNA sequencing (RNA-seq), methylation sequencing, and clinical features] in a discovery cohort of 147 fresh-frozen (FF) immunocompetent PCNSLs and a validation cohort of formalin-fixed, paraffin-embedded (FFPE) 93 PCNSLs with RNA-seq and clinico-radiological data. RESULTS Consensus clustering of multi-omic data uncovered concordant classification of four robust, non-overlapping, prognostically significant clusters (CS). The CS1 and CS2 groups presented an immune-cold hypermethylated profile but a distinct clinical behavior. The 'immune-hot' CS4 group, enriched with mutations increasing the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor-κB activity, had the most favorable clinical outcome, while the heterogeneous-immune CS3 group had the worse prognosis probably due to its association with meningeal infiltration and enriched HIST1H1E mutations. CS1 was characterized by high Polycomb repressive complex 2 activity and CDKN2A/B loss leading to higher proliferation activity. Integrated analysis on proposed targets suggests potential use of immune checkpoint inhibitors/JAK1 inhibitors for CS4, cyclin D-Cdk4,6 plus phosphoinositide 3-kinase (PI3K) inhibitors for CS1, lenalidomide/demethylating drugs for CS2, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors for CS3. We developed an algorithm to identify the PCNSL subtypes using RNA-seq data from either FFPE or FF tissue. CONCLUSIONS The integration of genome-wide data from multi-omic data revealed four molecular patterns in PCNSL with a distinctive prognostic impact that provides a basis for future clinical stratification and subtype-based targeted interventions.
Collapse
Affiliation(s)
- I Hernández-Verdin
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - E Kirasic
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - K Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - K Mokhtari
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neuropathology, Groupe Hospitalier Pitié Salpêtrière, APHP, Paris, France
| | - S Eimer
- Department of Pathology, CHU de Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | - H Loiseau
- Department of Neurosurgery, Bordeaux University Hospital Center, Pellegrin Hospital, Bordeaux, France; EA 7435-IMOTION, University of Bordeaux, Bordeaux, France
| | - A Rousseau
- Department of Pathology, PBH, CHU Angers, Angers, France; CRCINA, Université de Nantes-université d'Angers, Angers, France
| | - J Paillassa
- Department of Hematology, CHU Angers, Angers, France
| | - G Ahle
- Department of Neurology, Hôpitaux Civils de Colmar, Colmar, France
| | - F Lerintiu
- Department of Neuropathology, Hôpitaux Civils de Colmar, Strasbourg, France
| | - E Uro-Coste
- Department of Pathology, CHU de Toulouse, IUC-Oncopole, Toulouse, France; INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - L Oberic
- Department of Hematology, IUC Toulouse Oncopole, Toulouse, France
| | - D Figarella-Branger
- Neuropathology Department, University Hospital Timone, Aix Marseille University, Marseille, France; Inst Neurophysiopathol, CNRS, INP, Aix-Marseille University, Marseille, France
| | - O Chinot
- Department of Neuro-oncology, CHU Timone, APHM, Marseille, France; Institute of NeuroPhysiopathology, CNRS, INP, Aix-Marseille University, Marseille, France
| | - G Gauchotte
- Department of Biopathology, CHRU Nancy, CHRU/ICL, Bâtiment BBB, Vandoeuvre-lès-Nancy, France; Department of Legal Medicine, CHRU Nancy, Vandoeuvre-lès-Nancy, France; INSERM U1256, University of Lorraine, Vandoeuvre-lès-Nancy, France; Centre de Ressources Biologiques, BB-0033-00035, CHRU, Nancy, France
| | - L Taillandier
- Department of Neuro-oncology, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - J-P Marolleau
- Department of Hematology, CHU Amiens-Picardie, Amiens, France
| | - M Polivka
- Department of Anatomopathology, Lariboisière Hospital, Assistance Publique-Hopitaux de Paris, University of Paris, Paris, France
| | - C Adam
- Pathology Department, Bicêtre University Hospital, Public Hospital Network of Paris, Le Kremlin Bicêtre, France
| | - R Ursu
- Department of Neurology, Université de Paris, AP-HP, Hôpital Saint Louis, Paris, France
| | - A Schmitt
- Department of Hematology, Institut Bergonié Hospital, Bordeaux, France
| | - N Barillot
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - L Nichelli
- Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - F Lozano-Sánchez
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | | | - M Peyre
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurosurgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - B Mathon
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurosurgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Y Abada
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - F Charlotte
- Department Pathology, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - F Davi
- Department Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - C Stewart
- Department Broad Institute of MIT and Harvard, Cambridge, USA
| | - A de Reyniès
- Department INSERM UMR_S1138-Centre de Recherche des Cordeliers-Université Pierre et Marie Curie et Université Paris Descartes, Paris, France
| | - S Choquet
- Department Pathology, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - C Soussain
- Department Hematology Unit, Institut Curie, Saint-Cloud, France
| | - C Houillier
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - B Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - K Hoang-Xuan
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - A Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
3
|
Wirsing AM, Bjerkli IH, Steigen SE, Rikardsen O, Magnussen SN, Hegge B, Seppola M, Uhlin-Hansen L, Hadler-Olsen E. Validation of Selected Head and Neck Cancer Prognostic Markers from the Pathology Atlas in an Oral Tongue Cancer Cohort. Cancers (Basel) 2021; 13:cancers13102387. [PMID: 34069237 PMCID: PMC8156750 DOI: 10.3390/cancers13102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The Pathology Atlas is an open-access database that reports the prognostic value of protein-coding transcripts in 17 cancers, including head and neck cancer. However, cancers of the various head and neck anatomical sites are specific biological entities. Thus, the aim of the present study was to validate promising prognostic markers for head and neck cancer reported in the Pathology Atlas in oral tongue squamous cell carcinoma (OTSCC). We selected three promising markers from the Pathology Atlas (CALML5, CD59, LIMA1), and analyzed their prognostic value in a Norwegian OTSCC cohort comprising 121 patients. We correlated target protein and mRNA expression in formalin-fixed, paraffin-embedded cancer tissue to five-year disease-specific survival (DSS) in univariate and multivariate analyses. Protein expression of CALML5 and LIMA1 were significantly associated with five-year DSS in the OTSCC cohort in univariate analyses (p = 0.016 and p = 0.043, respectively). In multivariate analyses, lymph node metastases, tumor differentiation, and CALML5 were independent prognosticators. The prognostic role of the other selected markers for head and neck cancer patients identified through unbiased approaches could not be validated in our OTSCC cohort. This underlines the need for subsite-specific analyses for head and neck cancer.
Collapse
Affiliation(s)
- Anna Maria Wirsing
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Inger-Heidi Bjerkli
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Sonja Eriksson Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Oddveig Rikardsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Synnøve Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Marit Seppola
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- The Public Dental Health Service Competence Centre of Northern Norway, 9019 Tromsø, Norway
- Correspondence: ; Tel.: +47-48-06-72-49
| |
Collapse
|
4
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
5
|
Zhang H, Song Y, Du Z, Li X, Zhang J, Chen S, Chen F, Li T, Zhan Q. Exome sequencing identifies new somatic alterations and mutation patterns of tongue squamous cell carcinoma in a Chinese population. J Pathol 2020; 251:353-364. [PMID: 32432340 DOI: 10.1002/path.5467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is an aggressive group of tumors characterized by high rates of regional lymph node metastasis and local recurrence. Emerging evidence has revealed genetic variations of TSCC across different geographical regions due to the impact of multiple risk factors such as chewing betel-quid. However, we know little of the mutational processes of TSCC in the Chinese population without the history of chewing betel-quid/tobacco. To explore the mutational spectrum of this disease, we performed whole-exome sequencing of sample pairs, comprising tumors and normal tissue, from 82 TSCC patients. In addition to identifying seven previously known TSCC-associated genes (TP53, CDKN2A, PIK3CA, NOTCH1, ASXL1, USH2A, and CSMD3), the analysis revealed six new genes (GNAQ, PRG4, RP1, ZNF16, NBEA, and PTPRC) that had not been reported previously in TSCC. Our in vitro experiments identified ZNF16 for the first time as a solid tumor associated gene to promote malignancy of TSCC cells. We also identified a microRNA (miR-585-5p) encoded by the 5q35.1 region and characterized it as a tumor suppressor by targeting SOX9. At least one non-silent mutation of genes involved in the 10 canonical oncogenic pathways (Notch, RTK-RAS, PI3K, Wnt, Cell cycle, p53, Myc, Hippo, TGFβ, and Nrf2) was found in 82.9% of cases. Collectively, our data extend the spectrum of TSCC mutations and define novel diagnosis markers and potential clinical targets for TSCC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhenglin Du
- China National Center for Bioinformation & National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Shuai Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Tiejun Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, PR China.,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
6
|
Gu X, Boldrup L, Coates PJ, Fahraeus R, Wang L, Wilms T, Norberg-Spaak L, Sgaramella N, Nylander K. High immune cytolytic activity in tumor-free tongue tissue confers better prognosis in patients with squamous cell carcinoma of the oral tongue. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:240-247. [PMID: 31237113 PMCID: PMC6817829 DOI: 10.1002/cjp2.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022]
Abstract
Immune cells and cytolytic activity within the tumor microenvironment are being intensively studied. Through transcriptome profiling, immune cell enumeration using the xCell tool and cytolytic activity quantification according to granzyme A (GZMA) and perforin (PRF1) mRNA levels, we investigated immunoreactivity in tumor and/or tumor‐free tongue tissue samples from 31 patients with squamous cell carcinoma of the oral tongue and 14 healthy individuals (control tongue tissues). We found significantly altered immune cell compositions (p < 0.001) and elevated cytolytic activity (p < 0.001) in tumor compared to tumor‐free samples, and altered infiltration of a subset of immune cells (e.g. CD8+ T cells, p < 0.01) as well as increased cytolytic activity (p < 0.001) in tumor‐free compared to control samples. Controlling for patient age at diagnosis and tumor stage, Cox regression analysis showed that high cytolytic activity in tumor‐free samples associated with improved disease‐free survival (hazard ratio= 4.20, 95% CI = 1.09–16.20, p = 0.037). However, the degree of cytolytic activity in tumor samples did not provide prognostic information. Taken together, our results show the presence of cancer‐related immune responses in clinically tumor‐free tongue in patients with squamous cell carcinoma of the oral tongue. Measuring cytolytic activity in tumor‐free tongue samples contralateral to tumor might thus be an effective approach to predict clinical outcome.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.,Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Institute of Molecular Genetics, University Paris 7, St. Louis Hospital, Paris, France
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Tachibana T, Orita Y, Gion Y, Miki K, Ikegami K, Marunaka H, Makino T, Akagi Y, Akisada N, Tsumura M, Ito T, Yoshino T, Nishizaki K, Sato Y. Young adult patients with squamous cell carcinoma of the tongue strongly express p16 without human papillomavirus infection. Acta Otolaryngol 2019; 139:80-84. [PMID: 30712427 DOI: 10.1080/00016489.2018.1541506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long-term smoking and drinking are known to contribute to the onset of tongue cancer (TC). However, the increasing incidence of TC in younger adults has been suggested to be associated with other factors. OBJECTIVES The present study investigated the relationship between TC and human papillomavirus (HPV) infection. MATERIAL AND METHODS Clinical records and surgically resected specimens from 86 patients (<40-years-old, n = 12; ≥40-years-old, n = 74) with TC were analyzed. Strong nuclear and cytoplasmic p16 staining was considered positive. HPV DNA (high-risk subtypes: 16, 18, 31, 33, 35, 52b, and 58; low-risk subtypes: 6 and 11) was detected using consensus primer-mediated polymerase chain reaction. RESULTS Strong p16 expression was observed in 10 (11.6%) patients. HPV DNA was detected in 9 (10.5%) patients (high-risk subtypes, n = 2; low-risk subtypes, n = 7). Strong p16 expression was observed more frequently among younger adults than among older adults (33.3% vs. 8.1%; p = .045). p16 staining did not correlate with the detection of HPV DNA (correlation coefficient, 0.113; p = .300). CONCLUSIONS AND SIGNIFICANCE In TC, p16 expression was not associated with HPV infection, suggesting that it may be caused by a different mechanism.
Collapse
Affiliation(s)
- Tomoyasu Tachibana
- Department of Otolaryngology, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Yorihisa Orita
- Department of Otolaryngology, Head and Neck Surgery, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yuka Gion
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kentaro Miki
- Department of Otolaryngology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kana Ikegami
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hidenori Marunaka
- Department of Otolaryngology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takuma Makino
- Department of Otolaryngology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yusuke Akagi
- Department of Otolaryngology, Okayama Medical Center, Okayama, Japan
| | - Naoki Akisada
- Department of Otolaryngology, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Munechika Tsumura
- Department of Otolaryngology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Tadashi Yoshino
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yasuharu Sato
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
8
|
Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One 2018; 13:e0192109. [PMID: 29394264 PMCID: PMC5796799 DOI: 10.1371/journal.pone.0192109] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory condition of the central nervous system (CNS). It is a major cause of neurological disability in young adults, particularly women. What triggers the destruction of myelin sheaths covering nerve fibres is unknown. Both genetic and infectious agents have been implicated. Of the infectious agents, Epstein-Barr virus (EBV), a common herpesvirus, has the strongest epidemiological and serological evidence. However, the presence of EBV in the CNS and demonstration of the underlying mechanism(s) linking EBV to the pathogenesis of MS remain to be elucidated. We aimed at understanding the contribution of EBV infection in the pathology of MS. We examined 1055 specimens (440 DNA samples and 615 brain tissues) from 101 MS and 21 non-MS cases for the presence of EBV using PCR and EBER-in situ hybridization (EBER-ISH). EBV was detected by PCR and/or EBER-ISH in 91/101 (90%) of MS cases compared to only 5/21 (24%) of non-MS cases with other neuropathologies. None of the samples were PCR positive for other common herpesviruses (HSV-1, CMV, HHV-6). By quantitative PCR, EBV viral load in MS brain was mainly low to moderate in most cases. However, in 18/101 (18%) of MS cases, widespread but scattered presence of EBV infected cells was noted in the affected tissues by EBER-ISH. Immunohistochemical analysis of EBV gene expression in the 18 heavily infected cases, revealed that the EBV latent protein EBNA1, and to a lesser extent the early lytic protein BZLF1 were expressed. Furthermore, using double-staining we show for the first time that astrocytes and microglia, in addition to B-cells can also be infected. To the best of our knowledge, this is the most comprehensive study demonstrating that EBV is present and transcriptionally active in the brain of most cases of MS and supports a role for the virus in MS pathogenesis. Further studies are required to address the mechanism of EBV involvement in MS pathology.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - John R. Corboy
- Department of Neurology, University of Colorado School of Medicine, Rocky Mountain MS Center at University of Colorado, Aurora, United States of America
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
- * E-mail:
| |
Collapse
|
9
|
|