1
|
Kurihara Y, Kawaguchi Y, Ohta Y, Kawasaki N, Fujita Y, Takei K. Nogo Receptor Antagonist LOTUS Promotes Neurite Outgrowth through Its Interaction with Teneurin-4. Cells 2024; 13:1369. [PMID: 39195260 DOI: 10.3390/cells13161369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuki Kawaguchi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| | - Yuki Ohta
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Yuki Fujita
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| |
Collapse
|
2
|
Ikeda T, Takahashi K, Higashi M, Komiya H, Asano T, Ogasawara A, Kubota S, Hashiguchi S, Kunii M, Tanaka K, Tada M, Doi H, Takeuchi H, Takei K, Tanaka F. Lateral olfactory tract usher substance (LOTUS), an endogenous Nogo receptor antagonist, ameliorates disease progression in amyotrophic lateral sclerosis model mice. Cell Death Discov 2023; 9:454. [PMID: 38097540 PMCID: PMC10721829 DOI: 10.1038/s41420-023-01758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Nogo-Nogo receptor 1 (NgR1) signaling is significantly implicated in neurodegeneration in amyotrophic lateral sclerosis (ALS). We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of NgR1 that prevents all myelin-associated inhibitors (MAIs), including Nogo, from binding to NgR1. Here we investigated the role of LOTUS in ALS pathogenesis by analyzing G93A-mutated human superoxide dismutase 1 (SOD1) transgenic (Tg) mice, as an ALS model, as well as newly generated LOTUS-overexpressing SOD1 Tg mice. We examined expression profiles of LOTUS and MAIs and compared motor functions and survival periods in these mice. We also investigated motor neuron survival, glial proliferation in the lumbar spinal cord, and neuromuscular junction (NMJ) morphology. We analyzed downstream molecules of NgR1 signaling such as ROCK2, LIMK1, cofilin, and ataxin-2, and also neurotrophins. In addition, we investigated LOTUS protein levels in the ventral horn of ALS patients. We found significantly decreased LOTUS expression in both SOD1 Tg mice and ALS patients. LOTUS overexpression in SOD1 Tg mice increased lifespan and improved motor function, in association with prevention of motor neuron loss, reduced gliosis, increased NMJ innervation, maintenance of cofilin phosphorylation dynamics, decreased levels of ataxin-2, and increased levels of brain-derived neurotrophic factor (BDNF). Reduced LOTUS expression may enhance neurodegeneration in SOD1 Tg mice and ALS patients by activating NgR1 signaling, and in this study LOTUS overexpression significantly ameliorated ALS pathogenesis. LOTUS might serve as a promising therapeutic target for ALS.
Collapse
Affiliation(s)
- Takuya Ikeda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Minatsu Higashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
3
|
Matsubayashi J, Kawaguchi Y, Kawakami Y, Takei K. Brain-derived neurotrophic factor (BDNF) induces antagonistic action to Nogo signaling by the upregulation of lateral olfactory tract usher substance (LOTUS) expression. J Neurochem 2023; 164:29-43. [PMID: 36448220 DOI: 10.1111/jnc.15732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Neurons in the central nervous system (CNS) have limited capacity for axonal regeneration after trauma and neurological disorders due to an endogenous nonpermissive environment for axon regrowth in the CNS. Lateral olfactory tract usher substance (LOTUS) contributes to axonal tract formation in the developing brain and axonal regeneration in the adult brain as an endogenous Nogo receptor-1 (NgR1) antagonist. However, how LOTUS expression is regulated remains unclarified. This study examined molecular mechanism of regulation in LOTUS expression and found that brain-derived neurotrophic factor (BDNF) increased LOTUS expression in cultured hippocampal neurons. Exogenous application of BDNF increased LOTUS expression at both mRNA and protein levels in a dose-dependent manner. We also found that pharmacological inhibition with K252a and gene knockdown by siRNA of tropomyosin-related kinase B (TrkB), BDNF receptor suppressed BDNF-induced increase in LOTUS expression. Further pharmacological analysis of the TrkB signaling pathway revealed that BDNF increased LOTUS expression through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) cascades, but not phospholipase C-γ (PLCγ) cascade. Additionally, treatment with c-AMP response element binding protein (CREB) inhibitor partially suppressed BDNF-induced LOTUS expression. Finally, neurite outgrowth assay in cultured hippocampal neurons revealed that BDNF treatment-induced antagonism for NgR1 by up-regulating LOTUS expression. These findings suggest that BDNF may acts as a positive regulator of LOTUS expression through the TrkB signaling, thereby inducing an antagonistic action for NgR1 function by up-regulating LOTUS expression. Also, BDNF may synergistically affect axon regrowth through the upregulation of LOTUS expression.
Collapse
Affiliation(s)
- Junpei Matsubayashi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yuki Kawaguchi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yutaka Kawakami
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.,Department of Anesthesiology, National Center for Neurology and Psychiatry, Kodaira, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
4
|
Kawaguchi Y, Matsubayashi J, Kawakami Y, Nishida R, Kurihara Y, Takei K. LOTUS suppresses amyloid β-induced dendritic spine elimination through the blockade of amyloid β binding to PirB. Mol Med 2022; 28:154. [PMID: 36510132 PMCID: PMC9743548 DOI: 10.1186/s10020-022-00581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide but has no effective treatment. Amyloid beta (Aβ) protein, a primary risk factor for AD, accumulates and aggregates in the brain of patients with AD. Paired immunoglobulin-like receptor B (PirB) has been identified as a receptor of Aβ and Aβ-PirB molecular interactions that cause synapse elimination and synaptic dysfunction. PirB deletion has been shown to suppress Aβ-induced synaptic dysfunction and behavioral deficits in AD model mice, implying that PirB mediates Aβ-induced AD pathology. Therefore, inhibiting the Aβ-PirB molecular interaction could be a successful approach for combating AD pathology. We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of type1 Nogo receptor and PirB and that LOTUS overexpression promotes neuronal regeneration following damage to the central nervous system, including spinal cord injury and ischemic stroke. Therefore, in this study, we investigated whether LOTUS inhibits Aβ-PirB interaction and Aβ-induced dendritic spine elimination. METHODS The inhibitory role of LOTUS against Aβ-PirB (or leukocyte immunoglobulin-like receptor subfamily B member 2: LilrB2) binding was assessed using a ligand-receptor binding assay in Cos7 cells overexpressing PirB and/or LOTUS. We assessed whether LOTUS inhibits Aβ-induced intracellular alterations and synaptotoxicity using immunoblots and spine imaging in a primary cultured hippocampal neuron. RESULTS We found that LOTUS inhibits the binding of Aβ to PirB overexpressed in Cos7 cells. In addition, we found that Aβ-induced dephosphorylation of cofilin and Aβ-induced decrease in post-synaptic density-95 expression were suppressed in cultured hippocampal neurons from LOTUS-overexpressing transgenic (LOTUS-tg) mice compared with that in wild-type mice. Moreover, primary cultured hippocampal neurons from LOTUS-tg mice improved the Aβ-induced decrease in dendritic spine density. Finally, we studied whether human LOTUS protein inhibits Aβ binding to LilrB2, a human homolog of PirB, and found that human LOTUS inhibited the binding of Aβ to LilrB2 in a similar manner. CONCLUSIONS This study implied that LOTUS improved Aβ-induced synapse elimination by suppressing Aβ-PirB interaction in rodents and inhibited Aβ-LilrB2 interaction in humans. Our findings revealed that LOTUS may be a promising therapeutic agent in counteracting Aβ-induced AD pathologies.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Junpei Matsubayashi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yutaka Kawakami
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.419280.60000 0004 1763 8916Department of Anesthesiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Nishida
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yuji Kurihara
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohtaro Takei
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| |
Collapse
|
5
|
Boyne P, DiFrancesco M, Awosika OO, Williamson B, Vannest J. Mapping the human corticoreticular pathway with multimodal delineation of the gigantocellular reticular nucleus and high-resolution diffusion tractography. J Neurol Sci 2022; 434:120091. [PMID: 34979371 PMCID: PMC8957549 DOI: 10.1016/j.jns.2021.120091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
The corticoreticular pathway (CRP) is a major motor tract that transmits cortical input to the reticular formation motor nuclei and may be an important mediator of motor recovery after central nervous system damage. However, its cortical origins, trajectory and laterality are incompletely understood in humans. This study aimed to map the human CRP and generate an average CRP template in standard MRI space. Following recently established guidelines, we manually delineated the primary reticular formation motor nucleus (gigantocellular reticular nucleus [GRN]) using several group-mean MRI contrasts from the Human Connectome Project (HCP). CRP tractography was then performed with HCP diffusion-weighted MRI data (N = 1065) by selecting diffusion streamlines that reached both the cortex and GRN. Corticospinal tract (CST) tractography was also performed for comparison. Results suggest that the human CRP has widespread origins, which overlap with the CST across most of the motor cortex and include additional exclusive inputs from the medial and anterior prefrontal cortices. The estimated CRP projected through the anterior and posterior limbs of the internal capsule before partially decussating in the midbrain tegmentum and converging bilaterally on the pontomedullary reticular formation. Thus, the CRP trajectory appears to partially overlap the CST, while being more distributed and anteromedial to the CST in the cerebrum before moving posterior to the CST in the brainstem. These findings have important implications for neurophysiologic testing, cortical stimulation and movement recovery after brain lesions. We expect that our GRN and tract maps will also facilitate future CRP research.
Collapse
Affiliation(s)
- Pierce Boyne
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Mark DiFrancesco
- Department of Radiology and Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Brady Williamson
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jennifer Vannest
- Department of Communication Sciences and Disorders, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Li C, Sun R, Chen J, Hong J, Sun J, Zeng Y, Zhang X, Dou Z, Wen H. Different training patterns at recovery stage improve cognitive function in ischemic stroke rats through regulation of the axonal growth inhibitor pathway. Behav Brain Res 2021; 421:113730. [PMID: 34971645 DOI: 10.1016/j.bbr.2021.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Running wheel exercise training (RWE) and skilled reaching training (SRT) are physical training approaches with positive effects on cognitive function. However, few studies have compared the different effects of these exercises on long-term memory, and their mechanism remains unknown. This study investigated the effects of SRT and RWE, at the recovery stage, on the cognitive function of transient middle cerebral artery occlusion (tMCAO) rats and explored their association with NgR1/Rho-A/ROCK/LOTUS/LGI1 signaling. Adult Sprague-Dawley rats (n = 55) were divided into four groups after pretraining: SRT, RWE, tMCAO, and Sham. Rats were subjected to modified neurological severity score (mNSS) measurements and forelimb grip strength and the Morris water maze tests. Using immunofluorescence and western blotting, we evaluated axonal growth inhibitor expression in the peri-infarct cortex on days 28 and 56 after tMCAO. Results showed the mNSS reduced, whereas the grip strengths improved in RWE and SRT groups. The escape latency in the Morris water maze test was shorter, whereas the number of times of crossing the platform was higher in both the SRT and RWE groups than in the tMCAO group on day 56; furthermore, the parameters in the SRT group improved compared to those in the RWE group. Physical exercise training could improve cognitive functions by reducing the expression of the NgR1/RhoA/ROCK axon growth inhibitors and increasing the expression of the endogenous antagonists LOTUS/LGI1. Exercise training beginning at the recovery stage could improve the cognitive function in tMCAO rats through a mechanism probably associated with the axonal growth inhibitor pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan Road, Nanshan District, Shenzhen 518000, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xue Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
7
|
Kuwashiro T, Tanabe K, Hayashi C, Mizoguchi T, Mori K, Jinnouchi J, Yasaka M, Okada Y. Oxidized Albumin and Cartilage Acidic Protein-1 as Blood Biomarkers to Predict Ischemic Stroke Outcomes. Front Neurol 2021; 12:686555. [PMID: 34917008 PMCID: PMC8670551 DOI: 10.3389/fneur.2021.686555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: There is high demand for blood biomarkers that reflect the therapeutic response or predict the outcomes of patients with acute ischemic stroke (AIS); however, few biomarkers have been evidentially verified to date. This study evaluated two proteins, oxidized albumin (OxHSA) and cartilage acidic protein-1 (CRTAC1), as potential prognostic markers of AIS. Methods: The ratio of OxHSA to normal albumin (%OxHSA) and the level of CRTAC1 in the sera of 74 AIS patients were analyzed on admission (day 0), and at 1 and 7 days after admission. AIS patients were divided into two groups according to their modified Rankin Scale (mRS) at 3 months after discharge: the low-mRS (mRS < 2) group included 48 patients and the high-mRS (mRS ≥ 2) group included 26 patients. The differences in %OxHSA and CRTAC1 between the two groups on days 0, 1, and 7 were evaluated. Results: The mean %OxHSA values of the high-mRS group on days 0, 1, and 7 were significantly higher than those of the low-mRS group (p < 0.05). The CRTAC1 levels continuously increased from day 0 to day 7, and those of the high-mRS group were significantly higher than those of the low-mRS group on day 7 (p < 0.05). Conclusions: These results suggest that higher %OxHSA and CRTAC1 are associated with poor outcomes in AIS patients. An index that combines %OxHSA and CRTAC1 can accurately predict the outcomes of AIS patients.
Collapse
Affiliation(s)
- Takahiro Kuwashiro
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan.,Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Chihiro Hayashi
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
| | - Tadataka Mizoguchi
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Kota Mori
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Juro Jinnouchi
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
8
|
Boyne P, Awosika OO, Luo Y. Mapping the corticoreticular pathway from cortex-wide anterograde axonal tracing in the mouse. J Neurosci Res 2021; 99:3392-3405. [PMID: 34676909 DOI: 10.1002/jnr.24975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
The corticoreticular pathway (CRP) has been implicated as an important mediator of motor recovery and rehabilitation after central nervous system damage. However, its origins, trajectory and laterality are not well understood. This study mapped the mouse CRP in comparison with the corticospinal tract (CST). We systematically searched the Allen Mouse Brain Connectivity Atlas (© 2011 Allen Institute for Brain Science) for experiments that used anterograde tracer injections into the right isocortex in mice. For each eligible experiment (N = 607), CRP and CST projection strength were quantified by the tracer volume reaching the reticular formation motor nuclei (RFmotor ) and pyramids, respectively. Tracer density in each brain voxel was also correlated with RFmotor versus pyramids projection strength to explore the relative trajectories of the CRP and CST. We found significant CRP projections originating from the primary and secondary motor cortices, anterior cingulate, primary somatosensory cortex, and medial prefrontal cortex. Compared with the CST, the CRP had stronger projections from each region except the primary somatosensory cortex. Ipsilateral projections were stronger than contralateral for both tracts (above the pyramidal decussation), but the CRP projected more bilaterally than the CST. The estimated CRP trajectory was anteromedial to the CST in the internal capsule and dorsal to the CST in the brainstem. Our findings reveal a widespread distribution of CRP origins and confirm strong bilateral CRP projections, theoretically increasing the potential for partial sparing after brain lesions and contralesional compensation after unilateral injury.
Collapse
Affiliation(s)
- Pierce Boyne
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
10
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
11
|
Takase H, Regenhardt RW. Motor tract reorganization after acute central nervous system injury: a translational perspective. Neural Regen Res 2021; 16:1144-1149. [PMID: 33269763 PMCID: PMC8224132 DOI: 10.4103/1673-5374.300330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acute central nervous system injuries are among the most common causes of disability worldwide, with widespread social and economic implications. Motor tract injury accounts for the majority of this disability; therefore, there is impetus to understand mechanisms underlying the pathophysiology of injury and subsequent reorganization of the motor tract that may lead to recovery. After acute central nervous system injury, there are changes in the microenvironment and structure of the motor tract. For example, ischemic stroke involves decreased local blood flow and tissue death from lack of oxygen and nutrients. Traumatic injury, in contrast, causes stretching and shearing injury to microstructures, including myelinated axons and their surrounding vessels. Both involve blood-brain barrier dysfunction, which is an important initial event. After acute central nervous system injury, motor tract reorganization occurs in the form of cortical remapping in the gray matter and axonal regeneration and rewiring in the white matter. Cortical remapping involves one cortical region taking on the role of another. cAMP-response-element binding protein is a key transcription factor that can enhance plasticity in the peri-infarct cortex. Axonal regeneration and rewiring depend on complex cell-cell interactions between axons, oligodendrocytes, and other cells. The RhoA/Rho-associated coiled-coil containing kinase signaling pathway plays a central role in axon growth/regeneration through interactions with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics. Oligodendrocytes and their precursors play a role in myelination, and neurons are involved through their voltage-gated calcium channels. Understanding the pathophysiology of injury and the biology of motor tract reorganization may allow the development of therapies to enhance recovery after acute central nervous system injury. These include targeted rehabilitation, novel pharmacotherapies, such as growth factors and axonal growth inhibitor blockade, and the implementation of neurotechnologies, such as central nervous system stimulators and robotics. The translation of these advances depends on careful alignment of preclinical studies and human clinical trials. As experimental data mount, the future is one of optimism.
Collapse
Affiliation(s)
- Hajime Takase
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
13
|
Takase H, Chou SHY, Hamanaka G, Ohtomo R, Islam MR, Lee JW, Hsu L, Mathew J, Reyes-Bricio E, Hayakawa K, Xing C, Ning MM, Wang X, Arai K, Lo EH, Lok J. Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology 2020; 94:e1281-e1293. [PMID: 32107323 DOI: 10.1212/wnl.0000000000008868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine if CSF and plasma levels of soluble vascular endothelial (sVE)-cadherin are associated with functional outcome after subarachnoid hemorrhage (SAH) and to investigate sVE-cadherin effects on microglia. METHODS Serial CSF and plasma were collected from prospectively enrolled patients with nontraumatic SAH from a ruptured aneurysm in the anterior circulation and who required an external ventricular drain for clinical indications. Patients with normal-pressure hydrocephalus without SAH served as controls. For prospective assessment of long-term outcomes at 3 and 6 months after SAH, modified Rankin Scale scores (mRS) were obtained and dichotomized into good (mRS ≤ 2) vs poor (mRS > 2) outcome groups. For SAH severity, Hunt and Hess grade was assessed. Association of CSF sVE-cadherin levels with long-term outcomes, HH grade, and CSF tumor necrosis factor (TNF)-α levels were evaluated. sVE-cadherin effects on microglia were also studied. RESULTS sVE-cadherin levels in CSF, but not in plasma, were higher in patients with SAH and were associated with higher clinical severity and higher CSF TNF-α levels. Patients with SAH with higher CSF sVE-cadherin levels over time were more likely to develop worse functional outcome at 3 months after SAH. Incubation of cultured microglia with sVE-cadherin resulted in increased inducible nitric oxide synthase, interleukin-1β, reactive oxygen species, cell soma size, and metabolic activity, consistent with microglia activation. Microinjection of sVE-cadherin fragments into mouse brain results in an increased number of microglia surrounding the injection site, compared to injection of denatured vascular endothelial-cadherin fragments. CONCLUSIONS These results support the existence of a novel pathway by which sVE-cadherin, released from injured endothelium after SAH, can shift microglia into a more proinflammatory phenotype and contribute to neuroinflammation and poor outcome in SAH.
Collapse
Affiliation(s)
- Hajime Takase
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Sherry Hsiang-Yi Chou
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Gen Hamanaka
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ryo Ohtomo
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Mohammad R Islam
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Jong Woo Lee
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Liangge Hsu
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Justin Mathew
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Estefania Reyes-Bricio
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Kazuhide Hayakawa
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Changhong Xing
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ming Ming Ning
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Xiaoying Wang
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ken Arai
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Eng H Lo
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Josephine Lok
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA.
| |
Collapse
|
14
|
Takei K. LOTUS as an endogenous protein converting the adult central nervous system environment from nonpermissive to permissive for axonal regrowth after brain injury. Neuropathology 2020; 40:14-20. [PMID: 31908040 DOI: 10.1111/neup.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/01/2019] [Indexed: 11/30/2022]
Abstract
Central nervous system (CNS) injury, such as spinal cord injury (SCI), results in severe sensory and motor deficits due to the poor regenerative capacity of the adult CNS primarily caused by a damaged CNS environment containing a large amount of axonal growth inhibitors, such as Nogo receptor-1 (NgR1), which inhibits axonal regrowth strongly after SCI, and its five ligands. Lateral olfactory tract usher substance (LOTUS), identified in the developing brain, completely antagonizes NgR1 function, promoting neuronal regeneration and functional recovery after SCI. Therefore, we hypothesized that LOTUS might be a useful natural agent for the clinical treatment of SCI in order to increase functional recovery by converting the CNS environment from nonpermissive to permissive for neuronal regeneration. Currently, we are attempting to administer LOTUS after SCI by protein injection or gene transfection. In this report, I discuss the probability of clinical application of LOTUS for future therapy of brain injury.
Collapse
Affiliation(s)
- Kohtaro Takei
- Department of Medical Life Science, Molecular Medical Bioscience Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
15
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
16
|
Ueno R, Takase H, Suenaga J, Kishimoto M, Kurihara Y, Takei K, Kawahara N, Yamamoto T. Axonal regeneration and functional recovery driven by endogenous Nogo receptor antagonist LOTUS in a rat model of unilateral pyramidotomy. Exp Neurol 2019; 323:113068. [PMID: 31629859 DOI: 10.1016/j.expneurol.2019.113068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
Abstract
The adult mammalian central nervous system (CNS) rarely recovers from injury. Myelin fragments contain axonal growth inhibitors that limit axonal regeneration, thus playing a major role in determining neural recovery. Nogo receptor-1 (NgR1) and its ligands are among the inhibitors that limit axonal regeneration. It has been previously shown that the endogenous protein, lateral olfactory tract usher substance (LOTUS), antagonizes NgR1-mediated signaling and accelerates neuronal plasticity after spinal cord injury and cerebral ischemia in mice. However, it remained unclear whether LOTUS-mediated reorganization of descending motor pathways in the adult brain is physiologically functional and contributes to functional recovery. Here, we generated LOTUS-overexpressing transgenic (LOTUS-Tg) rats to investigate the role of LOTUS in neuronal function after damage. After unilateral pyramidotomy, motor function in LOTUS-Tg rats recovered significantly compared to that in wild-type animals. In a retrograde tracing study, labeled axons spanning from the impaired side of the cervical spinal cord to the unlesioned hemisphere of the red nucleus and sensorimotor cortex were increased in LOTUS-Tg rats. Anterograde tracing from the unlesioned cortex also revealed enhanced ipsilateral connectivity to the impaired side of the cervical spinal cord in LOTUS-Tg rats. Moreover, electrophysiological analysis showed that contralesional cortex stimulation significantly increased ipsilateral forelimb movement in LOTUS-Tg rats, which was consistent with the histological findings. According to these data, LOTUS overexpression accelerates ipsilateral projection from the unlesioned cortex and promotes functional recovery after unilateral pyramidotomy. LOTUS could be a future therapeutic option for CNS injury.
Collapse
Affiliation(s)
- Ryu Ueno
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Hajime Takase
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Masao Kishimoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.
| | - Nobutaka Kawahara
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
17
|
Ito S, Nagoshi N, Tsuji O, Shibata S, Shinozaki M, Kawabata S, Kojima K, Yasutake K, Hirokawa T, Matsumoto M, Takei K, Nakamura M, Okano H. LOTUS Inhibits Neuronal Apoptosis and Promotes Tract Regeneration in Contusive Spinal Cord Injury Model Mice. eNeuro 2018; 5:ENEURO.0303-18.2018. [PMID: 30560203 PMCID: PMC6294604 DOI: 10.1523/eneuro.0303-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023] Open
Abstract
Nogo receptor-1 (NgR1) signaling is involved in the limitation of axonal regeneration following spinal cord injury (SCI) through collapsing the growth cone and inhibiting neurite outgrowth. Lateral olfactory tract usher substance (LOTUS), a NgR antagonist, suppresses these pathological conditions. A previous report demonstrated the positive effects of LOTUS expression on motor function through raphespinal tract regeneration using pan-neuronally LOTUS-overexpressing transgenic mice. However, this report used a hemi-section model, which does not represent the majority of clinical SCI cases, and lacked a detailed histological analysis of other descending tracts. To determine the true therapeutic effects of LOTUS, we used a more clinically relevant contusive SCI model in female transgenic mice. Definitive tracing analyses revealed that LOTUS promoted the extensive regeneration of the reticulospinal tract across the lesion site and suppressed axonal dieback of corticospinal tract (CST). A significant increase in raphespinal tract fibers was seen from the subacute to the chronic phase after the injury, strongly suggesting that LOTUS promoted translesional elongation of this tract. Furthermore, histological analyses revealed that LOTUS had a neuroprotective effect on the injured spinal cord through suppressing cellular apoptosis during the acute phase. These neuroprotective and regenerative effects contributed to significant motor functional recovery and restoration of the motor evoked potential (MEP). Therefore, LOTUS application could prove beneficial in the treatment of SCI by promoting axonal regeneration of some descending fibers, reducing axonal dieback of CST fibers and encouraging motor function recovery.
Collapse
Affiliation(s)
- Shuhei Ito
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Soya Kawabata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kota Kojima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaori Yasutake
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoko Hirokawa
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
18
|
Choi IA, Lee CS, Kim HY, Choi DH, Lee J. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery. Int J Mol Sci 2018; 19:ijms19072019. [PMID: 29997355 PMCID: PMC6073594 DOI: 10.3390/ijms19072019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To develop new rehabilitation therapies for chronic stroke, this study examined the effectiveness of task-specific training (TST) and TST combined with DNA methyltransferase inhibitor in chronic stroke recovery. Eight weeks after photothrombotic stroke, 5-Aza-2'-deoxycytidine (5-Aza-dC) infusion was done on the contralesional cortex for four weeks, with and without TST. Functional recovery was assessed using the staircase test, the cylinder test, and the modified neurological severity score (mNSS). Axonal plasticity and expression of brain-derived neurotrophic factor (BDNF) were determined in the contralateral motor cortex. TST and TST combined with 5-Aza-dC significantly improved the skilled reaching ability in the staircase test and ameliorated mNSS scores and cylinder test performance. TST and TST with 5-Aza-dC significantly increased the crossing fibers from the contralesional red nucleus, reticular formation in medullar oblongata, and dorsolateral spinal cord. Mature BDNF was significantly upregulated by TST and TST combined with 5-Azd-dC. Functional recovery after chronic stroke may involve axonal plasticity and increased mature BDNF by modulating DNA methylation in the contralesional cortex. Our results suggest that combined therapy to enhance axonal plasticity based on TST and 5-Aza-dC constitutes a promising approach for promoting the recovery of function in the chronic stage of stroke.
Collapse
Affiliation(s)
- In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Cheol Soon Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Medical Science Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
19
|
The soluble form of LOTUS inhibits Nogo receptor type 1-mediated signaling induced by B lymphocyte stimulator and chondroitin sulfate proteoglycans. Neurosci Lett 2018; 683:61-68. [PMID: 29953923 DOI: 10.1016/j.neulet.2018.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022]
Abstract
There are global efforts in developing therapeutic strategies for central nervous system (CNS) injuries using multimodal approaches. Nogo receptor type 1 (NgR1) has been known as a primary molecule limiting neuronal regeneration in the adult CNS. We identified lateral olfactory tract usher substance (LOTUS) as an endogenous NgR1 antagonist. Membrane-bound LOTUS interacts with NgR1 and inhibits its function by blocking its ligand binding. Five molecules including Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), B lymphocyte stimulator (BLyS) and chondroitin sulfate proteoglycans (CSPGs) have been identified as NgR1 ligands. These ligands bind to NgR1 and activate NgR1 signaling, leading to axon growth inhibition such as growth cone collapse and neurite outgrowth inhibition. We have recently reported that the soluble form of LOTUS (s-LOTUS) also suppressed NgR1-mediated signaling induced by myelin axonal inhibitors (MAIs) including Nogo, MAG and OMgp by binding with both NgR1 and its co-receptor p75 neurotrophin receptor (p75NTR). Though s-LOTUS has been reported to suppress MAIs, whether s-LOTUS also suppresses NgR1 signaling induced by BLyS and CSPGs remains to be elucidated. Here, we show that s-LOTUS inhibits NgR1-mediated signaling induced by BLyS and CSPGs. Although treatment with s-LOTUS did not suppress BLyS-NgR1 interaction, s-LOTUS inhibited growth cone collapse and neurite outgrowth inhibition induced by BLyS and CSPGs in chick dorsal root ganglion (DRG) neurons. Furthermore, s-LOTUS compensated for the suppressive function of endogenous LOTUS in NgR1-mediated signaling in olfactory bulb neurons of lotus-knockout mice. These findings suggest that s-LOTUS is a potent therapeutic agent for neuronal regeneration in the CNS injuries.
Collapse
|
20
|
Hirokawa T, Takei K. Lateral olfactory tract usher substance (LOTUS) protein, an endogenous Nogo receptor antagonist, converts a non-permissive to permissive brain environment for axonal regrowth. Neural Regen Res 2018; 13:1193-1194. [PMID: 30028326 PMCID: PMC6065223 DOI: 10.4103/1673-5374.235030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tomoko Hirokawa
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|