1
|
García-Lozano M, Salem H. Microbial bases of herbivory in beetles. Trends Microbiol 2024:S0966-842X(24)00216-6. [PMID: 39327210 DOI: 10.1016/j.tim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The ecological radiation of herbivorous beetles is among the most successful in the animal kingdom. It coincided with the rise and diversification of flowering plants, requiring beetles to adapt to a nutritionally imbalanced diet enriched in complex polysaccharides and toxic secondary metabolites. In this review, we explore how beetles overcame these challenges by coopting microbial genes, enzymes, and metabolites, through both horizontal gene transfer (HGT) and symbiosis. Recent efforts revealed the functional convergence governing both processes and the unique ways in which microbes continue to shape beetle digestion, development, and defense. The development of genetic and experimental tools across a diverse set of study systems has provided valuable mechanistic insights into how microbes spurred metabolic innovation and facilitated an herbivorous transition in beetles.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
2
|
García-Lozano M, Henzler C, Porras MÁG, Pons I, Berasategui A, Lanz C, Budde H, Oguchi K, Matsuura Y, Pauchet Y, Goffredi S, Fukatsu T, Windsor D, Salem H. Paleocene origin of a streamlined digestive symbiosis in leaf beetles. Curr Biol 2024; 34:1621-1634.e9. [PMID: 38377997 DOI: 10.1016/j.cub.2024.01.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christine Henzler
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands
| | - Christa Lanz
- Genome Center, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Heike Budde
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Kohei Oguchi
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Misaki Marine Biological Station, The University of Tokyo, Miura 238-0225, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.
| |
Collapse
|
3
|
Sylvester T, Adams R, Hunter WB, Li X, Rivera-Marchand B, Shen R, Shin NR, McKenna DD. The genome of the invasive and broadly polyphagous Diaprepes root weevil, Diaprepes abbreviatus (Coleoptera), reveals an arsenal of putative polysaccharide-degrading enzymes. J Hered 2024; 115:94-102. [PMID: 37878740 DOI: 10.1093/jhered/esad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Richard Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR, United States
| | - Wayne B Hunter
- USDA, ARS, U. S. Horticultural Research Laboratory, Fort Pierce, FL 34945, United States
| | - Xuankun Li
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Bert Rivera-Marchand
- Office of Academic Affairs, Polk State College, Lakeland Campus, Lakeland, FL, 33803, United States
| | - Rongrong Shen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Na Ra Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
4
|
Amkul K, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. A Gene Encoding Xylanase Inhibitor Is a Candidate Gene for Bruchid ( Callosobruchus spp.) Resistance in Zombi Pea ( Vigna vexillata (L.) A. Rich). PLANTS (BASEL, SWITZERLAND) 2023; 12:3602. [PMID: 37896065 PMCID: PMC10610162 DOI: 10.3390/plants12203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Two bruchid species, Callosobruchus maculatus and Callosobruchus chinensis, are the most significant stored insect pests of tropical legume crops. Previously, we identified a major QTL, qBr6.1, controlling seed resistance to these bruchids in the cultivated zombi pea (Vigna vexillata) accession 'TVNu 240'. In this study, we have narrowed down the qBr6.1 region and identified a candidate gene conferring this resistance. Fine mapping using F2 and F2:3 populations derived from a cross between TVNu 240 and TVNu 1623 (susceptible) revealed the existence of two tightly linked QTLs, designated qBr6.1-A and qBr6.1-B, within the qBr6.1. The QTLs qBr6.1-A and qBr6.1-B explained 37.46% and 10.63% of bruchid resistance variation, respectively. qBr6.1-A was mapped to a 28.24 kb region containing four genes, from which the gene VvTaXI encoding a xylanase inhibitor was selected as a candidate gene responsible for the resistance associated with the qBr6.1-A. Sequencing and sequence alignment of VvTaXI from TVNu 240 and TVNu 1623 revealed a 1-base-pair insertion/deletion and five single-nucleotide polymorphisms (SNPs) in the 5' UTR and 11 SNPs in the exon. Alignment of the VvTAXI protein sequences showed five amino acid changes between the TVNu 240 and TVNu 1623 sequences. Altogether, these results demonstrated that the VvTaXI encoding xylanase inhibitor is the candidate gene conferring bruchid resistance in the zombi pea accession TVNu 240. The gene VvTaXI will be useful for the molecular breeding of bruchid resistance in the zombi pea.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| |
Collapse
|
5
|
Yan J, Chen J, Lin Y, Yuan X, Somta P, Zhang Y, Zhang Z, Zhang X, Chen X. Mapping of quantitative trait locus reveals PsXI gene encoding xylanase inhibitor as the candidate gene for bruchid ( Callosobruchus spp.) resistance in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1057577. [PMID: 36794223 PMCID: PMC9923024 DOI: 10.3389/fpls.2023.1057577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Pea (Pisum sativum L.) is an important legume crop for both food and feed. Bruchids (Callosobruchus spp.) are destructive insect pests of pea in the field and during storage. In this study, we identified a major quantitative trait locus (QTL) controlling seed resistance to C. chinensis (L.) and C. maculatus (Fab.) in field pea using F2 populations derived from a cross between PWY19 (resistant) and PHM22 (susceptible). QTL analysis in the two F2 populations grown in different environments consistently identified a single major QTL, qPsBr2.1, controlling the resistance to both bruchid species. qPsBr2.1 was mapped onto linkage group 2 between DNA markers 18339 and PSSR202109 and explained 50.91% to 70.94% of the variation in resistance, depending on the environment and bruchid species. Fine mapping narrowed down qPsBr2.1 to a genomic region of 1.07 Mb on chromosome 2 (chr2LG1). Seven annotated genes were found in this region, including Psat2g026280 (designated as PsXI), which encodes a xylanase inhibitor and was considered as a candidate gene for bruchid resistance. PCR amplification and sequence analysis of PsXI suggested the presence of an insertion of unknown length in an intron of PWY19, which causes variation in the open reading frame (ORF) of PsXI. Moreover, the subcellular localization of PsXI differed between PWY19 and PHM22. These results together suggested that PsXI encoding xylanase inhibitor is responsible for the bruchid resistance of the field pea PWY19.
Collapse
Affiliation(s)
- Jianjun Yan
- College of Plant Protection, Shanxi Agricultural University, Shanxi, China
- College of Agriculture, Shanxi Agricultural University, Shanxi, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yaowen Zhang
- College of Agriculture, Shanxi Agricultural University, Shanxi, China
| | - Zeyan Zhang
- College of Agriculture, Shanxi Agricultural University, Shanxi, China
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Martins MP, Morais MAB, Persinoti GF, Galinari RH, Yu L, Yoshimi Y, Passos Nunes FB, Lima TB, Barbieri SF, Silveira JLM, Lombard V, Terrapon N, Dupree P, Henrissat B, Murakami MT. Glycoside hydrolase subfamily GH5_57 features a highly redesigned catalytic interface to process complex hetero-β-mannans. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1358-1372. [DOI: 10.1107/s2059798322009561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage β-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-β-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota. Biochemical characterization showed that CapGH5_57 is active on glucomannan, releasing oligosaccharides with a degree of polymerization from 2 to 6, indicating it to be an endo-β-mannanase. The crystal structure, which was solved using single-wavelength anomalous diffraction, revealed a massively redesigned catalytic interface compared with GH5 mannanases. The typical aromatic platforms and the characteristic α-helix-containing β6–α6 loop in the positive-subsite region of GH5_7 mannanases are absent in CapGH5_57, generating a large and open catalytic interface that might favor the binding of branched substrates. Supporting this, CapGH5_57 contains a tryptophan residue adjacent and perpendicular to the cleavage site, indicative of an anchoring site for a substrate with a substitution at the −1 glycosyl moiety. Taken together, these results suggest that despite presenting endo activity on glucomannan, CapGH5_57 may have a new type of substituted heteromannan as its natural substrate. This work demonstrates the still great potential for discoveries regarding the mechanistic and functional diversity of this large and polyspecific GH family by unveiling a novel catalytic interface sculpted to recognize complex heteromannans, which led to the establishment of the GH5_57 subfamily.
Collapse
|
7
|
Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc Natl Acad Sci U S A 2022; 119:e2205857119. [PMID: 36161953 PMCID: PMC9546569 DOI: 10.1073/pnas.2205857119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.
Collapse
|
8
|
Berasategui A, Moller AG, Weiss B, Beck CW, Bauchiero C, Read TD, Gerardo NM, Salem H. Symbiont Genomic Features and Localization in the Bean Beetle Callosobruchus maculatus. Appl Environ Microbiol 2021; 87:e0021221. [PMID: 33863703 PMCID: PMC8174668 DOI: 10.1128/aem.00212-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus. In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria, this community is localized extracellularly along the epithelial lining of the bean beetle's digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus. The ontogenic conservation of the gut microbiota in the bean beetle, featuring a "core" community composed of S. gallinarum, may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus, the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect's digestive tract and is largely dominated by Staphylococcus gallinarum. In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest.
Collapse
Affiliation(s)
| | - Abraham G. Moller
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin Weiss
- Department of Evolutionary Ecology, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Timothy D. Read
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Hassan Salem
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Mutualisms Research Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
9
|
Presence and activity of endo-β-1,4-mannase, an important digestive carbohydrase within the digestive fluid of terrestrial crustaceans. J Comp Physiol B 2021; 191:243-253. [PMID: 33544166 DOI: 10.1007/s00360-021-01342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Within the midgut gland of the Christmas Island red crab, Gecarcoidea natalis, a single transcript for a GH5_10 endo-β-1,4-mannase had the highest expression out of all of the carbohydrase enzymes (Gan et al. in Mar Biotechnol 20:654-665, 2018). The activity, and potential digestive importance of this hemicellulase, compared with other carbohydrases, has yet to be established. The digestive fluid of G. natalis contained substantial endo-β-1,4-mannase activities (630 ± 55 (6) nmol reducing sugars. min-1. mg-1 protein). It was present as a single isozyme of 66.3 ± 0.7 kDa (n = 6). Endo-β-1,4-mannase activities were higher than that for lichenase and endo-β-1,4-glucanase but lower than that for β-1,3-glucanase and amylase. The digestive fluid was able to hydrolyse, galactomannan, into its component monosaccharides. Hence, this confirms expression data that this enzyme is one of the most important digestive cellulases/ hemicellulases. Expression of GH5_10 endo-β-1,4-mannase mRNA was consistent with that of a digestive enzyme, as it was expressed in the digestive midgut gland but not in muscle and gill. Endo-β-1,4-mannase activities were also present within the digestive fluid of the terrestrial hermit crabs, Coenobita perlatus and Coenobita brevimanus. Endo-β-1,4-mannase activities (1351 ± 136 (n=3) nmol reducing sugars. min-1 mg-1 protein for C. perlatus. 665 ± 32 n=(5) nmol reducing sugars. min-1 mg-1 protein for C. brevimanus) were higher than that for endo-β-1,4-glucanase and amylase but were lower than β-1,3-glucanase activities. Animals within the terrestrial hermit crab family, Coenobitidae consume legume and palm seeds which contain substantial amounts of mannan. Hence, high endo-β-1,4-mannase activities suggest that digestion of mannan within these species may represent an important source of carbohydrate.
Collapse
|
10
|
Pauchet Y, Ruprecht C, Pfrengle F. Analyzing the Substrate Specificity of a Class of Long-Horned-Beetle-Derived Xylanases by Using Synthetic Arabinoxylan Oligo- and Polysaccharides. Chembiochem 2020; 21:1517-1525. [PMID: 31850611 PMCID: PMC7317733 DOI: 10.1002/cbic.201900687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Xylophagous long-horned beetles thrive in challenging environments. To access nutrients, they secrete plant-cell-wall-degrading enzymes in their gut fluid; among them are cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2). Recently, we discovered that several beetle-derived GH5_2s use xylan as a substrate instead of cellulose, which is unusual for this family of enzymes. Here, we analyze the substrate specificity of a GH5_2 xylanase from the beetle Apriona japonica (AJAGH5_2-1) using commercially available substrates and synthetic arabinoxylan oligo- and polysaccharides. We demonstrate that AJAGH5_2-1 processes arabinoxylan polysaccharides in a manner distinct from classical xylanase families such as GH10 and GH11. AJAGH5_2-1 is active on long oligosaccharides and cleaves at the non-reducing end of a substituted xylose residue (position +1) only if: 1) three xylose residues are present upstream and downstream of the cleavage site, and 2) xylose residues at positions -1, -2, +2 and +3 are not substituted.
Collapse
Affiliation(s)
- Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Colin Ruprecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
11
|
Pratama AA, Jiménez DJ, Chen Q, Bunk B, Spröer C, Overmann J, van Elsas JD. Delineation of a Subgroup of the Genus Paraburkholderia, Including P. terrae DSM 17804T, P. hospita DSM 17164T, and Four Soil-Isolated Fungiphiles, Reveals Remarkable Genomic and Ecological Features-Proposal for the Definition of a P. hospita Species Cluster. Genome Biol Evol 2020; 12:325-344. [PMID: 32068849 PMCID: PMC7186790 DOI: 10.1093/gbe/evaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, and Paraburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5 Mb, were de novo sequenced and the high-quality genomes analyzed. Using whole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T, versus more remote relationships to P. caribensis DSM 13236T, were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T (ANIm = 95.42; TETRA = 0.99784), as compared with the similarities of each one of these strains to P. caribensis DSM 13236T. A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437 with this cluster were found, indicating that these strains also make part of it, being closely linked to P. hospita DSM 17164T (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164T, P. terrae DSM 17804T, and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236T). Moreover, given their close relatedness to P. hospita DSM 17164T within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804T and P. hospita DSM 17164T (next to the four fungiphilic strains) to be migration-proficient, whereas P. caribensis DSM 13236T was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the common presence of features in the P. hospita cluster strains that are potentially important in interactions with soil fungi. Thus, genes encoding specific metabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Qian Chen
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Microbiology, Braunschweig University of Technology, Germany
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
12
|
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liu S, Maddison D, Mayer C, Misof B, Murin PJ, Niehuis O, Peters RS, Podsiadlowski L, Pohl H, Scully ED, Yan EV, Zhou X, Ślipiński A, Beutel RG. The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci U S A 2019; 116:24729-24737. [PMID: 31740605 PMCID: PMC6900523 DOI: 10.1073/pnas.1909655116] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles-remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152;
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dirk Ahrens
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Michael Balke
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany
| | - Cristian Beza-Beza
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dave J Clarke
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hermes E Escalona
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Friedrich
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Harald Letsch
- Department of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, 518083 Guangdong, People's Republic of China
| | - David Maddison
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Peyton J Murin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Ralph S Peters
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Erin D Scully
- Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502
| | - Evgeny V Yan
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
- Borissiak Paleontological Institute, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Adam Ślipiński
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| |
Collapse
|
13
|
Linton SM. Review: The structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110354. [PMID: 31647988 DOI: 10.1016/j.cbpb.2019.110354] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/01/2022]
Abstract
This review discusses the reaction catalysed, and the structure and function of the cellulase, endo-β-1,4-glucanase and the hemicellulase enzymes, β-1,3-glucanase and endo-β-1,4-mannase that are present in numerous invertebrate groups with a diverse range of feeding specialisations. These range from microbial deposit and filter feeders, micro and macrophagous algal feeders, omnivores to herbivorous leaf litter and wood feeders. Endo-β-1,4-glucanase from glycosyl hydrolase family 9 (GH9) digests cellulose like β-1,4-glucans from a range of materials. As it hydrolyses crystalline cellulose very slowly, it is a poor cellulase. Where tested, the enzyme has dual endo-β-1,4-glucanase and lichenase activity. Its presence does not necessarily indicate the ability of an animal to digest cellulose. It only indicates the ability to digest β-1,4-glucans and its function, which is discussed in this review, should be considered with reference to the substrates present in the diet. β-1,3-glucanase (laminarinase) belongs to glycosyl hydrolase family 16 (GH16) and hydrolyses β-1.3-glucans. These polysaccharides are present in the cell walls of algae, protozoans and yeast, and they also occur as storage polysaccharides within protozoans and algae. Depending on their site of expression, these enzymes may function as a digestive enzyme or may be involved in innate immunity. Enzymes present in the digestive fluids or tissues, would be digestive. Haemolymph GH16 proteins may be involved in innate immunity through the activation of the phenol oxidase system. Insect GH16 proteins expressed within the haemolymph have lost their catalytic residues and function as β-glucan binding proteins. In contrast, crustacean GH16 proteins expressed within the same tissue, have retained the catalytic residues and thus possibly their β-1,3-glucanase activity. The potential function of which is discussed. Endo-β-1,4-mannase from glycosyl hydrolase family 5, subfamily 10 (GH5_10) hydrolyses mannan, glucomannan and galactomannan. These hemicelluloses are present in the cell walls of plants and algae and also function as storage polysaccharides within legume and palm seeds. They are digestive enzymes whose high expression in some species suggests they are a major contributor to hemicellulose digestion. They may also provide the animal with substantial amounts of monosaccharides for energy.
Collapse
Affiliation(s)
- Stuart M Linton
- School of Life and Environmental Sciences, Deakin University, VIC 3216, Australia.
| |
Collapse
|
14
|
Kirsch R, Kunert G, Vogel H, Pauchet Y. Pectin Digestion in Herbivorous Beetles: Impact of Pseudoenzymes Exceeds That of Their Active Counterparts. Front Physiol 2019; 10:685. [PMID: 31191365 PMCID: PMC6549527 DOI: 10.3389/fphys.2019.00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Many protein families harbor pseudoenzymes that have lost the catalytic function of their enzymatically active counterparts. Assigning alternative function and importance to these proteins is challenging. Because the evolution toward pseudoenzymes is driven by gene duplication, they often accumulate in multigene families. Plant cell wall-degrading enzymes (PCWDEs) are prominent examples of expanded gene families. The pectolytic glycoside hydrolase family 28 (GH28) allows herbivorous insects to break down the PCW polysaccharide pectin. GH28 in the Phytophaga clade of beetles contains many active enzymes but also many inactive counterparts. Using functional characterization, gene silencing, global transcriptome analyses, and recordings of life history traits, we found that not only catalytically active but also inactive GH28 proteins are part of the same pectin-digesting pathway. The robustness and plasticity of this pathway and thus its importance for the beetle is supported by extremely high steady-state expression levels and counter-regulatory mechanisms. Unexpectedly, the impact of pseudoenzymes on the pectin-digesting pathway in Phytophaga beetles exceeds even the influence of their active counterparts, such as a lowered efficiency of food-to-energy conversion and a prolongation of the developmental period.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
Busch A, Danchin EGJ, Pauchet Y. Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. BMC Evol Biol 2019; 19:100. [PMID: 31077129 PMCID: PMC6509783 DOI: 10.1186/s12862-019-1429-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulose, a major polysaccharide of the plant cell wall, consists of β-1,4-linked glucose moieties forming a molecular network recalcitrant to enzymatic breakdown. Although cellulose is potentially a rich source of energy, the ability to degrade it is rare in animals and was believed to be present only in cellulolytic microbes. Recently, it has become clear that some animals encode endogenous cellulases belonging to several glycoside hydrolase families (GHs), including GH45. GH45s are distributed patchily among the Metazoa and, in insects, are encoded only by the genomes of Phytophaga beetles. This study aims to understand both the enzymatic functions and the evolutionary history of GH45s in these beetles. RESULTS To this end, we biochemically assessed the enzymatic activities of 37 GH45s derived from five species of Phytophaga beetles and discovered that beetle-derived GH45s degrade three different substrates: amorphous cellulose, xyloglucan and glucomannan. Our phylogenetic and gene structure analyses indicate that at least one gene encoding a putative cellulolytic GH45 was present in the last common ancestor of the Phytophaga, and that GH45 xyloglucanases evolved several times independently in these beetles. The most closely related clade to Phytophaga GH45s was composed of fungal sequences, suggesting this GH family was acquired by horizontal gene transfer from fungi. Besides the insects, other arthropod GH45s do not share a common origin and appear to have emerged at least three times independently. CONCLUSION The rise of functional innovation from gene duplication events has been a fundamental process in the evolution of GH45s in Phytophaga beetles. Both, enzymatic activity and ancestral origin suggest that GH45s were likely an essential prerequisite for the adaptation allowing Phytophaga beetles to feed on plants.
Collapse
Affiliation(s)
- André Busch
- Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | | | - Yannick Pauchet
- Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
16
|
Adamski Z, Bufo SA, Chowański S, Falabella P, Lubawy J, Marciniak P, Pacholska-Bogalska J, Salvia R, Scrano L, Słocińska M, Spochacz M, Szymczak M, Urbański A, Walkowiak-Nowicka K, Rosiński G. Beetles as Model Organisms in Physiological, Biomedical and Environmental Studies - A Review. Front Physiol 2019; 10:319. [PMID: 30984018 PMCID: PMC6447812 DOI: 10.3389/fphys.2019.00319] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Model organisms are often used in biological, medical and environmental research. Among insects, Drosophila melanogaster, Galleria mellonella, Apis mellifera, Bombyx mori, Periplaneta americana, and Locusta migratoria are often used. However, new model organisms still appear. In recent years, an increasing number of insect species has been suggested as model organisms in life sciences research due to their worldwide distribution and environmental significance, the possibility of extrapolating research studies to vertebrates and the relatively low cost of rearing. Beetles are the largest insect order, with their representative - Tribolium castaneum - being the first species with a completely sequenced genome, and seem to be emerging as new potential candidates for model organisms in various studies. Apart from T. castaneum, additional species representing various Coleoptera families, such as Nicrophorus vespilloides, Leptinotarsa decemlineata, Coccinella septempunctata, Poecilus cupreus, Tenebrio molitor and many others, have been used. They are increasingly often included in two major research aspects: biomedical and environmental studies. Biomedical studies focus mainly on unraveling mechanisms of basic life processes, such as feeding, neurotransmission or activity of the immune system, as well as on elucidating the mechanism of different diseases (neurodegenerative, cardiovascular, metabolic, or immunological) using beetles as models. Furthermore, pharmacological bioassays for testing novel biologically active substances in beetles have also been developed. It should be emphasized that beetles are a source of compounds with potential antimicrobial and anticancer activity. Environmental-based studies focus mainly on the development and testing of new potential pesticides of both chemical and natural origin. Additionally, beetles are used as food or for their valuable supplements. Different beetle families are also used as bioindicators. Another important research area using beetles as models is behavioral ecology studies, for instance, parental care. In this paper, we review the current knowledge regarding beetles as model organisms and their practical application in various fields of life science.
Collapse
Affiliation(s)
- Zbigniew Adamski
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Szymon Chowański
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Jan Lubawy
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Matera, Italy
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marta Spochacz
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Monika Szymczak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
17
|
Gan HM, Austin C, Linton S. Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:654-665. [PMID: 29995174 DOI: 10.1007/s10126-018-9836-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase ("classic cellulase") transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical and Medicine Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Christopher Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
- Genomics Facility, Tropical and Medicine Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Stuart Linton
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia.
| |
Collapse
|
18
|
Busch A, Kunert G, Wielsch N, Pauchet Y. Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. INSECT MOLECULAR BIOLOGY 2018; 27:633-650. [PMID: 29774620 DOI: 10.1111/imb.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose is a major component of the primary and secondary cell walls in plants. Cellulose is considered to be the most abundant biopolymer on Earth and represents a large potential source of metabolic energy. Yet, cellulose degradation is rare and mostly restricted to cellulolytic microorganisms. Recently, various metazoans, including leaf beetles, have been found to encode their own cellulases, giving them the ability to degrade cellulose independently of cellulolytic symbionts. Here, we analyzed the cellulosic capacity of the leaf beetle Gastrophysa viridula, which typically feeds on Rumex plants. We identified three putative cellulases member of two glycoside hydrolase (GH) families, namely GH45 and GH9. Using heterologous expression and functional assays, we demonstrated that both GH45 proteins are active enzymes, in contrast to the GH9 protein. One GH45 protein acted on amorphous cellulose as an endo-β-1,4-glucanase, whereas the other evolved to become an endo-β-1,4-xyloglucanase. We successfully knocked down the expression of both GH45 genes using RNAi, but no changes in weight gain or mortality were observed compared to control insects. Our data indicated that the breakdown of these polysaccharides in G. viridula may facilitate access to plant cell content, which is rich in nitrogen and simple sugars.
Collapse
Affiliation(s)
- A Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - N Wielsch
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Y Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
19
|
Blankenchip CL, Michels DE, Braker HE, Goffredi SK. Diet breadth and exploitation of exotic plants shift the core microbiome of Cephaloleia, a group of tropical herbivorous beetles. PeerJ 2018; 6:e4793. [PMID: 29785353 PMCID: PMC5960584 DOI: 10.7717/peerj.4793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/29/2018] [Indexed: 01/20/2023] Open
Abstract
The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely related Costa Rican Cephaloleia species comprises only eight bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on less than two plant types (specialists) versus over nine plant types (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had distinct capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.
Collapse
Affiliation(s)
| | - Dana E Michels
- Department of Biology, Occidental College, Los Angeles, CA, USA
| | | | | |
Collapse
|