1
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural insights into the unexpected agonism of tetracyclic antidepressants at serotonin receptors 5-HT 1eR and 5-HT 1FR. SCIENCE ADVANCES 2024; 10:eadk4855. [PMID: 38630816 PMCID: PMC11023502 DOI: 10.1126/sciadv.adk4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1eR/5-HT1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed antimigraine properties. Using cryo-EM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Ueno M, Chiba Y, Murakami R, Miyai Y, Matsumoto K, Wakamatsu K, Nakagawa T, Takebayashi G, Uemura N, Yanase K, Ogino Y. Transporters, Ion Channels, and Junctional Proteins in Choroid Plexus Epithelial Cells. Biomedicines 2024; 12:708. [PMID: 38672064 PMCID: PMC11048166 DOI: 10.3390/biomedicines12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The choroid plexus (CP) plays significant roles in secreting cerebrospinal fluid (CSF) and forming circadian rhythms. A monolayer of epithelial cells with tight and adherens junctions of CP forms the blood-CSF barrier to control the movement of substances between the blood and ventricles, as microvessels in the stroma of CP have fenestrations in endothelial cells. CP epithelial cells are equipped with several kinds of transporters and ion channels to transport nutrient substances and secrete CSF. In addition, junctional components also contribute to CSF production as well as blood-CSF barrier formation. However, it remains unclear how junctional components as well as transporters and ion channels contribute to the pathogenesis of neurodegenerative disorders. In this manuscript, recent findings regarding the distribution and significance of transporters, ion channels, and junctional proteins in CP epithelial cells are introduced, and how changes in expression of their epithelial proteins contribute to the pathophysiology of brain disorders are reviewed.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Toshitaka Nakagawa
- Division of Research Instrument and Equipment, Research Facility Center, Kagawa University, Kagawa 761-0793, Japan;
| | - Genta Takebayashi
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| |
Collapse
|
3
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural Insights into the Unexpected Agonism of Tetracyclic Antidepressants at Serotonin Receptors 5-HT1eR and 5-HT1FR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561100. [PMID: 37986777 PMCID: PMC10659432 DOI: 10.1101/2023.10.05.561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1e/1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed anti-migraine properties. Using cryoEM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| |
Collapse
|
4
|
Gargantilla M, Francés C, Adhav A, Forcada-Nadal A, Martínez-Gualda B, Martí-Marí O, López-Redondo ML, Melero R, Marco-Marín C, Gougeard N, Espinosa C, Rubio-del-Campo A, Ruiz-Partida R, Hernández-Sierra MD, Villamayor-Belinchón L, Bravo J, Llacer JL, Marina A, Rubio V, San-Félix A, Geller R, Pérez-Pérez MJ. C-2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV-2 through Interaction with the Viral Spike (S) Protein. J Med Chem 2023; 66:10432-10457. [PMID: 37471688 PMCID: PMC10424185 DOI: 10.1021/acs.jmedchem.3c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 07/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19.
Collapse
Affiliation(s)
- Marta Gargantilla
- Instituto de Química
Médica (IQM, CSIC), c/Juan de la Cierva 3, Madrid 28006, Spain
| | - Clara Francés
- Institute for Integrative Systems Biology (I2SysBio), UV-CSIC, c/Catedrático Agustin Escardino,
9, Paterna 46980, Valencia, Spain
| | - Anmol Adhav
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | | | - Olaia Martí-Marí
- Instituto de Química
Médica (IQM, CSIC), c/Juan de la Cierva 3, Madrid 28006, Spain
| | | | - Roberto Melero
- Centro
Nacional de Biotecnología (CNB, CSIC), c/Darwin 3, Madrid 28049, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | - Carolina Espinosa
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
| | | | - Rafael Ruiz-Partida
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
| | | | | | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
| | - José-Luis Llacer
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV, CSIC), c/Jaime Roig 11, Valencia 46010, Spain
- Group 739, Centro de Investigación
Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid 28049, Spain
| | - Ana San-Félix
- Instituto de Química
Médica (IQM, CSIC), c/Juan de la Cierva 3, Madrid 28006, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), UV-CSIC, c/Catedrático Agustin Escardino,
9, Paterna 46980, Valencia, Spain
| | | |
Collapse
|
5
|
Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci 2023; 10:1229710. [PMID: 37457833 PMCID: PMC10340119 DOI: 10.3389/fmolb.2023.1229710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Cells require iron for essential functions like energy production and signaling. However, iron can also engage in free radical formation and promote cell proliferation thereby contributing to both tumor initiation and growth. Thus, the amount of iron within the body and in individual cells is tightly regulated. At the cellular level, iron homeostasis is maintained post-transcriptionally by iron regulatory proteins (IRPs). Ferroptosis is an iron-dependent form of programmed cell death with vast chemotherapeutic potential, yet while IRP-dependent targets have established roles in ferroptosis, our understanding of the contributions of IRPs themselves is still in its infancy. In this review, we present the growing circumstantial evidence suggesting that IRPs play critical roles in the adaptive response to ferroptosis and ferroptotic cell death and describe how this knowledge can be leveraged to target neoplastic iron dysregulation more effectively.
Collapse
|
6
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
7
|
Xi CR, Di Fazio A, Nadvi NA, Xiang MSW, Zhang HE, Deshpande C, Chen Y, Tabar MS, Wang XM, Bailey CG, McCaughan GW, Church WB, Gorrell MD. An improved production and purification protocol for recombinant soluble human fibroblast activation protein alpha. Protein Expr Purif 2021; 181:105833. [PMID: 33524496 DOI: 10.1016/j.pep.2021.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Fibroblast activation protein alpha (FAP) is a cell-surface expressed type II glycoprotein that has a unique proteolytic activity. FAP has active soluble forms that retain the extracellular portion but lack the transmembrane domain and cytoplasmic tail. FAP expression is normally very low in adult tissue but is highly expressed by activated fibroblasts in sites of tissue remodelling. Thus, FAP is a potential biomarker and pharmacological target in liver fibrosis, atherosclerosis, cardiac fibrosis, arthritis and cancer. Understanding the biological significance of FAP by investigating protein structure, interactions and activities requires reliable methods for the production and purification of abundant pure and stable protein. We describe an improved production and purification protocol for His6-tagged recombinant soluble human FAP. A modified baculovirus expression construct was generated using the pFastBac1 vector and the gp67 secretion signal to produce abundant active soluble recombinant human FAP (residues 27-760) in insect cells. The FAP purification protocol employed ammonium sulphate precipitation, ion exchange chromatography, immobilised metal affinity chromatography and ultrafiltration. High purity was achieved, as judged by gel electrophoresis and specific activity. The purified 82 kDa FAP protein was specifically inhibited by a FAP selective inhibitor, ARI-3099, and was inhibited by zinc with an IC50 of 25 μM. Our approach could be adopted for producing the soluble portions of other type II transmembrane glycoproteins to study their structure and function.
Collapse
Affiliation(s)
- Cecy R Xi
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Arianna Di Fazio
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Naveed Ahmed Nadvi
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia; Research Portfolio Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Michelle Sui Wen Xiang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hui Emma Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chandrika Deshpande
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, UK; Drug Discovery, Sydney Analytical, Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Yiqian Chen
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xin Maggie Wang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia; AW Morrow GE & Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, 2050, Australia
| | - W Bret Church
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
8
|
Aslan ES, N White K, A Syed B, S Srai K, W Evans R. Expression of soluble, active, fluorescently tagged hephaestin in COS and CHO cell lines. ACTA ACUST UNITED AC 2020; 44:393-405. [PMID: 33402866 PMCID: PMC7759196 DOI: 10.3906/biy-2005-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Hephaestin (Hp) is a trans-membrane protein, which plays a critical role in intestinal iron absorption. Hp was originally identified as the gene responsible for the phenotype of sex-linked anaemia in the
sla
mouse. The mutation in the
sla
protein causes accumulation of dietary iron in duodenal cells, causing severe microcytic hypochromic anaemia. Although mucosal uptake of dietary iron is normal, export from the duodenum is inhibited. Hp is homologous to ceruloplasmin (Cp), a member of the family of multi copper ferroxidases (MCFs) and possesses ferroxidase activity that facilitates iron release from the duodenum and load onto the serum iron transport protein transferrin. In the present study, attempts were made to produce biologically active recombinant mouse hephaestin as a secretory form tagged with green fluorescent protein (GFP), Hpsec-GFP. Plasmid expressing Hpsec-GFP was constructed and transfected into COS and CHO cells. The GFP aided the monitoring expression in real time to select the best conditions to maximise expression and provided a tag for purifying and analysing Hpsec-GFP. The protein had detectable oxidase activity as shown by in-gel and solution-based assays. The methods described here can provide the basis for further work to probe the interaction of hephaestin with other proteins using complementary fluorescent tags on target proteins that would facilitate the fluorescence resonance energy transfer measurements, for example with transferrin or colocalisation studies, and help to discover more about hephaestin works at the molecular level.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Department of Molecular Biology and Genetics, Faculty of Engineer and Natural Science, Biruni University, İstanbul Turkey
| | - Kenneth N White
- School of Human Sciences, London Metropolitan University, London UK
| | | | - Kaila S Srai
- Division of Biosciences, University College London, London UK
| | - Robert W Evans
- Metalloprotein Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UK
| |
Collapse
|
9
|
Yang Q, Liu W, Zhang S, Liu S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci 2020; 258:118135. [DOI: 10.1016/j.lfs.2020.118135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
|
10
|
Yanase K, Uemura N, Chiba Y, Murakami R, Fujihara R, Matsumoto K, Shirakami G, Araki N, Ueno M. Immunoreactivities for hepcidin, ferroportin, and hephaestin in astrocytes and choroid plexus epithelium of human brains. Neuropathology 2019; 40:75-83. [DOI: 10.1111/neup.12611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ken Yanase
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
- Department of Anesthesiology, Faculty of MedicineKagawa University Takamatsu Japan
| | - Naoya Uemura
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
- Department of Anesthesiology, Faculty of MedicineKagawa University Takamatsu Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
| | - Ryuji Fujihara
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
| | - Gotaro Shirakami
- Department of Anesthesiology, Faculty of MedicineKagawa University Takamatsu Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Faculty of MedicineKagawa University Takamatsu Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of MedicineKagawa University Kagawa Japan
| |
Collapse
|