1
|
Yaghoubi Naei V, Ivanova E, Mullally W, O'Leary CG, Ladwa R, O'Byrne K, Warkiani ME, Kulasinghe A. Characterisation of circulating tumor-associated and immune cells in patients with advanced-stage non-small cell lung cancer. Clin Transl Immunology 2024; 13:e1516. [PMID: 38835954 PMCID: PMC11147668 DOI: 10.1002/cti2.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Objectives Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study. Methods We utilised a spiral microfluidic device to enrich large cells and cell aggregates from the peripheral blood samples of NSCLC patients. These cells were characterised through high-resolution immunofluorescent imaging and statistical analysis, correlating findings with clinical information from our patient cohort. Results We have identified varied populations of heterotypic circulating tumor cell clusters with differing immune cell composition that included a distinct class of atypical tumor-associated macrophages that exhibits unique morphology and cell size. This subtype's prevalence is positively correlated with the tumor stage, progression and metastasis. Conclusions Our study reveals a heterogeneous landscape of circulating tumor cells and their clusters, underscoring the complexity of NSCLC pathobiology. The identification of a unique subtype of atypical tumor-associatedmacrophages that simultaneously express both tumor and immune markers and whose presence correlates with late disease stages, poor clinical outcomes and metastatic risk infers the potential of these cells as biomarkers for NSCLC staging and prognosis. Future studies should focus on the role of these cells in the tumor microenvironment and their potential as therapeutic targets. Additionally, longitudinal studies tracking these cell types through disease progression could provide further insights into their roles in NSCLC evolution and response to treatment.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ekaterina Ivanova
- Cancer and Ageing Research Program, Centre for Genomics and Personalised HealthQueensland University of TechnologyWoolloongabbaQLDAustralia
| | | | | | - Rahul Ladwa
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Majid E Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
2
|
Ali AM, Raza A. scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells. Cancers (Basel) 2024; 16:1444. [PMID: 38611120 PMCID: PMC11010995 DOI: 10.3390/cancers16071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Metastatic cancer is a leading cause of death in cancer patients worldwide. While circulating hybrid cells (CHCs) are implicated in metastatic spread, studies documenting their tissue origin remain sparse, with limited candidate approaches using one-two markers. Utilizing high-throughput single-cell and spatial transcriptomics, we identified tumor hybrid cells (THCs) co-expressing epithelial and macrophage markers and expressing a distinct transcriptome. Rarely, normal tissue showed these cells (NHCs), but their transcriptome was easily distinguishable from THCs. THCs with unique transcriptomes were observed in breast and colon cancers, suggesting this to be a generalizable phenomenon across cancer types. This study establishes a framework for HC identification in large datasets, providing compelling evidence for their tissue residence and offering comprehensive transcriptomic characterization. Furthermore, it sheds light on their differential function and identifies pathways that could explain their newly acquired invasive capabilities. THCs should be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Mahmood Ali
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Whalen RM, Anderson AN, Jones JA, Sims Z, Chang YH, Nederlof MA, Wong MH, Gibbs SL. Ultra high content analyses of circulating and tumor associated hybrid cells reveal phenotypic heterogeneity. Sci Rep 2024; 14:7350. [PMID: 38538742 PMCID: PMC10973471 DOI: 10.1038/s41598-024-57381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 07/03/2024] Open
Abstract
Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.
Collapse
Affiliation(s)
- Riley M Whalen
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Melissa H Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| |
Collapse
|
4
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
5
|
Chou CW, Hung CN, Chiu CHL, Tan X, Chen M, Chen CC, Saeed M, Hsu CW, Liss MA, Wang CM, Lai Z, Alvarez N, Osmulski PA, Gaczynska ME, Lin LL, Ortega V, Kirma NB, Xu K, Liu Z, Kumar AP, Taverna JA, Velagaleti GVN, Chen CL, Zhang Z, Huang THM. Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination. Nat Commun 2023; 14:6569. [PMID: 37848444 PMCID: PMC10582093 DOI: 10.1038/s41467-023-42303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.
Collapse
Affiliation(s)
- Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Cheryl Hsiang-Ling Chiu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Moawiz Saeed
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Che-Wei Hsu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Nathaniel Alvarez
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Veronica Ortega
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Addanki P Kumar
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Josephine A Taverna
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gopalrao V N Velagaleti
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Biobehavior Laboratory, School of Nursing, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Fernández-Santiago C, López-López R, Piñeiro R. Models to study CTCs and CTC culture methods. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:57-98. [PMID: 37739484 DOI: 10.1016/bs.ircmb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The vast majority of cancer-related deaths are due to the presence of disseminated disease. Understanding the metastatic process is key to achieving a reduction in cancer mortality. Particularly, there is a need to understand the molecular mechanisms that drive cancer metastasis, which will allow the identification of curative treatments for metastatic cancers. Liquid biopsies have arisen as a minimally invasive approach to gain insights into the biology of metastasis. Circulating tumour cells (CTCs), shed to the circulation from the primary tumour or metastatic lesions, are a key component of liquid biopsy. As metastatic precursors, CTCs hold the potential to unravel the mechanisms involved in metastasis formation as well as new therapeutic strategies for treating metastatic disease. However, the complex biology of CTCs together with their low frequency in circulation are factors hampering an in-depth mechanistic investigation of the metastatic process. To overcome these problems, CTC-derived models, including CTC-derived xenograft (CDX) and CTC-derived ex vivo cultures, in combination with more traditional in vivo models of metastasis, have emerged as powerful tools to investigate the biological features of CTCs facilitating cancer metastasis and uncover new therapeutic opportunities. In this chapter, we provide an up to date view of the diverse models used in different cancers to study the biology of CTCs, and of the methods developed for CTC culture and expansion, in vivo and ex vivo. We also report some of the main challenges and limitations that these models are facing.
Collapse
Affiliation(s)
- Cristóbal Fernández-Santiago
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
7
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [DOI: https:/doi.org/10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [PMID: 37511762 PMCID: PMC10381133 DOI: 10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Cozzo AJ, Coleman MF, Hursting SD. You complete me: tumor cell-myeloid cell nuclear fusion as a facilitator of organ-specific metastasis. Front Oncol 2023; 13:1191332. [PMID: 37427108 PMCID: PMC10324515 DOI: 10.3389/fonc.2023.1191332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Every cancer genome is unique, resulting in potentially near infinite cancer cell phenotypes and an inability to predict clinical outcomes in most cases. Despite this profound genomic heterogeneity, many cancer types and subtypes display a non-random distribution of metastasis to distant organs, a phenomenon known as organotropism. Proposed factors in metastatic organotropism include hematogenous versus lymphatic dissemination, the circulation pattern of the tissue of origin, tumor-intrinsic factors, compatibility with established organ-specific niches, long-range induction of premetastatic niche formation, and so-called "prometastatic niches" that facilitate successful colonization of the secondary site following extravasation. To successfully complete the steps required for distant metastasis, cancer cells must evade immunosurveillance and survive in multiple new and hostile environments. Despite substantial advances in our understanding of the biology underlying malignancy, many of the mechanisms used by cancer cells to survive the metastatic journey remain a mystery. This review synthesizes the rapidly growing body of literature demonstrating the relevance of an unusual cell type known as "fusion hybrid" cells to many of the hallmarks of cancer, including tumor heterogeneity, metastatic conversion, survival in circulation, and metastatic organotropism. Whereas the concept of fusion between tumor cells and blood cells was initially proposed over a century ago, only recently have technological advancements allowed for detection of cells containing components of both immune and neoplastic cells within primary and metastatic lesions as well as among circulating malignant cells. Specifically, heterotypic fusion of cancer cells with monocytes and macrophages results in a highly heterogeneous population of hybrid daughter cells with enhanced malignant potential. Proposed mechanisms behind these findings include rapid, massive genome rearrangement during nuclear fusion and/or acquisition of monocyte/macrophage features such as migratory and invasive capability, immune privilege, immune cell trafficking and homing, and others. Rapid acquisition of these cellular traits may increase the likelihood of both escape from the primary tumor site and extravasation of hybrid cells at a secondary location that is amenable to colonization by that particular hybrid phenotype, providing a partial explanation for the patterns observed in some cancers with regard to sites of distant metastases.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
10
|
Sturgess V, Azubuike UF, Tanner K. Vascular regulation of disseminated tumor cells during metastatic spread. BIOPHYSICS REVIEWS 2023; 4:011310. [PMID: 38510161 PMCID: PMC10903479 DOI: 10.1063/5.0106675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.
Collapse
Affiliation(s)
- Victoria Sturgess
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Udochi F. Azubuike
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| |
Collapse
|
11
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
12
|
Nitschke C, Markmann B, Konczalla L, Kropidlowski J, Pereira-Veiga T, Scognamiglio P, Schönrock M, Sinn M, Tölle M, Izbicki J, Pantel K, Uzunoglu FG, Wikman H. Circulating Cancer Associated Macrophage-like Cells as a Potential New Prognostic Marker in Pancreatic Ductal Adenocarcinoma. Biomedicines 2022; 10:biomedicines10112955. [PMID: 36428523 PMCID: PMC9687633 DOI: 10.3390/biomedicines10112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circulating Cancer Associated Macrophage-like cells (CAMLs) have been described as novel liquid biopsy analytes and unfavorable prognostic markers in some tumor entities, with scarce data for Pancreatic Ductal Adenocarcinomas (PDAC). METHODS Baseline and follow-up blood was drawn from resected curative (n = 36) and palliative (n = 19) PDAC patients. A microfluidic size-based cell enrichment approach (ParsortixTM) was used for CAML detection, followed by immunofluorescence staining using pan-keratin, CD14, and CD45 antibodies to differentiate between CAMLs, circulating tumor cells (CTCs), and leukocytes. RESULTS CAMLs were detectable at baseline in 36.1% of resected patients and 47.4% of palliative PDAC patients. CAML detection was tumor stage independent. Follow-up data indicated that detection of CAMLs (in 45.5% of curative patients) was an independent prognostic factor for shorter recurrence-free survival (RFS) (HR: 4.3, p = 0.023). Furthermore, a combined analysis with CTCs showed the detectability of at least one of these cell populations in 68.2% of resected patients at follow-up. The combined detection of CAMLs and CTCs was also significantly associated with short RFS (HR: 8.7, p = 0.003). CONCLUSIONS This pilot study shows that detection of CAMLs in PDAC patients can provide prognostic information, either alone or even more pronounced in combination with CTCs, which indicates the power of liquid biopsy marker analyses.
Collapse
Affiliation(s)
- Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Benedikt Markmann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jolanthe Kropidlowski
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thais Pereira-Veiga
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martin Schönrock
- II Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marianne Sinn
- II Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marie Tölle
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7510-51913
| |
Collapse
|
13
|
Gasper W, Rossi F, Ligorio M, Ghersi D. Variant calling enhances the identification of cancer cells in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1010576. [PMID: 36191033 PMCID: PMC9560611 DOI: 10.1371/journal.pcbi.1010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA-sequencing is an invaluable research tool that allows for the investigation of gene expression in heterogeneous cancer cell populations in ways that bulk RNA-seq cannot. However, normal (i.e., non tumor) cells in cancer samples have the potential to confound the downstream analysis of single-cell RNA-seq data. Existing methods for identifying cancer and normal cells include copy number variation inference, marker-gene expression analysis, and expression-based clustering. This work aims to extend the existing approaches for identifying cancer cells in single-cell RNA-seq samples by incorporating variant calling and the identification of putative driver alterations. We found that putative driver alterations can be detected in single-cell RNA-seq data obtained with full-length transcript technologies and noticed that a subset of cells in tumor samples are enriched for putative driver alterations as compared to normal cells. Furthermore, we show that the number of putative driver alterations and inferred copy number variation are not correlated in all samples. Taken together, our findings suggest that augmenting existing cancer-cell filtering methods with variant calling and analysis can increase the number of tumor cells that can be confidently included in downstream analyses of single-cell full-length transcript RNA-seq datasets.
Collapse
Affiliation(s)
- William Gasper
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Francesca Rossi
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
14
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Vaselaar E, Ageton C, Gaster K, Espaillat LR, Starks D, Dey N. Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers (Basel) 2022; 14:cancers14194577. [PMID: 36230499 PMCID: PMC9558552 DOI: 10.3390/cancers14194577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
The blood of patients with solid tumors contains circulating tumor-associated cells, including epithelial cells originating from the tumor mass, such as circulating tumor cells (CTCs), or phagocytic myeloid cells (differentiated monocytes), such as circulating cancer-associated macrophage-like cells (CAMLs). We report for the first time the identification and in-depth morphologic characterization of CAMLs in patients with endometrial cancers. We isolated CAMLs by size-based filtration on lithographically fabricated membranes followed by immunofluorescence, using a CD45+/CK 8,18,19+/EpCAM+/CD31+/macrophage-like nuclear morphology, from > 70 patients. Irrespective of the histological and pathological parameters, 98% of patients were positive for CAMLs. Two size-based subtypes of CAMLs, <20 µm (tiny) and >20 µm (giant) CAMLs, of distinctive polymorphic morphologies with mononuclear or fused polynuclear structures in several morphological states were observed, including apoptotic CAMLs, CAML−WBC doublets, conjoined CAMLs, CAML−WBC clusters, and CTC−CAML−WBC clusters. In contrast, CAMLs were absent in patients with non-neoplastic/benign tumors, healthy donors, and leucopaks. Enumerating CTCs simultaneously from the same patient, we observed that CTC-positive patients are positive for CAMLs, while 55% out of all CAML-positive patients were found positive for CTCs. Our study demonstrated for the first time the distinctive morphological characteristics of endometrial CAMLs in the context of the presence of CTCs in patients.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
| | - Jennifer C. Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Ethan Vaselaar
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Cheryl Ageton
- Department of Research Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
- Correspondence:
| |
Collapse
|
15
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
16
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
17
|
Montalbán-Hernández K, Cantero-Cid R, Casalvilla-Dueñas JC, Avendaño-Ortiz J, Marín E, Lozano-Rodríguez R, Terrón-Arcos V, Vicario-Bravo M, Marcano C, Saavedra-Ambrosy J, Prado-Montero J, Valentín J, Pérez de Diego R, Córdoba L, Pulido E, del Fresno C, Dueñas M, López-Collazo E. Colorectal Cancer Stem Cells Fuse with Monocytes to Form Tumour Hybrid Cells with the Ability to Migrate and Evade the Immune System. Cancers (Basel) 2022; 14:3445. [PMID: 35884505 PMCID: PMC9324286 DOI: 10.3390/cancers14143445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The cancer cell fusion theory could be one of the best explanations for the metastasis from primary tumours. METHODS Herein, we co-cultured colorectal cancer (CRC) stem cells with human monocytes and analysed the properties of the generated tumour hybrid cells (THCs). The presence of THCs in the bloodstream together with samples from primary and metastatic lesions and their clinical correlations were evaluated in CRC patients and were detected by both FACS and immunofluorescence methods. Additionally, the role of SIGLEC5 as an immune evasion molecule in colorectal cancer was evaluated. RESULTS Our data demonstrated the generation of THCs after the in vitro co-culture of CRC stem cells and monocytes. These cells, defined as CD45+CD14+EpCAM+, showed enhanced migratory and proliferative abilities. The THC-specific cell surface signature allows identification in matched primary tumour tissues and metastases as well as in the bloodstream from patients with CRC, thus functioning as a biomarker. Moreover, SIG-LEC5 expression on in vitro generated THCs has shown to be involved in the mechanism for immune evasion. Additionally, sSIGLEC5 levels correlated with THC numbers in the prospective cohort of patients. CONCLUSIONS Our results indicate the generation of a hybrid entity after the in vitro co-culture between CRC stem cells and human monocytes. Moreover, THC numbers present in patients are related to both prognosis and the later spread of metastases in CRC patients.
Collapse
Affiliation(s)
- Karla Montalbán-Hernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Ramón Cantero-Cid
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Digestive Surgery Service, La Paz Univeristy Hospital, 28046 Madrid, Spain; (M.V.-B.); (C.M.); (J.S.-A.)
- Translational Research and Innovation in Surgery Group, La Paz Univeristy Hospital, 28046 Madrid, Spain
| | - José Carlos Casalvilla-Dueñas
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Biobank Platform, IdiPAZ, La Paz Universitary Hospital, 28046 Madrid, Spain
| | - Elvira Marín
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Verónica Terrón-Arcos
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Marina Vicario-Bravo
- Digestive Surgery Service, La Paz Univeristy Hospital, 28046 Madrid, Spain; (M.V.-B.); (C.M.); (J.S.-A.)
| | - Cristóbal Marcano
- Digestive Surgery Service, La Paz Univeristy Hospital, 28046 Madrid, Spain; (M.V.-B.); (C.M.); (J.S.-A.)
| | - Jorge Saavedra-Ambrosy
- Digestive Surgery Service, La Paz Univeristy Hospital, 28046 Madrid, Spain; (M.V.-B.); (C.M.); (J.S.-A.)
| | - Julia Prado-Montero
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Jaime Valentín
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Rebeca Pérez de Diego
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Laura Córdoba
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Biobank Platform, IdiPAZ, La Paz Universitary Hospital, 28046 Madrid, Spain
| | - Elisa Pulido
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit, Biomedical Innovation Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain;
- Centre for Biomedical Research Network of Oncological Diseases (CIBERONC), 29029 Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (J.C.C.-D.); (J.A.-O.); (E.M.); (R.L.-R.); (V.T.-A.); (J.P.-M.); (J.V.); (R.P.d.D.); (L.C.); (E.P.); (C.d.F.)
- Tumour Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Centre for Biomedical Research Network of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
18
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
20
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
21
|
Manjunath Y, Suvilesh KN, Mitchem JB, Avella Patino DM, Kimchi ET, Staveley-O'Carroll KF, Pantel K, Yi H, Li G, Harris PK, Chaudhuri AA, Kaifi JT. Circulating Tumor-Macrophage Fusion Cells and Circulating Tumor Cells Complement Non-Small-Cell Lung Cancer Screening in Patients With Suspicious Lung-RADS 4 Nodules. JCO Precis Oncol 2022; 6:e2100378. [PMID: 35417204 PMCID: PMC9012602 DOI: 10.1200/po.21.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Low-dose computed tomography (LDCT) screening of high-risk patients decreases lung cancer-related mortality. However, high false-positive rates associated with LDCT result in unnecessary interventions. To distinguish non-small-cell lung cancer (NSCLC) from benign nodules, in the present study, we integrated cellular liquid biomarkers in patients with suspicious lung nodules (lung cancer screening reporting and data system [Lung-RADS] 4). METHODS Prospectively, 7.5 mL of blood was collected from 221 individuals (training set: 90 nonscreened NSCLC patients, 74 high-risk screening patients with no/benign nodules [Lung-RADS 1-3], and 20 never smokers; validation set: 37 patients with suspicious nodules [Lung-RADS 4]). Circulating tumor cells (CTCs), CTC clusters, and tumor-macrophage fusion (TMF) cells were identified by blinded analyses. Screening patients underwent a median of two LDCTs (range, 1-4) with a median surveillance time of 30 (range, 11-50) months. RESULTS In the validation set of 37 Lung-RADS 4 patients, all circulating cellular biomarker counts (P < .005; Wilcoxon test) and positivity rates were significantly higher in 23 biopsy-proven NSCLC patients (CTCs: 23 of 23 [100%], CTC clusters: 6 of 23 [26.1%], and TMF cells: 15 of 23 [65.2%]) than in 14 patients with biopsy-proven benign nodules (6 of 14 [42.9%], 0 of 14 [0%], and 2 of 14 [14.3%]). On the basis of cutoff values from the training set, logistic regression with receiver operating characteristic and area under the curve analyses demonstrated that CTCs (sensitivity: 0.870, specificity: 1.0, and area under the curve: 0.989) and TMF cells (0.652; 0.880; 0.790) complement LDCT in diagnosing NSCLC in Lung-RADS 4 patients. CONCLUSION Cellular liquid biomarkers have a potential to complement LDCT interpretation of suspicious Lung-RADS 4 nodules to distinguish NSCLC from benign lung nodules. A future prospective, large-scale, multicenter clinical trial should validate the role of cellular liquid biomarkers in improving diagnostic accuracy in high-risk patients with Lung-RADS 4 nodules.
Collapse
Affiliation(s)
- Yariswamy Manjunath
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Kanve Nagaraj Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
| | - Jonathan B. Mitchem
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Diego M. Avella Patino
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Eric T. Kimchi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Kevin F. Staveley-O'Carroll
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Klaus Pantel
- Institute for Tumor Biology, University of Hamburg, Hamburg, Germany
| | - Huang Yi
- Departments of Radiation Oncology, Genetics, and Computer Science and Engineering, Washington University School of Medicine, St Louis, MO
| | - Guangfu Li
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Peter K. Harris
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
- Departments of Radiation Oncology, Genetics, and Computer Science and Engineering, Washington University School of Medicine, St Louis, MO
| | - Aadel A. Chaudhuri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
- Departments of Radiation Oncology, Genetics, and Computer Science and Engineering, Washington University School of Medicine, St Louis, MO
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
22
|
Fu H, Sun H, Kong H, Lou B, Chen H, Zhou Y, Huang C, Qin L, Shan Y, Dai S. Discoveries in Pancreatic Physiology and Disease Biology Using Single-Cell RNA Sequencing. Front Cell Dev Biol 2022; 9:732776. [PMID: 35141228 PMCID: PMC8819087 DOI: 10.3389/fcell.2021.732776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcriptome analysis is used to study gene expression in human tissues. It can promote the discovery of new therapeutic targets for related diseases by characterizing the endocrine function of pancreatic physiology and pathology, as well as the gene expression of pancreatic tumors. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) can detect transcriptional activity within a single cell. The scRNA-seq had an invaluable contribution to discovering previously unknown cell subtypes in normal and diseased pancreases, studying the functional role of rare islet cells, and studying various types of cells in diabetes as well as cancer. Here, we review the recent in vitro and in vivo advances in understanding the pancreatic physiology and pathology associated with single-cell sequencing technology, which may provide new insights into treatment strategy optimization for diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Haotian Fu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Lou
- Department of Surgery, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Hao Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Zhou
- Department of Biology, Boston University, Boston, MA, United States
| | - Chaohao Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| |
Collapse
|
23
|
Synergistic Analysis of Circulating Tumor Cells Reveals Prognostic Signatures in Pilot Study of Treatment-Naïve Metastatic Pancreatic Cancer Patients. Biomedicines 2022; 10:biomedicines10010146. [PMID: 35052825 PMCID: PMC8773204 DOI: 10.3390/biomedicines10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most deadly cancer types because it usually is not diagnosed until the cancer has spread throughout the body. In this study, we isolate cancer cells found in the blood of pancreatic cancer patients called circulating tumor cells (CTCs) to study their mutation and gene expression profiles. Comparing patients with better and worse survival duration revealed signatures found in these cancer cells. Characterizing these signatures may help improve patient care by using alternative treatment options. Abstract Pancreatic ductal adenocarcinoma is typically diagnosed at late stages and has one of the lowest five-year survival rates of all malignancies. In this pilot study, we identify signatures related to survival and treatment response found in circulating tumor cells (CTCs). Patients with poor survival had increased mutant KRAS expression and deregulation of connected pathways such as PI3K-AKT and MAPK signaling. Further, in a subset of these patients, expression patterns of gemcitabine resistance mechanisms were observed, even prior to initiating treatment. This work highlights the need for identifying patients with these resistance profiles and designing treatment regimens to circumvent these mechanisms.
Collapse
|
24
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
26
|
Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13174496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell fusion as a fundamental biological process is required for various physiological processes, including fertilization, placentation, myogenesis, osteoclastogenesis, and wound healing/tissue regeneration. However, cell fusion is also observed during pathophysiological processes like tumor development. Mesenchymal stroma/stem-like cells (MSC) which play an important role within the tumor microenvironment like other cell types such as macrophages can closely interact and hybridize with cancer cells. The formation of cancer hybrid cells can involve various different mechanisms whereby the genomic parts of the hybrid cells require rearrangement to form a new functional hybrid cell. The fusion of cancer cells with neighboring cell types may represent an important mechanism during tumor development since cancer hybrid cells are detectable in various tumor tissues. During this rare event with resulting genomic instability the cancer hybrid cells undergo a post-hybrid selection process (PHSP) to reorganize chromosomes of the two parental nuclei whereby the majority of the hybrid population undergoes cell death. The remaining cancer hybrid cells survive by displaying altered properties within the tumor tissue. Abstract The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
|
27
|
Sieler M, Weiler J, Dittmar T. Cell-Cell Fusion and the Roads to Novel Properties of Tumor Hybrid Cells. Cells 2021; 10:cells10061465. [PMID: 34207991 PMCID: PMC8230653 DOI: 10.3390/cells10061465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of cancer cell–cell fusion is commonly associated with the origin of more malignant tumor cells exhibiting novel properties, such as increased drug resistance or an enhanced metastatic capacity. However, the whole process of cell–cell fusion is still not well understood and seems to be rather inefficient since only a certain number of (cancer) cells are capable of fusing and only a rather small population of fused tumor hybrids will survive at all. The low survivability of tumor hybrids is attributed to post-fusion processes, which are characterized by the random segregation of mixed parental chromosomes, the induction of aneuploidy and further random chromosomal aberrations and genetic/epigenetic alterations in daughter cells. As post-fusion processes also run in a unique manner in surviving tumor hybrids, the occurrence of novel properties could thus also be a random event, whereby it might be speculated that the tumor microenvironment and its spatial habitats could direct evolving tumor hybrids towards a specific phenotype.
Collapse
|
28
|
Melzer C, von der Ohe J, Luo T, Hass R. Spontaneous Fusion of MSC with Breast Cancer Cells Can Generate Tumor Dormancy. Int J Mol Sci 2021; 22:ijms22115930. [PMID: 34072967 PMCID: PMC8198754 DOI: 10.3390/ijms22115930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Direct cellular interactions of MDA-MB-231cherry breast cancer cells with GFP-transduced human mesenchymal stroma/stem-like cells (MSCGFP) in a co-culture model resulted in spontaneous cell fusion by the generation of MDA-MSC-hyb5cherry GFP breast cancer hybrid cells. The proliferative capacity of MDA-MSC-hyb5 cells was enhanced about 1.8-fold when compared to the parental MDA-MB-231cherry breast cancer cells. In contrast to a spontaneous MDA-MB-231cherry induced tumor development in vivo within 18.8 days, the MDA-MSC-hyb5 cells initially remained quiescent in a dormancy-like state. At distinct time points after injection, NODscid mice started to develop MDA-MSC-hyb5 cell-induced tumors up to about a half year later. Following tumor initiation, however, tumor growth and formation of metastases in various different organs occurred rapidly within about 10.5 days. Changes in gene expression levels were evaluated by RNA-microarray analysis and revealed certain increase in dormancy-associated transcripts in MDA-MSC-hyb5. Chemotherapeutic responsiveness of MDA-MSC-hyb5 cells was partially enhanced when compared to MDA-MB-231 cells. However, some resistance, e.g., for taxol was detectable in cancer hybrid cells. Moreover, drug response partially changed during the tumor development of MDA-MSC-hyb5 cells; this suggests the presence of unstable in vivo phenotypes of MDA-hyb5 cells with increased tumor heterogeneity.
Collapse
Affiliation(s)
| | | | | | - Ralf Hass
- Correspondence: ; Tel.: +49-511-532-6070
| |
Collapse
|
29
|
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB, Zhao HY, Fu P. Cell fusion in cancer hallmarks: Current research status and future indications. Oncol Lett 2021; 22:530. [PMID: 34055095 PMCID: PMC8138896 DOI: 10.3892/ol.2021.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is involved in several physiological processes, such as reproduction, development and immunity. Although cell fusion in tumors was reported 130 years ago, it has recently attracted great interest, with recent progress in tumorigenesis research. However, the role of cell fusion in tumor progression remains unclear. The pattern of cell fusion and its role under physiological conditions are the basis for our understanding of the pathological role of cell fusion. However, the role of cell fusion in tumors and its functions are complicated. Cell fusion can directly increase tumor heterogeneity by forming polyploids or aneuploidies. Several studies have reported that cell fusion is associated with tumorigenesis, metastasis, recurrence, drug resistance and the formation of cancer stem cells. Given the diverse roles cell fusion plays in different tumor phenotypes, methods based on targeted cell fusion have been designed to treat tumors. Research on cell fusion in tumors may provide novel ideas for further treatment.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
30
|
Merle C, Lagarde P, Lartigue L, Chibon F. Acquisition of cancer stem cell capacities after spontaneous cell fusion. BMC Cancer 2021; 21:241. [PMID: 33678155 PMCID: PMC7938600 DOI: 10.1186/s12885-021-07979-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cancer stem/Initiating cell (CS/IC) hypothesis argues that CS/ICs are responsible of tumour initiation, drug resistance, metastasis or disease relapse. Their detection in several cancers supports this concept. However, their origin is still misunderstood. Cell fusion is shown to take part in the formation of CS/ICs, i.e. fusion between mesenchymal stem cell and cancer cell. In a previous paper, we described that fusion leads to hybrids with metastatic capacity. This process triggered genomic rearrangements in hybrid cells together with increased metastasis development. Here, we hypothesize that cell fusion could be strong enough to provoke a cellular reprogramming and the acquisition of CS/IC properties, promoting metastasis formation. Methods After spontaneous cell fusion between E6E7 (IMR90 with the oncogenes E6 and E7) and RST (IMR90 fully transformed) cell lines, hybrid cells were selected by dual antibiotic selection. Cancer stem cells capacities were evaluated regarding capacity to form spheres, expression of stem cell markers and the presence of ALDHhigh cells. Results Our data show that after cell fusion, all hybrids contain a percentage of cells with CS/ICs properties, regarding. Importantly, we lastly showed that NANOG inhibition in H1 hybrid decreases this migration capacity while having no effect on the corresponding parental cells. Conclusions Altogether these results indicate that the combination of CS/ICs properties and genomic rearrangement in hybrids is likely to be key to tumour progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07979-2.
Collapse
Affiliation(s)
- Candice Merle
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31037, Toulouse, France.,University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Pauline Lagarde
- INSERM U1218, 229 cours de l'Argonne, F-33076, Bordeaux, France
| | - Lydia Lartigue
- INSERM U1218, 229 cours de l'Argonne, F-33076, Bordeaux, France.,University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
| | - Frédéric Chibon
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31037, Toulouse, France. .,Institut Claudius Régaud, IUCT-Oncopole, Toulouse, France. .,Present address: CRCT-IUCT-O, 2 avenue Hubert Curien, 31037, Toulouse Cedex 1, France.
| |
Collapse
|
31
|
Premalignant pancreatic cells seed stealth metastasis in distant organs in mice. Oncogene 2021; 40:2273-2284. [PMID: 33649537 DOI: 10.1038/s41388-021-01706-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the dissemination of tumor cells occurs at the early stage of breast and pancreatic carcinogenesis, which is known as early dissemination. The evidence of early dissemination has been demonstrated predominantly in the bloodstream and bone marrow; however, limited evidence has revealed the existence and behavior of disseminated cells in distant organs. Here, we show that premalignant pancreatic cells seed distant stealth metastasis that eventually develops into manifest metastasis. By analyzing lineage-labeled pancreatic cancer mouse models (KPCT/TFF1KO; Pdx1-Cre/LSL-KRASG12D/LSL-p53R172H/LSL-tdTomato/TFF1KO), we found that premalignant pancreatic cells, rather than mature malignant cells, were prone to enter the bloodstream and reside in the bone marrow, liver, and lung. While these metastatic cells exhibited the characteristics of the cells of host organs and did not behave as malignant cells, they underwent malignant transformation and formed distinct tumors. Surprisingly, the manifestation of distant metastasis occurred even before tumor development in the primary site. Our data revealed that disseminated premalignant cells reside stealthily in distant organs and evolve in parallel with the progression of the primary tumor. These observations suggest that we must rebuild a therapeutic strategy for metastatic pancreatic cancer.
Collapse
|
32
|
Cell Fusion of Mesenchymal Stem/Stromal Cells and Breast Cancer Cells Leads to the Formation of Hybrid Cells Exhibiting Diverse and Individual (Stem Cell) Characteristics. Int J Mol Sci 2020; 21:ijms21249636. [PMID: 33348862 PMCID: PMC7765946 DOI: 10.3390/ijms21249636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most common diseases worldwide, and treatment bears many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many origins. One may be cell fusion, a process that is relevant in both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. In this study, we examined if cell fusion between mesenchymal stem/stromal cells (MSCs) and breast cancer (BC) cells occurs and if newly generated hybrid cells may exhibit cancer stem/initiating cell (CS/IC) characteristics. Therefore, several methods such as mammosphere assay, AldeRed assay, flow cytometry (CD24, CD44, CD104) and Western blot analysis (of epithelial to mesenchymal transition markers such as SNAIL, SLUG and Twist) were applied. In short, four different hybrid clones, verified by short tandem repeat (STR) analysis, were analyzed; each expressed an individual phenotype that seemed not to be explicitly related to either a more stem cell or cancer cell phenotype. These results show that cancer cells and MSCs are able to fuse spontaneously in vitro, thereby giving rise to hybrid cells with new properties, which likely indicate that cell fusion may be a trigger for tumor heterogeneity.
Collapse
|
33
|
Altered Tumor Plasticity after Different Cancer Cell Fusions with MSC. Int J Mol Sci 2020; 21:ijms21218347. [PMID: 33172211 PMCID: PMC7664391 DOI: 10.3390/ijms21218347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
While cell fusion demonstrates an important pathway during tissue development and regeneration of distinct organs, this process can also contribute to pathophysiological phenotypes during tumor progression. Hybrid cell formation after heterofusion between cancer cells and various other cell types within the tumor microenvironment is observed in vitro and in vivo. In particular, mesenchymal stroma/stem-like cells (MSC) perform diverse levels of communication with cancer cells by exhibiting anti- and pro-tumorigenic effects. During these cellular interactions, MSC can eventually fuse with cancer cells. Thereby, the newly generated disparate hybrid populations display aneuploidy associated with chromosomal instability. Based upon a subsequent post-hybrid selection process (PHSP), fused cancer cells can undergo apoptosis/necroptosis, senescence, dormancy, or a proliferative state by acquisition of new properties. Consequently, PHSP-surviving hybrid cancer cells demonstrate altered functionalities within the tumor tissue. This is accompanied by changes in therapeutic responsiveness and a different metastatic behavior. Accordingly, enhanced tumor plasticity interferes with successful therapeutic interventions and aggravates patient prognoses. The present review article focusses on fusion of MSC with different human cancer cells, in particular breast cancer populations and resulting characteristics of various cancer hybrid cells. Moreover, some mechanisms of cancer cell fusion are discussed together with multiple PHSP pathways.
Collapse
|
34
|
Circulating Giant Tumor-Macrophage Fusion Cells Are Independent Prognosticators in Patients With NSCLC. J Thorac Oncol 2020; 15:1460-1471. [DOI: 10.1016/j.jtho.2020.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
|
35
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
36
|
Merle C, Thébault N, LeGuellec S, Baud J, Pérot G, Lesluyes T, Delespaul L, Lartigue L, Chibon F. Tetraploidization of Immortalized Myoblasts Induced by Cell Fusion Drives Myogenic Sarcoma Development with DMD Deletion. Cancers (Basel) 2020; 12:cancers12051281. [PMID: 32438562 PMCID: PMC7281535 DOI: 10.3390/cancers12051281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Whole-genome doubling is the second most frequent genomic event, after TP53 alterations, in advanced solid tumors and is associated with poor prognosis. Tetraploidization step will lead to aneuploidy and chromosomic rearrangements. The mechanism leading to tetraploid cells is important since endoreplication, abortive cytokinesis and cell fusion could have distinct consequences. Unlike processes based on duplication, cell fusion involves the merging of two different genomes, epigenomes and cellular states. Since it is involved in muscle differentiation, we hypothesized that it could play a role in the oncogenesis of myogenic cancers. Spontaneous hybrids, but not their non-fused immortalized myoblast counterparts they are generated from, induced tumors in mice. Unstable upon fusion, the hybrid genome evolved from initial mitosis to tumors with a highly rearranged genome. This genome remodeling finally produced targeted DMD deletions associated with replicative stress, isoform relocalization and metastatic spreading, exactly as observed in human myogenic sarcomas. In conclusion, these results draw a model of myogenic oncogenesis in which cell fusion and oncogene activation combine to produce pleomorphic aggressive sarcomas.
Collapse
Affiliation(s)
- Candice Merle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Department of Biology, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France
- Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
| | - Noémie Thébault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Sophie LeGuellec
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
| | - Jessica Baud
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, 229 cours de l’Argonne, F-33076 Bordeaux, France; (J.B.); (L.L.)
- Department of Life and Health Sciences, University of Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux, France
| | - Gaëlle Pérot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31037 Toulouse, France
| | - Tom Lesluyes
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Lucile Delespaul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
| | - Lydia Lartigue
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, 229 cours de l’Argonne, F-33076 Bordeaux, France; (J.B.); (L.L.)
- Department of Life and Health Sciences, University of Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux, France
| | - Frédéric Chibon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Cancer Research Center in Toulouse (CRCT), 31037 Toulouse, France; (C.M.); (N.T.); (S.L.); (G.P.); (T.L.); (L.D.)
- Institut Claudius Régaud, IUCT-Oncopole, 31037 Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse—Institut Universitaire de Cancérologie de Toulouse—Oncopôle (CRCT-IUCT-O), 2 Avenue Hubert Curien, 31037 Toulouse CEDEX 1, France
- Correspondence:
| |
Collapse
|
37
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
38
|
Shabo I, Svanvik J, Lindström A, Lechertier T, Trabulo S, Hulit J, Sparey T, Pawelek J. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis. World J Clin Oncol 2020; 11:121-135. [PMID: 32257843 PMCID: PMC7103524 DOI: 10.5306/wjco.v11.i3.121] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cell’s ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors.
Collapse
Affiliation(s)
- Ivan Shabo
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE 171 77, Sweden
- Patient Area of Breast Cancer, Sarcoma and Endocrine Tumours, Theme Cancer, Karolinska University Hospital, Stockholm SE 171 76, Sweden
| | - Joar Svanvik
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg SE 413 45, Sweden
- Division of Surgery, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 83, Sweden
| | - Annelie Lindström
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 85, Sweden
| | - Tanguy Lechertier
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Sara Trabulo
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - James Hulit
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Tim Sparey
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - John Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
39
|
Manjunath Y, Porciani D, Mitchem JB, Suvilesh KN, Avella DM, Kimchi ET, Staveley-O’Carroll KF, Burke DH, Li G, Kaifi JT. Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci 2020; 21:E1872. [PMID: 32182935 PMCID: PMC7084898 DOI: 10.3390/ijms21051872] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023] Open
Abstract
Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a DAPI+ nucleus), an additional circulating cell population has been identified as being potential fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether these have a potential impact on the immune response towards the cancer. In this review, the background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed, along with the potential role of intercellular connections in their formation. Such fusion cells could be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target in cancer precision medicine.
Collapse
Affiliation(s)
- Yariswamy Manjunath
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Jonathan B. Mitchem
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
| | - Diego M. Avella
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Eric T. Kimchi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
40
|
Metzger P, Kirchleitner SV, Kluge M, Koenig LM, Hörth C, Rambuscheck CA, Böhmer D, Ahlfeld J, Kobold S, Friedel CC, Endres S, Schnurr M, Duewell P. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J Immunother Cancer 2019; 7:288. [PMID: 31694706 PMCID: PMC6836385 DOI: 10.1186/s40425-019-0778-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background The tumor microenvironment (TME) combines features of regulatory cytokines and immune cell populations to evade the recognition by the immune system. Myeloid-derived suppressor cells (MDSC) comprise populations of immature myeloid cells in tumor-bearing hosts with a highly immunosuppressive capacity. We could previously identify RIG-I-like helicases (RLH) as targets for the immunotherapy of pancreatic cancer inducing immunogenic tumor cell death and type I interferons (IFN) as key mediators linking innate with adaptive immunity. Methods Mice with orthotopically implanted KrasG12D p53fl/R172H Ptf1a-Cre (KPC) pancreatic tumors were treated intravenously with the RLH ligand polyinosinic-polycytidylic acid (poly(I:C)), and the immune cell environment in tumor and spleen was characterized. A comprehensive analysis of the suppressive capacity as well as the whole transcriptomic profile of isolated MDSC subsets was performed. Antigen presentation capability of MDSC from mice with ovalbumin (OVA)-expressing tumors was investigated in T cell proliferation assays. The role of IFN in MDSC function was investigated in Ifnar1−/− mice. Results MDSC were strongly induced in orthotopic KPC-derived pancreatic cancer, and frequencies of MDSC subsets correlated with tumor weight and G-CSF serum levels, whereas other immune cell populations decreased. Administration of the RLH-ligand induced a IFN-driven immune response, with increased activation of T cells and dendritic cells (DC), and a reduced suppressive capacity of both polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC fractions. Whole transcriptomic analysis confirmed an IFN-driven gene signature of MDSC, a switch from a M2/G2- towards a M1/G1-polarized phenotype, and the induction of genes involved in the antigen presentation machinery. Nevertheless, MDSC failed to present tumor antigen to T cells. Interestingly, we found MDSC with reduced suppressive function in Ifnar1-deficient hosts; however, there was a common flaw in immune cell activation, which was reflected by defective immune cell activation and tumor control. Conclusions We provide evidence that the treatment with immunostimulatory RNA reprograms the TME of pancreatic cancer by reducing the suppressive activity of MDSC, polarizing myeloid cells into a M1-like state and recruiting DC. We postulate that tumor cell-targeting combination strategies may benefit from RLH-based TME remodeling. In addition, we provide novel insights into the dual role of IFN signaling in MDSC’s suppressive function and provide evidence that host-intrinsic IFN signaling may be critical for MDSC to gain suppressive function during tumor development.
Collapse
Affiliation(s)
- Philipp Metzger
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sabrina V Kirchleitner
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Michael Kluge
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Lars M Koenig
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Christine Hörth
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Carlotta A Rambuscheck
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Daniel Böhmer
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Julia Ahlfeld
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany. .,Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
41
|
Circulating Hybrid Cells Join the Fray of Circulating Cellular Biomarkers. Cell Mol Gastroenterol Hepatol 2019; 8:595-607. [PMID: 31319228 PMCID: PMC6889578 DOI: 10.1016/j.jcmgh.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Gastrointestinal cancers account for more cancer-related deaths than any other organ system, owing in part to difficulties in early detection, treatment response assessment, and post-treatment surveillance. Circulating biomarkers hold the promise for noninvasive liquid biopsy platforms to overcome these obstacles. Although tumors shed detectable levels of degraded genetic material and cellular debris into peripheral blood, identifying reproducible and clinically relevant information from these analytes (eg, cell-free nucleotides, exosomes, proteins) has proven difficult. Cell-based circulating biomarkers also present challenges, but have multiple advantages including allowing for a more comprehensive tumor analysis, and communicating the risk of metastatic spread. Circulating tumor cells have dominated the cancer cell biomarker field with robust evidence in extraintestinal cancers; however, establishing their clinical utility beyond that of prognostication in colorectal and pancreatic cancers has remained elusive. Recently identified novel populations of tumor-derived cells bring renewed potential to this area of investigation. Cancer-associated macrophage-like cells, immune cells with phagocytosed tumor material, also show utility in prognostication and assessing treatment responsiveness. In addition, circulating hybrid cells are the result of tumor-macrophage fusion, with mounting evidence for a role in the metastatic cascade. Because of their relative abundance in circulation, circulating hybrid cells have great potential as a liquid biomarker for early detection, prognostication, and surveillance. In all, the power of the cell reaches beyond enumeration by providing a cellular source of tumor DNA, RNA, and protein, which can be harnessed to impact overall survival.
Collapse
|
42
|
Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene 2019; 38:6083-6094. [PMID: 31270395 DOI: 10.1038/s41388-019-0859-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
Oncogenesis is considered to result from chromosomal instability, in addition to oncogene and tumor-suppressor alterations. Intermediate to aneuploidy and chromosomal instability, genome doubling is a frequent event in tumor development but the mechanisms driving tetraploidization and its impact remain unexplored. Cell fusion, one of the pathways to tetraploidy, is a physiological process involved in mesenchymal cell differentiation. Besides simple genome doubling, cell fusion results in the merging of two different genomes that can be destabilized upon proliferation. By testing whether cell fusion is involved in mesenchymal oncogenesis, we provide evidence that it induces genomic instability and mediates tumor initiation. After a latency period, the tumor emerges with the cells most suited for its development. Furthermore, hybrid tumor genomes were stabilized after this selection process and were very close to those of human pleomorphic mesenchymal tumors. Thus genome restructuring triggered by cell fusion may account for the chromosomal instability involved in oncogenesis.
Collapse
|
43
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
44
|
Abstract
The concept of leukocyte-tumor cell fusion as a significant driver of cancer progression has been around a long time, and has garnered growing support over the last several years. The underlying idea seems quite simple and attractive: Fusion of tumor cells (with their inherent genetic instability) with leukocytes, particularly macrophages, could produce hybrids with high invasive capabilities, greatly facilitating their metastatic dissemination, while potentially accelerating tumor cell heterogeneity. While there are a number of attractive features with this story on the surface, the various studies seem to leave us with a conundrum, namely, what is the fate of such fusions?
Collapse
Affiliation(s)
- Gary Clawson
- Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
45
|
Kong X, Wang J, Cao Y, Zhang H, Lu X, Wang Y, Bo C, Wang T, Li S, Tian K, Liu Z, Wang L. The long noncoding RNA MALAT-1 functions as a competing endogenous RNA to regulate MSL2 expression by sponging miR-338-3p in myasthenia gravis. J Cell Biochem 2018; 120:5542-5550. [PMID: 30362606 DOI: 10.1002/jcb.27838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Myasthenia gravis (MG) is a cell-dependent autoimmune disease commonly associated with thymic pathology. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) has been associated with gene regulation and alternative splicing. It has shown relationship with proliferation, apoptosis, migration, and invasion. In this study, we found that MALAT-1 expression was downregulated in MG. The level of the miR-338-3p was increased in peripheral blood mononuclear cells from MG patients compared with those from control subjects. MALAT-1 competed for binding to miR-338-3p with male-specific lethal 2 (MSL2) in luciferase reporter assays. We confirmed the MALAT-1-miR-338-3p-MSL2 interaction network in MG in vitro. Thus, MALAT-1 directly induced MSL2 expression in MG by acting as a competing endogenous RNA for miR-338-3p, suggesting that it may serve as a therapeutic target for MG treatment.
Collapse
Affiliation(s)
- Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaojun Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
46
|
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, Parappilly MS, Roh-Johnson M, Goodman JR, Olson B, Schmidt M, Swain JR, Davies PS, Shasthri V, Iizuka S, Flynn P, Watson S, Korkola J, Courtneidge SA, Fischer JM, Jaboin J, Billingsley KG, Lopez CD, Burchard J, Gray J, Coussens LM, Sheppard BC, Wong MH. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. SCIENCE ADVANCES 2018; 4:eaat7828. [PMID: 30214939 PMCID: PMC6135550 DOI: 10.1126/sciadv.aat7828] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/01/2018] [Indexed: 05/06/2023]
Abstract
High lethality rates associated with metastatic cancer highlight an urgent medical need for improved understanding of biologic mechanisms driving metastatic spread and identification of biomarkers predicting late-stage progression. Numerous neoplastic cell intrinsic and extrinsic mechanisms fuel tumor progression; however, mechanisms driving heterogeneity of neoplastic cells in solid tumors remain obscure. Increased mutational rates of neoplastic cells in stressed environments are implicated but cannot explain all aspects of tumor heterogeneity. We present evidence that fusion of neoplastic cells with leukocytes (for example, macrophages) contributes to tumor heterogeneity, resulting in cells exhibiting increased metastatic behavior. Fusion hybrids (cells harboring hematopoietic and epithelial properties) are readily detectible in cell culture and tumor-bearing mice. Further, hybrids enumerated in peripheral blood of human cancer patients correlate with disease stage and predict overall survival. This unique population of neoplastic cells provides a novel biomarker for tumor staging, as well as a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Charles E. Gast
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain D. Silk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Luai Zarour
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lara Riegler
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua G. Burkhart
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle T. Gustafson
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minna Roh-Johnson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - James R. Goodman
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brennan Olson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark Schmidt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R. Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vidya Shasthri
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shinji Iizuka
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Flynn
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Spencer Watson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Korkola
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sara A. Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jared M. Fischer
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jerry Jaboin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin G. Billingsley
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D. Lopez
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julja Burchard
- Department of Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joe Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Corresponding author.
| |
Collapse
|
47
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|