1
|
Han B, Zhang W, Wang F, Yue P, Liu Z, Yue D, Zhang B, Ma Y, Lin Z, Yu Y, Wang Y, Zhang X, Yang X. Dissecting the Superior Drivers for the Simultaneous Improvement of Fiber Quality and Yield Under Drought Stress Via Genome-Wide Artificial Introgressions of Gossypium barbadense into Gossypium hirsutum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400445. [PMID: 38984458 PMCID: PMC11425955 DOI: 10.1002/advs.202400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Indexed: 07/11/2024]
Abstract
Global water scarcity and extreme weather intensify drought stress, significantly reducing cotton yield and quality worldwide. Drought treatments are conducted using a population of chromosome segment substitution lines generated from E22 (G. hirsutum) and 3-79 (G. barbadense) as parental lines either show superior yields or fiber quality under both control and drought conditions. Fourteen datasets, covering 4 yields and 4 quality traits, are compiled and assessed for drought resistance using the drought resistance coefficient (DRC) and membership function value of drought resistance (MFVD). Genome-wide association studies, linkage analysis, and bulked segregant analysis are combined to analyze the DR-related QTL. A total of 121 significant QTL are identified by DRC and MFVD of the 8 traits. CRISPR/Cas9 and virus-induced gene silencing techniques verified DRR1 and DRT1 as pivotal genes in regulating drought resistant of cotton, with hap3-79 exhibiting greater drought resistance than hapE22 concerning DRR1 and DRT1. Moreover, 14 markers with superior yield and fiber quality are selected for drought treatment. This study offers valuable insights into yield and fiber quality variations between G. hirsutum and G. barbadense amid drought, providing crucial theoretical and technological backing for developing cotton varieties resilient to drought, with high yield and superior fiber quality.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Pengkai Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhilin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yu Yu
- Cotton InstituteXinjiang Academy of Agriculture and Reclamation ScienceShihezi832000China
| | - Yanqin Wang
- College of Life SciencesTarim UniversityAlar843300China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
2
|
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J Adv Res 2023; 53:1-16. [PMID: 36460274 PMCID: PMC10658236 DOI: 10.1016/j.jare.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES This study was to identify superior loci for the improvement of fiber quality and yield. METHODS Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.
Collapse
Affiliation(s)
- Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke 843900, China
| | - Yuanming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Fang DD, Thyssen GN, Wang M, Jenkins JN, McCarty JC, Jones DC. Genomic confirmation of Gossypium barbadense introgression into G. hirsutum and a subsequent MAGIC population. Mol Genet Genomics 2023; 298:143-152. [PMID: 36346467 DOI: 10.1007/s00438-022-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Introgression of superior fiber traits from Pima cotton (Gossypium barbadense, GB) into high yield Upland cotton (G. hirsutum) has been a breeding objective for many years in a few breeding programs in the world. However, progress has been very slow due to introgression barriers resulting from whole genome hybridization between the two species. To minimize such barriers, chromosome substitution lines (CS-B) from Pima cotton 3-79 in an Upland cotton cultivar TM-1 were developed. A multiparent advanced generation inter-cross (MAGIC) population consisting of 180 recombinant inbred lines (RILs) was subsequently made using the 18 CS-B lines and three Upland cotton cultivars as parents. In this research, we sequenced the whole genomes of the 21 parents and 180 RILs to examine the G. barbadense introgression. Of the 18 CS-B lines, 11 contained the target GB chromosome or chromosome segment, two contained more than two GB chromosomes, and five did not have the expected introgression. Residual introgression in non-target chromosomes was prevalent in all CS-B lines. A clear structure existed in the MAGIC population and the 180 RILs were distributed into three groups, i.e., high, moderate, and low GB introgression. Large blocks of GB chromosome introgression were still present in some RILs after five cycles of random-mating, an indication of recombination suppression or other unknown reasons present in the population. Identity by descent analysis revealed that the MAGIC RILs contained less introgression than expected. This research presents an insight on understanding the complex problems of introgression between cotton species.
Collapse
Affiliation(s)
- David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | | |
Collapse
|
4
|
Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M, Gong W, Ren M, Yuan Y. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front Genet 2022; 12:642595. [PMID: 35401652 PMCID: PMC8988190 DOI: 10.3389/fgene.2021.642595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | | | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Li Pengtao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Youlu Yuan
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| |
Collapse
|
5
|
Mei H, Qi B, Han Z, Zhao T, Guo M, Han J, Zhang J, Guan X, Hu Y, Zhang T, Fang L. Subgenome Bias and Temporal Postponement of Gene Expression Contributes to the Distinctions of Fiber Quality in Gossypium Species. FRONTIERS IN PLANT SCIENCE 2021; 12:819679. [PMID: 35003198 PMCID: PMC8733733 DOI: 10.3389/fpls.2021.819679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As two cultivated widely allotetraploid cotton species, although Gossypium hirsutum and Gossypium barbadense evolved from the same ancestor, they differ in fiber quality; the molecular mechanism of that difference should be deeply studied. Here, we performed RNA-seq of fiber samples from four G. hirsutum and three G. barbadense cultivars to compare their gene expression patterns on multiple dimensions. We found that 15.90-37.96% of differentially expressed genes showed biased expression toward the A or D subgenome. In particular, interspecific biased expression was exhibited by a total of 330 and 486 gene pairs at 10 days post-anthesis (DPA) and 20 DPA, respectively. Moreover, 6791 genes demonstrated temporal differences in expression, including 346 genes predominantly expressed at 10 DPA in G. hirsutum (TM-1) but postponed to 20 DPA in G. barbadense (Hai7124), and 367 genes predominantly expressed at 20 DPA in TM-1 but postponed to 25 DPA in Hai7124. These postponed genes mainly participated in carbohydrate metabolism, lipid metabolism, plant hormone signal transduction, and starch and sucrose metabolism. In addition, most of the co-expression network and hub genes involved in fiber development showed asymmetric expression between TM-1 and Hai7124, like three hub genes detected at 10 DPA in TM-1 but not until 25 DPA in Hai7124. Our study provides new insights into interspecific expression bias and postponed expression of genes associated with fiber quality, which are mainly tied to asymmetric hub gene network. This work will facilitate further research aimed at understanding the mechanisms underlying cotton fiber improvement.
Collapse
Affiliation(s)
- Huan Mei
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bowen Qi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Menglan Guo
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Hu
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
6
|
Lu Q, Xiao X, Gong J, Li P, Zhao Y, Feng J, Peng R, Shi Y, Yuan Y. Identification of Candidate Cotton Genes Associated With Fiber Length Through Quantitative Trait Loci Mapping and RNA-Sequencing Using a Chromosome Segment Substitution Line. FRONTIERS IN PLANT SCIENCE 2021; 12:796722. [PMID: 34970293 PMCID: PMC8712442 DOI: 10.3389/fpls.2021.796722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.
Collapse
Affiliation(s)
- Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Zhao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jiajia Feng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youlu Yuan
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
7
|
Ayubov MS, Norov TM, Saha S, Tseng TM, Reddy KR, Jenkins JN, Abdurakhmonov IY, Stelly DM. Alteration of root and shoot morphologies by interspecific replacement of individual Upland cotton chromosome or chromosome segment pairs. EUPHYTICA 2021. [DOI: 10.1007/s10681-021-02771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Feng L, Zhou C, Su Q, Xu M, Yue H, Zhang S, Zhou B. Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110524. [PMID: 32563462 DOI: 10.1016/j.plantsci.2020.110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Fibre strength (FS) is an important quality attribute in the modern textile industry, which is genetically controlled by quantitative trait loci (QTLs). Fine-mapping stable QTLs for FS to identify candidate genes would be valuable for uncovering the genetic basis of fibre quality traits in cotton. Here, a single segment introgression line, IL-D2-2, from the cross of (TM-1×TX-1046) reported in our previous studies, was found to have significantly improved FS compared with the recurrent parent TM-1. To fine-map the QTLs of the FS, we further crossed IL-D2-2 with its recurrent parent TM-1 to produce F2 and F2:3 populations. QTL analysis and substitution mapping showed qFS-Chr. D02 was anchored into a 550.66 kb-interval between two markers, INTR1027 and JESPR-231. This interval contained 67 genes, among which 27 genes related to cell-wall synthesis were selected to conduct qRT-PCR. The results revealed seven genes were expressed significantly differently during the fibre secondary-wall-thickening stage (10-25 days post-anthesis), three being upregulated and four downregulated in IL-D2-2. Both GH_D02G2269 (UDP-glucosyl transferase 84B1) and GH_D02G2289 (unknown function (DUF869)) with nonsynonymous SNPs in IL-D2-2 had significantly downregulated expression, suggesting they were candidates for qFS-Chr. D02. This research provides information about marker-assisted selection for cotton fibre strength improvement.
Collapse
Affiliation(s)
- Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuwen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Shi Y, Liu A, Li J, Zhang J, Li S, Zhang J, Ma L, He R, Song W, Guo L, Lu Q, Xiang X, Gong W, Gong J, Ge Q, Shang H, Deng X, Pan J, Yuan Y. Examining two sets of introgression lines across multiple environments reveals background-independent and stably expressed quantitative trait loci of fiber quality in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2075-2093. [PMID: 32185421 PMCID: PMC7311500 DOI: 10.1007/s00122-020-03578-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/07/2020] [Indexed: 05/29/2023]
Abstract
Background-independent (BI) and stably expressed (SE) quantitative trait loci (QTLs) were identified using two sets of introgression lines across multiple environments. Genetic background more greatly affected fiber quality traits than environmental factors. Sixty-one SE-QTLs, including two BI-QTLs, were novel and 48 SE-QTLs, including seven BI-QTLs, were previously reported. Cotton fiber quality traits are controlled by QTLs and are susceptible to environmental influence. Fiber quality improvement is an essential goal in cotton breeding but is hindered by limited knowledge of the genetic basis of fiber quality traits. In this study, two sets of introgression lines of Gossypium hirsutum × G. barbadense were used to dissect the QTL stability of three fiber quality traits (fiber length, strength and micronaire) across environments using 551 simple sequence repeat markers selected from our high-density genetic map. A total of 76 and 120 QTLs were detected in the CCRI36 and CCRI45 backgrounds, respectively. Nine BI-QTLs were found, and 78 (41.71%) of the detected QTLs were reported previously. Thirty-nine and 79 QTLs were SE-QTLs in at least two environments in the CCRI36 and CCRI45 backgrounds, respectively. Forty-eight SE-QTLs, including seven BI-QTLs, were confirmed in previous reports, and 61 SE-QTLs, including two BI-QTLs, were considered novel. These results indicate that genetic background more strongly impacts on fiber quality traits than environmental factors. Twenty-three clusters with BI- and/or SE-QTLs were identified, 19 of which harbored favorable alleles from G. barbadense for two or three fiber quality traits. This study is the first report using two sets of introgression lines to identify fiber quality QTLs across environments in cotton, providing insights into the effect of genetic backgrounds and environments on the QTL expression of fiber quality and important information for the genetic basis underlying fiber quality traits toward QTL cloning and molecular breeding.
Collapse
Affiliation(s)
- Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinfeng Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liujun Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Rui He
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Weiwu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianghui Xiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
10
|
Nie X, Wen T, Shao P, Tang B, Nuriman‐guli A, Yu Y, Du X, You C, Lin Z. High-density genetic variation maps reveal the correlation between asymmetric interspecific introgressions and improvement of agronomic traits in Upland and Pima cotton varieties developed in Xinjiang, China. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:677-689. [PMID: 32246786 PMCID: PMC7496985 DOI: 10.1111/tpj.14760] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 05/11/2023]
Abstract
The two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G. barbadense (Pima cotton) elite cultivars. We collected 159 G. hirsutum and 70 G. barbadense cultivars developed in Xinjiang, China, along with 30 semi-wild accessions of G. hirsutum, to perform interspecific introgression tests, intraspecific selection analyses and genome-wide association studies (GWAS) with fibre quality and yield component traits in multiple environments. In total, we identified seven interspecific introgression events and 52 selective sweep loci in G. hirsutum, as well as 17 interspecific introgression events and 19 selective sweep loci in G. barbadense. Correlation tests between agronomic traits and introgressions showed that introgression loci were mutually beneficial for the improvement of fibre quality and yield traits in both species. In addition, the phenotypic effects of four interspecific introgression events could be detected by intraspecific GWAS, with Gb_INT13 significantly improving fibre yield in G. barbadense. The present study describes the landscape of genetic introgression and selection between the two species, and highlights the genetic effects of introgression among populations, which can be used for future improvement of fibre yield and quality in G. barbadense and G. hirsutum, respectively.
Collapse
Affiliation(s)
- Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Tianwang Wen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Binghui Tang
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiang832000China
| | - Aini Nuriman‐guli
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Yu Yu
- Cotton Research InstituteXinjiang Academy of Agriculture and Reclamation ScienceShiheziXinjiang832000China
| | - Xiongming Du
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agriculture ScienceAnyangHenan45500China
| | - Chunyuan You
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiang832000China
| | - Zhongxu Lin
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
11
|
Zhang Z, Li J, Jamshed M, Shi Y, Liu A, Gong J, Wang S, Zhang J, Sun F, Jia F, Ge Q, Fan L, Zhang Z, Pan J, Fan S, Wang Y, Lu Q, Liu R, Deng X, Zou X, Jiang X, Liu P, Li P, Iqbal MS, Zhang C, Zou J, Chen H, Tian Q, Jia X, Wang B, Ai N, Feng G, Wang Y, Hong M, Li S, Lian W, Wu B, Hua J, Zhang C, Huang J, Xu A, Shang H, Gong W, Yuan Y. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:239-253. [PMID: 31199554 PMCID: PMC6920336 DOI: 10.1111/pbi.13191] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/02/2023]
Abstract
Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty-seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA-Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu-chr13-2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.
Collapse
|
12
|
Li SQ, Liu AY, Kong LL, Gong JW, Li JW, Gong WK, Lu QW, Li PT, Ge Q, Shang HH, Xiao XH, Liu RX, Zhang Q, Shi YZ, Yuan YL. QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum × Gossypium barbadense. Mol Genet Genomics 2019. [PMID: 31030276 DOI: 10.1007/s00438-00019-01566-00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ling-Lei Kong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Quan-Wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Peng-Tao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiang-Hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Rui-Xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| |
Collapse
|
13
|
Shi Y, Liu A, Li J, Zhang J, Zhang B, Ge Q, Jamshed M, Lu Q, Li S, Xiang X, Gong J, Gong W, Shang H, Deng X, Pan J, Yuan Y. Dissecting the genetic basis of fiber quality and yield traits in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. Mol Genet Genomics 2019; 294:1385-1402. [PMID: 31201519 DOI: 10.1007/s00438-019-01582-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Fiber quality and yield are important traits of cotton. Quantitative trait locus (QTL) mapping is a prerequisite for marker-assisted selection (MAS) in cotton breeding. To identify QTLs for fiber quality and yield traits, 4 backcross-generation populations (BC1F1, BC1S1, BC2F1, and BC3F0) were developed from an interspecific cross between CCRI36 (Gossypium hirsutum L.) and Hai1 (G. barbadense L.). A total of 153 QTLs for fiber quality and yield traits were identified based on data from the BC1F1, BC1S1, BC2F1 and BC3F0 populations in the field and from the BC2F1 population in an artificial disease nursery using a high-density genetic linkage map with 2292 marker loci covering 5115.16 centimorgans (cM) from the BC1F1 population. These QTLs were located on 24 chromosomes, and each could explain 4.98-19.80% of the observed phenotypic variations. Among the 153 QTLs, 30 were consistent with those identified previously. Specifically, 23 QTLs were stably detected in 2 or 3 environments or generations, 6 of which were consistent with those identified previously and the other 17 of which were stable and novel. Ten QTL clusters for different traits were found and 9 of them were novel, which explained the significant correlations among some phenotypic traits in the populations. The results including these stable or consensus QTLs provide valuable information for marker-assisted selection (MAS) in cotton breeding and will help better understand the genetic basis of fiber quality and yield traits, which can then be used in QTL cloning.
Collapse
Affiliation(s)
- Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Baocai Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muhammad Jamshed
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianghui Xiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
14
|
QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum × Gossypium barbadense. Mol Genet Genomics 2019; 294:1123-1136. [PMID: 31030276 DOI: 10.1007/s00438-019-01566-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
Abstract
Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.
Collapse
|
15
|
QTL analysis for yield and fibre quality traits using three sets of introgression lines developed from three Gossypium hirsutum race stocks. Mol Genet Genomics 2019; 294:789-810. [PMID: 30887144 DOI: 10.1007/s00438-019-01548-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Upland cotton (Gossypium hirsutum L.) race stocks may possess desirable traits for the genetic improvement of cotton. Quantitative trait locus (QTL) analysis can assist in uncovering new alleles from unadapted race stocks. In this study, three sets of chromosome segment introgression lines (ILs) were developed from three backcrosses (BC3) between three race stocks, G. hirsutum races latifolium accs. TX-34 and TX-48 and punctatum acc. TX-114, as donor parents and Texas Marker-1 (TM-1) as the recurrent parent. Based on a total of 452 polymorphic simple sequence repeat (SSR) markers in BC3F2 genotyping, 149, 150 and 184 ILs were obtained from TM-1 × TX-34, TM-1 × TX-48 and TM-1 × TX-114, respectively. The average introgressed chromosomal segment length was 12.7 cM, and the total genetic distance was 3268 cM covering approximately 73.4% of the Upland cotton genome. The BC3F2, BC3F2:3 and BC3F2:4 progeny, which produced the ILs, were evaluated for yield and fibre quality traits. A total of 128 QTLs were detected, each of which explained 1.6-13.0% of the phenotypic variation. Thirty-five common QTLs related to eight traits were detected. Six QTL clusters were found on five chromosomes. Thirty-eight QTLs were previously unreported, and they may be footprints of cotton domestication. Domestication or artificial selection by humans successfully eliminated most unfavourable QTLs (21/38); however, some favourable QTLs (17/38) are not present in modern cultivars, demonstrating the importance of race stocks for improving cotton cultivars. The 26 elite ILs developed could be used to improve the yield and fibre quality components simultaneously. These results provide information on desirable QTLs for cotton improvement.
Collapse
|