1
|
Niebrzydowska-Tatus M, Pełech A, Bień K, Rekowska AK, Domańska A, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Trojnar M. Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry. Int J Mol Sci 2024; 25:3759. [PMID: 38612572 PMCID: PMC11011445 DOI: 10.3390/ijms25073759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Fetal programming is a process initiated by intrauterine conditions, leaving a lasting impact on the offspring's health, whether they manifest immediately or later in life. It is believed that children born to mothers with gestational diabetes mellitus (GDM) and excessive gestational weight gain (EGWG) may be at an increased risk of developing type 2 diabetes mellitus (T2DM) and obesity later in their adult lives. Substance P is a neurotransmitter associated with obesity development and impairment of insulin signaling. Dysregulation of substance P could lead to several pregnancy pathologies, such as preeclampsia and preterm birth. Our study aimed to compare substance P concentrations in serum and umbilical cord blood in patients with GDM, EGWG, and healthy women with a family history of gestational weight gain. Substance P levels in umbilical cord blood were significantly higher in the GDM group compared to the EGWG and control groups. Substance P levels in serum and umbilical cord blood were positively correlated in all groups and the GDM group. A very interesting direction for future research is the relationship between the concentration of substance P in newborns of diabetic mothers and the occurrence of respiratory distress syndrome as a complication of impaired surfactant synthesis. To our knowledge, it is the first study assessing substance P concentration in GDM and EGWG patients.
Collapse
Affiliation(s)
- Magdalena Niebrzydowska-Tatus
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Aleksandra Pełech
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Katarzyna Bień
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Anna K. Rekowska
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Aleksandra Domańska
- Student’s Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (K.B.); (A.K.R.); (A.D.)
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Bożena Leszczyńska-Gorzelak
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (B.L.-G.)
| | - Marcin Trojnar
- Chair and Department of Internal Diseases, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
2
|
Mehboob R, Oehme P, Pfaff G. The role of Substance P in the defense line of the respiratory tract and neurological manifestations post COVID-19 infection. Front Neurol 2023; 14:1052811. [PMID: 36949854 PMCID: PMC10025330 DOI: 10.3389/fneur.2023.1052811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Substance P (SP) has been a great interest for scientists due to its unique properties and involvement in various physiological and pathological phenomenon. It took almost a century for the current understanding of this peptide so far. Its role in brain and gut were initially discussed and later on it was widely studied and observed in cardiovascular system, asthma, traumatic brain injury, immune response, vasodilation, behavior, inflammation, arthritis, cancer, airway hyper responsiveness and respiratory disorders. Involvement of SP in sudden perinatal death and COVID-19 has also been discussed which shed light on its vital role in respiratory rhythm regulation and initiation of cytokine storming in COVID-19. This article will provide a comprehensive overview of the researches done to understand the basic functions and involvement of SP in different processes of cell and its association with various diseases. This article describes the historical and scientific journey of SP from its discovery until today, including its future perspectives.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore, Pakistan
- *Correspondence: Riffat Mehboob
| | | | - Gerhard Pfaff
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
- Gerhard Pfaff
| |
Collapse
|
3
|
Coolen M, Altin N, Rajamani K, Pereira E, Siquier-Pernet K, Puig Lombardi E, Moreno N, Barcia G, Yvert M, Laquerrière A, Pouliet A, Nitschké P, Boddaert N, Rausell A, Razavi F, Afenjar A, Billette de Villemeur T, Al-Maawali A, Al-Thihli K, Baptista J, Beleza-Meireles A, Garel C, Legendre M, Gelot A, Burglen L, Moutton S, Cantagrel V. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 2022; 109:909-927. [PMID: 35390279 DOI: 10.1016/j.ajhg.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.
Collapse
Affiliation(s)
- Marion Coolen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| | - Nami Altin
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karthyayani Rajamani
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Eva Pereira
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karine Siquier-Pernet
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Emilia Puig Lombardi
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nadjeda Moreno
- HDBR Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giulia Barcia
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Marianne Yvert
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Aurore Pouliet
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Patrick Nitschké
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Antonio Rausell
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory and Molecular Genetics Service, Service de Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Féréchté Razavi
- Unité d'Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, Paris 75015, France
| | - Alexandra Afenjar
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Thierry Billette de Villemeur
- Sorbonne Université, Service de Neuropédiatrie - Pathologie du Développement, Centre de Référence Déficiences Intellectuelles de Causes Rares et Polyhandicap, Hôpital Trousseau AP-HP, Paris 75012, France
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BT, UK
| | - Ana Beleza-Meireles
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Catherine Garel
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, AP-HP, Paris 75012, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Pellegrin Hospital, Bordeaux 33300, France
| | - Antoinette Gelot
- Neuropathology, Department of Pathology, Trousseau Hospital, AP-HP, Paris 75012, France; INMED, Aix-Marseille University, INSERM UMR 1249, Marseille 13009, France
| | - Lydie Burglen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Sébastien Moutton
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Vincent Cantagrel
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| |
Collapse
|
4
|
Plancoulaine S, Guyon A, Inocente CO, Germe P, Zhang M, Robert P, Lin JS, Franco P. Cerebrospinal Fluid Histamine Levels in Healthy Children and Potential Implication for SIDS: Observational Study in a French Tertiary Care Hospital. Front Pediatr 2022; 10:819496. [PMID: 35450108 PMCID: PMC9016218 DOI: 10.3389/fped.2022.819496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE A defect of the waking systems could constitute a factor of vulnerability for sudden infant death syndrome (SIDS). A decrease in orexin levels, which promotes wakefulness and activates histaminergic neurons (another hypothalamic wake-promoting system) has already been demonstrated between 2 and 6 months. This work aims to study the levels of histamine (HA), tele-methylhistamine (t-MeHA), its direct metabolite, and t-MeHA/HA ratio in the cerebrospinal fluid (CSF) of healthy children, to evaluate the maturation of the histaminergic system and its possible involvement in SIDS. METHODS Seventy Eight French children between 0 and 20 years (48.7% boys) were included, all of whom had a clinical indication for lumbar puncture, but subsequently found to be normal. Measurements of HA and t-MeHA in CSF were performed by reverse phase liquid chromatography coupled to mass spectrometry detection. Statistical analyses were performed using Spearman correlations and Non-parametric pairwise ranking tests. RESULTS A negative correlation was found between age and CSF HA (r = -0.44, p < 10-4) and t-MeHA (r = -0.70, p < 10-4) levels. In pairwise comparisons, no difference in CSF HA and t-MeHA levels was observed between youngest age groups (i.e., 0-2 mo vs. 3-6 mo), but CSF HA and t-MeHA levels were significantly lower in older children (i.e., >6 mo vs. 0-6 mo). The CSF HA decrease with age was only observed in boys, who also presented global lower CSF HA levels than girls. CONCLUSION CSF HA and t-MeHA levels decrease with age in boys, and global levels are lower in boys than in girls. These results reveal changes in histaminergic transmission and metabolism during maturation. Whether lower CSF histamine values in boys compared to girls could contribute to their higher risk of SIDS warrants further research.
Collapse
Affiliation(s)
| | - Aurore Guyon
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Bioprojet Biotech, Saint-Grégoire, France
| | - Clara-Odilia Inocente
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Philippine Germe
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Min Zhang
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | | | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Patricia Franco
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France
| |
Collapse
|
5
|
Neubauer J, Forst AL, Warth R, Both CP, Haas C, Thomas J. Genetic variants in eleven central and peripheral chemoreceptor genes in sudden infant death syndrome. Pediatr Res 2022; 92:1026-1033. [PMID: 35102300 PMCID: PMC9586864 DOI: 10.1038/s41390-021-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is still one of the leading causes of postnatal infant death in developed countries. The occurrence of SIDS is described by a multifactorial etiology that involves the respiratory control system including chemoreception. It is still unclear whether genetic variants in genes involved in respiratory chemoreception might play a role in SIDS. METHODS The exome data of 155 SIDS cases were screened for variants within 11 genes described in chemoreception. Pathogenicity of variants was assigned based on the assessment of variant types and in silico protein predictions according to the current recommendations of the American College of Medical Genetics and Genomics. RESULTS Potential pathogenic variants in genes encoding proteins involved in respiratory chemoreception could be identified in 5 (3%) SIDS cases. Two of the variants (R137S/A188S) were found in the KNCJ16 gene, which encodes for the potassium channel Kir5.1, presumably involved in central chemoreception. Electrophysiologic analysis of these KCNJ16 variants revealed a loss-of-function for the R137S variant but no obvious impairment for the A188S variant. CONCLUSIONS Genetic variants in genes involved in respiratory chemoreception may be a risk factor in a fraction of SIDS cases and may thereby contribute to the multifactorial etiology of SIDS. IMPACT What is the key message of your article? Gene variants encoding proteins involved in respiratory chemoreception may play a role in a minority of SIDS cases. What does it add to the existing literature? Although impaired respiratory chemoreception has been suggested as an important risk factor for SIDS, genetic variants in single genes seem to play a minor role. What is the impact? This study supports previous findings, which indicate that genetic variants in single genes involved in respiratory control do not have a dominant role in SIDS.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anna-Lena Forst
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christian Peter Both
- grid.412341.10000 0001 0726 4330Department of Anesthesiology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Cordula Haas
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jörg Thomas
- Department of Anesthesiology, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Mehboob R, Kurdi M, Bamaga A, Aldardeir N, Nasief H, Moshref LH, Alsinani T, Rayes AO, Jabbad RH. Substance P/ Neurokinin-1 Receptor, Trigeminal Ganglion, Latency, and Coronavirus Infection-Is There Any Link? Front Med (Lausanne) 2021; 8:727593. [PMID: 34869423 PMCID: PMC8637107 DOI: 10.3389/fmed.2021.727593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Novel Severe Acute Respiratory Syndrome-Corona Virus-2 infection (SARS-CoV-2) is an acute respiratory and infectious disease. This perspective aims to provide a basic understanding of the inflammation caused by SARS-CoV-2 and its relation to the trigeminal ganglion (TG). The virus enters through the mucous membranes of the orofacial region and reaches the TG, where it resides and takes control of its peptides including Substance P (SP). SP is the main neuropeptide, neuromodulator, and neuro-hormone of TG, associated with nociception and inflammation under noxious stimulus. SP release is triggered and, consequently, affects the immune cells and blood vessels to release the mediators for inflammation. Hence, cytokine storm is initiated and causes respiratory distress, bronchoconstriction, and death in complicated cases. Neurokinin-1 Receptor (NK-1R) is the receptor for SP and its antagonists, along with glucocorticoids, may be used to alleviate the symptoms and treat this infection by blocking this nociceptive pathway. SP seems to be the main culprit involved in the triggering of inflammatory pathways in SARS-CoV-2 infection. It may have a direct association with cardio-respiratory rhythm, sleep-wake cycle, nociception, and ventilatory responses and regulates many important physiological and pathological functions. Its over-secretion should be blocked by NK-1R antagonist. However, experimental work leading to clinical trials are mandatory for further confirmation. Here, it is further proposed that there is a possibility of latency in SARS-CoV-2 virus infection if it is acting through TG, which is the main site for other viruses that become latent.
Collapse
Affiliation(s)
- Riffat Mehboob
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed Bamaga
- Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Njoud Aldardeir
- Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Hisham Nasief
- Department of Obstetrics and Gynecology, Faculty of Medicine, Jeddah, Saudi Arabia
| | - Leena H Moshref
- Department of Surgery, Doctor Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Taghreed Alsinani
- Division of Neurosurgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Almotasimbellah O Rayes
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem H Jabbad
- Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
ELMeneza S, ElBagoury I, Tawfik E, Tolba A. Study of Neuropeptide Substance P as A Marker of Pain in Newborn Infant. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Prolonged and repeated untreated pain in newborn infant may produce a relatively permanent adverse long-term sequela.
AIM: The aim of this study was to evaluate the potential role for neuropeptides substance P (SP) as neurochemical pain marker in newborn infants in order to decrease unnecessary use of analgesics and protect the developing brain.
METHODS: This case-control study was conducted on 60 newborn infants. They were assigned to four groups, control preterm, sick preterm, control full term, and sick full term. All neonates were subjected to estimation of pain through neonatal infants pain score (NIPS) as well as Neuropeptide SP on the 1st and 5th day of life. The NIPS addresses five behavioral parameters (facial expression, crying, arm movement, leg movement, and state arousal) and one physiological parameter (breathing pattern). Results were further evaluated according to nature of the procedures; invasive and non-invasive procedures.
RESULTS: There was a significant increase in the severity of pain score among the sick preterm and full-term infants after invasive procedures. There was a significant increase in SP in the sick preterm group than the control preterm on the 1st and 5th day of life; p were =0.003 and = 0.037, while full-term infants showed significant increase on the 5th day; p = 0.005. Furthermore, there was no significant difference in SP values between the preterm and full-term infants on the 1st and 5th day of life. SP increased significantly after invasive procedures than noninvasive procedures in the sick full-term and sick preterm infants weather in the 1st or 5th day of life. There was a significant correlation between the pain score NIPS and SP level on the 1st day of life.
CONCLUSION: SP can be used as pain marker in sick preterm and full-term newborn infants. It showed increase with invasive procedures, acute and chronic pain.
Collapse
|
8
|
Mehboob R. Neurokinin-1 Receptor as a potential drug target for COVID-19 treatment. Biomed Pharmacother 2021; 143:112159. [PMID: 34536760 PMCID: PMC8435369 DOI: 10.1016/j.biopha.2021.112159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Novel Coronavirus infection (COVID-19) has become a pandemic in these days. It is an acute respiratory and infectious disease with no known etiology and treatment. It is continuously causing losses of precious lives and economy at a global scale on daily basis. It is the need of the hour to find more treatment strategies by either developing a drug or to boost the immune system. This opinion article aims to provide Substance P (SP) as a possible cause of the initiation of cytokine storm developed in COVID-19 infection and to suggest Neurokinin-1 Receptor (NK-1R) antagonist, Aprepitant, as a drug to be used for its treatment. This perspective will provide directions to the Biomedical scientists to explore SP and NK-1R and prepare a drug to alleviate the symptoms and cure the disease. It is very important to work on this perspective at earliest to reach to some conclusion regarding the therapeutic intervention. Clinical studies may also be conducted if proven successful. SP is a neurotransmitter and neuromodulator, released from the trigeminal nerve of brainstem as a result of nociception. It is directly related to the respiratory illness as in COVID-19 infection. It is responsible for the increased inflammation and the signature symptoms associated with this disease. It is the main switch that needs to be switched off by administering Aprepitant along with glucocorticosteroid, dexamethasone.
Collapse
Affiliation(s)
- Riffat Mehboob
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan; Lahore Medical Research Center, LLP, Lahore, Pakistan.
| |
Collapse
|
9
|
Vivekanandarajah A, Nelson ME, Kinney HC, Elliott AJ, Folkerth RD, Tran H, Cotton J, Jacobs P, Minter M, McMillan K, Duncan JR, Broadbelt KG, Schissler K, Odendaal HJ, Angal J, Brink L, Burger EH, Coldrey JA, Dempers J, Boyd TK, Fifer WP, Geldenhuys E, Groenewald C, Holm IA, Myers MM, Randall B, Schubert P, Sens MA, Wright CA, Roberts DJ, Nelsen L, Wadee S, Zaharie D, Haynes RL. Nicotinic Receptors in the Brainstem Ascending Arousal System in SIDS With Analysis of Pre-natal Exposures to Maternal Smoking and Alcohol in High-Risk Populations of the Safe Passage Study. Front Neurol 2021; 12:636668. [PMID: 33776893 PMCID: PMC7988476 DOI: 10.3389/fneur.2021.636668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor autoradiography, in the brainstems of infants dying of SIDS and of other known causes of death collected from the Safe Passage Study, a prospective, multicenter study with clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American Indian Reservations. We examined 15 pons and medulla regions related to cardiovascular control and arousal in infants dying of SIDS (n = 12) and infants dying from known causes (n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was a developmental decrease in 125I-epibatidine binding with increasing postconceptional age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis, centralis, and dorsal accessory olive (p = 0.0002-0.03)], three of which are nuclei containing serotonin cells. Comparing SIDS with post-discharge known cause of death (post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78 fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n = 11) combined with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis (p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this study to have decreased binding with age and found in previous studies to have abnormal indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine binding increased with increasing cigarettes per week. We found no effect of maternal drinking on 125I-epibatidine binding at any site measured. Taken together, these data support changes in nicotinic receptor binding related to development, cause of death, and exposure to maternal cigarette smoking. These data present new evidence in a prospective study supporting the roles of developmental factors, as well as adverse exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla-a finding that highlights the interwoven and complex relationship between acetylcholine (via nicotinic receptors) and serotonergic neurotransmission in the medulla.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Morgan E. Nelson
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Hannah C. Kinney
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Amy J. Elliott
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Rebecca D. Folkerth
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Forensic Medicine, New York University School of Medicine, New York City, NY, United States
| | - Hoa Tran
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jacob Cotton
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Perri Jacobs
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Megan Minter
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kristin McMillan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jhodie R. Duncan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kevin G. Broadbelt
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Schissler
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Hein J. Odendaal
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Jyoti Angal
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Lucy Brink
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Elsie H. Burger
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Jean A. Coldrey
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Johan Dempers
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Theonia K. Boyd
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - William P. Fifer
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Elaine Geldenhuys
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Coen Groenewald
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Ingrid A. Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael M. Myers
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Bradley Randall
- Department of Pathology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Pawel Schubert
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Colleen A. Wright
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
- Lancet Laboratories, Johannesburg, South Africa
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Shabbir Wadee
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Dan Zaharie
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Robin L. Haynes
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | | |
Collapse
|
10
|
Sudden Infant Death Syndrome: Beyond Risk Factors. Life (Basel) 2021; 11:life11030184. [PMID: 33652660 PMCID: PMC7996806 DOI: 10.3390/life11030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is defined as "the sudden death of an infant under 1 year of age which remains unexplained after thorough investigation including a complete autopsy, death scene investigation, and detailed clinical and pathological review". A significant decrease of SIDS deaths occurred in the last decades in most countries after the beginning of national campaigns, mainly as a consequence of the implementation of risk reduction action mostly concentrating on the improvement of sleep conditions. Nevertheless, infant mortality from SIDS still remains unacceptably high. There is an urgent need to get insight into previously unexplored aspects of the brain system with a special focus on high-risk groups. SIDS pathogenesis is associated with a multifactorial condition that comprehends genetic, environmental and sociocultural factors. Effective prevention of SIDS requires multiple interventions from different fields. Developing brain susceptibility, intrinsic vulnerability and early identification of infants with high risk of SIDS represents a challenge. Progress in SIDS research appears to be fundamental to the ultimate aim of eradicating SIDS deaths. A complex model that combines different risk factor data from biomarkers and omic analysis may represent a tool to identify a SIDS risk profile in newborn settings. If high risk is detected, the infant may be referred for further investigations and follow ups. This review aims to illustrate the most recent discoveries from different fields, analyzing the neuroanatomical, genetic, metabolic, proteomic, environmental and sociocultural aspects related to SIDS.
Collapse
|
11
|
Raieli V, D'Amico A, Piro E. Migraine in Children Under 7 Years of Age: a Review. Curr Pain Headache Rep 2020; 24:79. [PMID: 33326057 DOI: 10.1007/s11916-020-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Despite the accumulation of a significant amount of data on pediatric headache, few studies have been conducted on its occurrence in children under 7 years of age. Within primary headaches in this age, migraine especially, turns out to be a disorder affecting up to 4% of the general population. An underestimate of its true prevalence can be due to lack of specific diagnostic markers, the frequent difficulty of describing pain in childhood, and the necessity of reliable parents' reports. Thus, migraine in children under 7 years of age represents an important challenge for clinicians. The objective of this manuscript is to provide a comprehensive review of epidemiologic, clinic, and therapeutic aspects of migraine in this age. RECENT FINDINGS Current literature data show that migraine has some differences, especially in clinical and therapeutic terms, in this age group compared to subsequent ages. Furthermore, some evidences showing that an early onset of migraine may play an unfavorable role in its natural history, suggest an early identification and management of migraine in younger children. Moreover, we highlight the role that factors of prenatal and perinatal development can play in the predisposition and anticipation of migraine onset. Finally, open questions related to the several undefined features of migraine in this age are reported. Migraine in this pediatric population is absolutely not rare, represents an importan clinical challenge and probably has a negative predictive role.
Collapse
Affiliation(s)
- Vincenzo Raieli
- Child Neuropsychiatry Unit- ISMEP -P.O. Cristina - ARNAS Civico, via dei Benedettini 1, Palermo, Italy.
| | - Antonina D'Amico
- Department for Health Promotion, Maternal Infant Care, Internal Medicine and Medical Specialties "G. D'Alessandro," Child Neuropsychiatry School, University Hospital "P. Giaccone", Via A. Giordano 3, 90127, Palermo, Italy
| | - Ettore Piro
- Department for Health Promotion, Maternal Infant Care, Internal Medicine and Medical Specialties "G. D'Alessandro," Neonatal Intensive Care Unit, University Hospital "P. Giaccone", Via A. Giordano 3, 90127, Palermo, Italy
| |
Collapse
|
12
|
Szereda-Przestaszewska M, Kaczyńska K. Serotonin and substance P: Synergy or competition in the control of breathing. Auton Neurosci 2020; 225:102658. [PMID: 32145695 DOI: 10.1016/j.autneu.2020.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Numerous neurotransmitters identified in the central nervous system play role in ventilatory control. This mini-review focuses on the respiratory effects of two neurotransmitters: serotonin (5-HT) and substance P (SP). We discuss their co-localization in medullary raphe nuclei, expression of proper receptors within the specific regions of respiratory related structures and contribution to respiratory rhythmogenesis.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
13
|
Donnelly WT, Haynes RL, Commons KG, Erickson DJ, Panzini CM, Xia L, Han QJ, Leiter JC. Prenatal intermittent hypoxia sensitizes the laryngeal chemoreflex, blocks serotoninergic shortening of the reflex, and reduces 5-HT 3 receptor binding in the NTS in anesthetized rat pups. Exp Neurol 2020; 326:113166. [PMID: 31887303 PMCID: PMC7028519 DOI: 10.1016/j.expneurol.2019.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
We tested the hypothesis that exposure to intermittent hypoxia (IH) during pregnancy would prolong the laryngeal chemoreflex (LCR) and diminish the capacity of serotonin (5-hydroxytryptamine; 5-HT) to terminate the LCR. Prenatal exposure to IH was associated with significant prolongation of the LCR in younger, anesthetized, postnatal day (P) rat pups age P8 to P16 compared to control, room air (RA)-exposed rat pups of the same age. Serotonin microinjected into the NTS shortened the LCR in rat pups exposed to RA during gestation, but 5-HT failed to shorten the LCR in rat pups exposed to prenatal IH. Given these observations, we tested the hypothesis that prenatal hypoxia would decrease binding to 5-HT3 receptors in the nucleus of the solitary tract (NTS) where 5-HT acts to shorten the LCR. Serotonin 3 receptor binding was reduced in younger rat pups exposed to IH compared to control, RA-exposed rat pups in the age range P8 to P12. Serotonin 3 receptor binding was similar in older animals (P18-P24) regardless of gas exposure during gestation. The failure of the 5-HT injected into the NTS to shorten the LCR was correlated with a developmental decrease in 5-HT3 receptor binding in the NTS associated with exposure to prenatal IH. In summary, prenatal IH sensitized reflex apnea and blunted processes that terminate reflex apneas in neonatal rat pups, processes that are essential to prevent death following apneas such as those seen in babies who died of SIDS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Drexel J Erickson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Chris M Panzini
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Luxi Xia
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Q Joyce Han
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America.
| |
Collapse
|
14
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
15
|
Autonomic maturation from birth to 2 years: normative values. Heliyon 2019; 5:e01300. [PMID: 30899829 PMCID: PMC6407160 DOI: 10.1016/j.heliyon.2019.e01300] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023] Open
Abstract
Background While heart rate variability (HRV) constitutes a relevant non-invasive tool to assess the autonomic nervous system (ANS) function with recognized diagnostic or therapeutic implications, there is still a lack of established data on maturation of autonomic control of heart rate during the first months of life. The Autonomic Baby Evaluation (AuBE) cohort was built to establish, the normal autonomic maturation profile from birth up to 2 years, in a healthy population of full-term newborns. Methods Heart rate variability analysis was carried out in 271 full-term newborns (mean gestational age 39 wGA + 5 days) from reliable polysomnographic recordings at 0 (n = 270) and 6 (n = 221) months and from a 24-hour ambulatory electrocardiogram (ECG) at 12 (n = 210), 18 (n = 197), and 24 (n = 190) months. Indices of HRV analysis were calculated through the ANSLabTools software. Results Indices are dissociated according a temporal, geometrical, frequency, Poincaré, empirical mode decomposition, fractal, Chaos and DC/AC and entropy analysis. Each index is presented for five different periods of time, 0, 6, 12, 18 and 24 months and with smoothed values in the 3rd, 10th, 50th, 90th and 97th percentiles. Data are also presented for the full cohort and individualized by sex to account for gender variability. Discussion & conclusion The physiological autonomic maturation profile from birth to 2 years in a healthy population of term neonates results in a fine-tuning autonomic maturation underlying progressively a new equilibrium and privileging the parasympathetic activity over the sympathetic activity.
Collapse
|
16
|
Abstract
A wide variety of neuropathological abnormalities have been investigated in infants who have died of sudden infant death syndrome (SIDS). Issues which detracted from early studies included failure to use uniform definitions of SIDS and lack of appropriately matched control populations. Development of the triple risk model focused attention on the concept of an inherent susceptibility to unexpected death in certain infants, with research demonstrating a role for the neurotransmitter serotonin within the brainstem. However, it now appears that neuropathological abnormalities in SIDS infants are more complex than a simple serotonergic deficiency in certain medullary nuclei but instead could involve failure of an integrated network of neurochemical transmitters in a variety of subcortical locations. The following overview examines recent research developments looking particularly at the potential role of the peptide neurotransmitter substance P and its neurokinin-1 receptor in multiple nuclei within the brainstem, asymmetry and microdysgenesis of the hippocampus, and decreased orexin levels within dorsomedial, perifornical, and lateral levels in the hypothalamus. Whether such research will lead to identifiable biomarker for infants at risk of SIDS is yet to be established. Use of standardized and consistent methods of classifying and categorizing infant deaths will be pivotal in generating reproducible research results.
Collapse
Affiliation(s)
- Fiona M Bright
- 1 School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- 2 Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Roger W Byard
- 1 School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Byard RW, Bright FM. Impaired motor control in SIDS infants. Int J Legal Med 2018; 132:1389. [DOI: 10.1007/s00414-018-1788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022]
|
18
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
19
|
Cardiovascular autonomic dysfunction in sudden infant death syndrome. Clin Auton Res 2018; 28:535-543. [PMID: 29299712 DOI: 10.1007/s10286-017-0490-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
A failure of cardiorespiratory control mechanisms, together with an impaired arousal response from sleep, are believed to play an important role in the final event of sudden infant death syndrome (SIDS). The 'triple risk model' describes SIDS as an event that results from the intersection of three overlapping factors: (1) a vulnerable infant, (2) a critical developmental period in homeostatic control and (3) an exogenous stressor. In an attempt to understand how the triple risk hypothesis is related to infant cardiorespiratory physiology, many researchers have examined how the known risk and protective factors for SIDS alter infant cardiovascular control during sleep. This review discusses the association between the three components of the triple risk hypothesis and major risk factors for SIDS, such as prone sleeping, maternal smoking, together with three "protective" factors, and cardiovascular control during sleep in infants, and discusses their potential involvement in SIDS.
Collapse
|
20
|
Why is a prone sleeping position dangerous for certain infants? Forensic Sci Med Pathol 2017; 14:114-116. [PMID: 29243157 DOI: 10.1007/s12024-017-9941-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
The prone (face down) sleeping position is known to be associated with a significantly increased risk of sudden and unexpected death in infancy (sudden infant death syndrome or SIDS), however, the reasons for this are unclear. Suggested mechanisms have involved suffocation from occlusion of the external airways by soft bedding/pillows or from flattening of the nose with backward displacement of the tongue, rebreathing of carbon dioxide, blunting of arousal responses with decreased cardiac responses to auditory stimulation, diaphragmatic splinting or fatigue, lowering of vasomotor tone with tachycardia, nasopharyngeal bacterial overgrowth, overheating, alteration of sleep patterns, compromise of cerebral blood flow and upper airway obstruction from distortion of nasal cartilages. Recent studies have, however, shown a significant reduction in substance P in the inferior portion of the olivo-cerebellar complex in SIDS infants which is crucial for the integration of motor and sensory information for the control of head and neck movement. This deficit may explain why some infants are not able to move their faces away from potentially dangerous sleeping environments.
Collapse
|