1
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Improvement of anti-prion efficacy with stearoxy conjugation of hydroxypropyl methylcellulose in prion-infected mice. Carbohydr Polym 2024; 337:122163. [PMID: 38710557 DOI: 10.1016/j.carbpol.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Combination of Styrylbenzoazole Compound and Hydroxypropyl Methylcellulose Enhances Therapeutic Effect in Prion-Infected Mice. Mol Neurobiol 2024; 61:4705-4711. [PMID: 38114760 PMCID: PMC11236910 DOI: 10.1007/s12035-023-03852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Tremendous efforts have been made for prion diseases; however, no effective treatment is available. Several anti-prion compounds have a preference for which prion strains or prion-infected animal models to target. Styrylbenzoazole compound called cpd-B is effective in RML prion-infected mice but less so in 263K prion-infected mice, whereas hydroxypropyl methylcellulose is effective in 263K prion-infected mice but less so in RML prion-infected mice. In the present study, we developed a combination therapy of cpd-B and hydroxypropyl methylcellulose expecting synergistic effects in both RML prion-infected mice and 263K prion-infected mice. A single subcutaneous administration of this combination had substantially a synergistic effect in RML prion-infected mice but had no additive effect in 263K prion-infected mice. These results showed that the effect of cpd-B was enhanced by hydroxypropyl methylcellulose. The complementary nature of the two compounds in efficacy against prion strains, chemical properties, pharmacokinetics, and physical properties appears to have contributed to the effective combination therapy. Our results pave the way for the strategy of new anti-prion agents.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Ali T, Klein AN, McDonald K, Johansson L, Mukherjee PG, Hallbeck M, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment inhibits amyloid beta aggregation, neuroinflammation and cognitive deficits in transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2023; 20:177. [PMID: 37507761 PMCID: PMC10375631 DOI: 10.1186/s12974-023-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aβ), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aβ. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aβ aggregation, as well as neurotoxicity and immunoreactivity in Aβ-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aβ oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFβ). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFβ in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aβ pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Antonia N Klein
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Keegan McDonald
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lovisa Johansson
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | | | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Yang YF, Lin YC, Ercan E, Chiang YC, Lin BH, Chen WC. Improving the Photoresponse of Transistor Memory Using Self-Assembled Nanostructured Block Copolymers as a Photoactive Electret. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun-Fang Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Teruya K, Oguma A, Takahashi S, Watanabe-Matsui M, Tsuji-Kawahara S, Miyazawa M, Doh-ura K. Anti-prion activity of cellulose ether is impaired in mice lacking pre T-cell antigen receptor α, T-cell receptor δ, or lytic granule function. Int Immunopharmacol 2022; 107:108672. [DOI: 10.1016/j.intimp.2022.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
|
6
|
Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res 2022; 392:349-365. [PMID: 35307792 DOI: 10.1007/s00441-022-03604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are caused by the accumulation of abnormal isoforms of the prion protein (scrapie isoform of the prion protein, PrPSc) in the central nervous system. Many compounds with anti-prion activities have been found using in silico screening, in vitro models, persistently prion-infected cell models, and prion-infected rodent models. Some of these compounds include several types of polymers. Although the inhibition or removal of PrPSc production is the main target of therapy, the unique features of prions, namely protein aggregation and assembly accompanied by steric structural transformation, may require different strategies for the development of anti-prion drugs than those for conventional therapeutics targeting enzyme inhibition, agonist ligands, or modulation of signaling. In this paper, we first overview the history of the application of polymers to prion disease research. Next, we describe the characteristics of each type of polymer with anti-prion activity. Finally, we discuss the common features of these polymers. Although drug delivery of these polymers to the brain is a challenge, they are useful not only as leads for therapeutic drugs but also as tools to explore the structure of PrPSc and are indispensable for prion disease research.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
7
|
Teruya K, Oguma A, Arai K, Nishizawa K, Iwabuchi S, Watanabe-Matsui M, Sakasegawa Y, Schätzl H, Gilch S, Doh-Ura K. Polymorphisms in glia maturation factor β gene are markers of cellulose ether effectiveness in prion-infected mice. Biochem Biophys Res Commun 2021; 560:105-111. [PMID: 33984767 DOI: 10.1016/j.bbrc.2021.04.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Anti-prion effects of cellulose ether (CE) are reported in rodents, but the molecular mechanism is fully unknown. Here, we investigated the genetic background of CE effectiveness by proteomic and genetic analysis in mice. Proteomic analysis in the two mouse lines showing a dramatic difference in CE effectiveness revealed a distinct polymorphism in the glia maturation factor β gene. This polymorphism was significantly associated with the CE effectiveness in various prion-infected mouse lines. Sequencing of this gene and its vicinity genes also revealed several other polymorphisms that were significantly related to the CE effectiveness. These polymorphisms are useful as genetic markers for finding more suitable mouse lines and exploring the genetic factors of CE effectiveness.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keita Arai
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Miki Watanabe-Matsui
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann Schätzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Nakagaki T, Ishibashi D, Mori T, Miyazaki Y, Takatsuki H, Tange H, Taguchi Y, Satoh K, Atarashi R, Nishida N. Administration of FK506 from Late Stage of Disease Prolongs Survival of Human Prion-Inoculated Mice. Neurotherapeutics 2020; 17:1850-1860. [PMID: 32483654 PMCID: PMC7851258 DOI: 10.1007/s13311-020-00870-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human prion diseases are etiologically categorized into three forms: sporadic, genetic, and infectious. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common type of human prion disease that manifests as subacute progressive dementia. No effective therapy for sCJD is currently available. Potential therapeutic compounds are frequently tested in rodents infected with mouse-adapted prions that differ from human prions. However, therapeutic effect varies depending on the prion strain, which is one of the reasons why candidate compounds have shown little effect in sCJD patients. We previously reported that intraperitoneal administration of FK506 was able to prolong the survival of mice infected with a mouse-adapted prion by suppressing the accumulation of abnormal prion protein (PrP) and inhibiting the activation of microglia. In this study, we tested oral administration of FK506 in knock-in mice expressing chimeric human prion protein (KiChM) that were infected with sCJD to determine if this compound is also effective against a clinically relevant human prion, i.e., one that has not been adapted to mice. Treatment with FK506, started either just before or just after disease onset, suppressed typical sCJD pathology (gliosis) and slightly but significantly prolonged the survival of sCJD-inoculated mice. It would be worthwhile to conduct a clinical trial using FK506, which has been safety-approved and is widely used as a mild immunosuppressant.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tsuyoshi Mori
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Yukiko Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hanae Takatsuki
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Hiroya Tange
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuzuru Taguchi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
9
|
Nishizawa K, Teruya K, Oguma A, Sakasegawa Y, Schätzl H, Gilch S, Doh-Ura K. Preparation and Characterization of Cellulose Ether Liposomes for the Inhibition of Prion Formation in Prion-Infected Cells. J Pharm Sci 2019; 108:2814-2820. [PMID: 30914271 DOI: 10.1016/j.xphs.2019.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023]
Abstract
Prion accumulation in the brain and lymphoreticular system causes fatal neurodegenerative diseases. Our previous study revealed that cellulose ethers (CE) have anti-prion activities in vivo and in prion-infected cells when administered at high doses. This study aims to improve the bioavailability of a representative CE using a liposomal formulation and characterized CE-loaded liposomes in cultured cells. The liposomal formulation reduced the EC50 dose of CE by <1/200-fold in prion-infected cells. Compared to empty liposomes, CE-loaded liposomes were taken up much more highly by prion-infected cells and less by macrophage-like cells. Phosphatidylserine modification reduced the uptake of CE-loaded liposomes in prion-infected cells and did not change the anti-prion activity, whereas increased the uptake in macrophage-like cells. Polyethylene glycol modification reduced the uptake of CE-loaded liposomes in both types of cells and reduced the anti-prion activity in prion-infected cells. These results suggest that a liposomal formulation of CE is more practical than unformulated CE and showed that the CE-loaded liposome uptake levels in prion-infected cells were not associated with anti-prion activity. Although further improvement of the stealth function against phagocytic cells is needed, the liposomal formulation is useful to improve CE efficacy and elucidate the mechanism of CE action.
Collapse
Affiliation(s)
- Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann Schätzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|