1
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
2
|
Luther T, Bülow-Anderberg S, Persson P, Franzén S, Skorup P, Wernerson A, Hultenby K, Palm F, Schiffer TA, Frithiof R. Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F571-F580. [PMID: 37102685 DOI: 10.1152/ajprenal.00294.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V̇o2) and renal Na+ transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V̇o2 and Na+ transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na+ transport and renal V̇o2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 ± 1.5 vs. 8.2 ± 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 ± 0.2 vs. 1.3 ± 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V̇o2 and renal Na+ transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.
Collapse
Affiliation(s)
- Tomas Luther
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Sara Bülow-Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Palm
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
van der Laarse WJ, Bogaards SJP, Schalij I, Vonk Noordegraaf A, Vaz FM, van Groen D. Work and oxygen consumption of isolated right ventricular papillary muscle in experimental pulmonary hypertension. J Physiol 2022; 600:4465-4484. [PMID: 35993114 DOI: 10.1113/jp282991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
Right-sided myocardial mechanical efficiency (work output/metabolic energy input) in pulmonary hypertension can be severely reduced. We determined the contribution of intrinsic myocardial determinants of efficiency using papillary muscle preparations from monocrotaline-induced pulmonary hypertensive (MCT-PH) rats. The hypothesis tested was that efficiency is reduced by mitochondrial dysfunction in addition to increased activation heat reported previously. Right ventricular muscle preparations were subjected to 5 Hz sinusoidal length changes at 37°C. Work and suprabasal oxygen consumption (V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) were measured before and after cross-bridge inhibition by blebbistatin. Cytosolic cytochrome c concentration, myocyte cross-sectional area, proton permeability of the inner mitochondrial membrane and monoamine oxidase and glucose 6-phosphate dehydrogenase activities and phosphatidylglycerol/cardiolipin contents were determined. Mechanical efficiency ranged from 23% to 11% in control (n = 6) and from 22% to 1% in MCT-PH (n = 15) and correlated with work (r2 = 0.68, P < 0.0001) but not withV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.004, P = 0.7919).V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ for cross-bridge cycling was proportional to work (r2 = 0.56, P = 0.0005). Blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.32, P = 0.0167) and proton permeability of the mitochondrial inner membrane (r2 = 0.36, P = 0.0110) correlated inversely with efficiency. Together, these variables explained the variance of efficiency (coefficient of multiple determination r2 = 0.79, P = 0.0001). Cytosolic cytochrome c correlated inversely with work (r2 = 0.28, P = 0.0391), but not with efficiency (r2 = 0.20, P = 0.0867). Glucose 6-phosphate dehydrogenase, monoamine oxidase and phosphatidylglycerol/cardiolipin increased in the right ventricular wall of MCT-PH but did not correlate with efficiency. Reduced myocardial efficiency in MCT-PH is a result of activation processes and mitochondrial dysfunction. The variance of work and the ratio of activation heat reported previously and blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ are discussed. KEY POINTS: Mechanical efficiency of right ventricular myocardium is reduced in pulmonary hypertension. Increased energy use for activation processes has been demonstrated previously, but the contribution of mitochondrial dysfunction is unknown. Work and oxygen consumption are determined during work loops. Oxygen consumption for activation and cross-bridge cycling confirm the previous heat measurements. Cytosolic cytochrome c concentration, proton permeability of the mitochondrial inner membrane and phosphatidylglycerol/cardiolipin are increased in experimental pulmonary hypertension. Reduced work and mechanical efficiency are related to mitochondrial dysfunction. Upregulation of the pentose phosphate pathway and a potential gap in the energy balance suggest mitochondrial dysfunction in right ventricular overload is a resiult of the excessive production of reactive oxygen species.
Collapse
Affiliation(s)
- Willem J van der Laarse
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ingrid Schalij
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands and Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Gastroentrology Endocrinology Metabolism, Amsterdam, Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Duncan van Groen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ramos PM, Bell LC, Wohlgemuth SE, Scheffler TL. Mitochondrial Function in Oxidative and Glycolytic Bovine Skeletal Muscle Postmortem. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meat quality is traditionally associated with anaerobic metabolism due to cessation of the oxygen supply post-mortem. However, mitochondrial (mt) function early postmortem may affect the development of meat quality characteristics, such as adenosine triphosphate levels and pH decline. Therefore, the objective of this study was to evaluate mt function ex vivo during the first 24 h postmortem in muscles with differences in mt content. Samples from longissimus lumborum (LL) and diaphragm (Dia) were taken from steers (n = 6) at 1, 3, and 24 h postmortem and frozen to determine citrate synthase (CS) activity and mt protein expression (immunodetection) or were fresh-preserved for high-resolution respirometry. Integrative oxygen consumption rate (picomoles per second per milligram of tissue) was measured and normalized to CS activity as a proxy for mt content (intrinsic mt function, picomoles per second per unit CS). CS activity (P < 0.001) and mt protein expression (P < 0.001) were greater in Dia, which was reflected in mt respiration. Muscle type affected (P < 0.001) integrative leak respiration and was greater in mt from Dia; oxidative phosphorylation (OXPHOS) was also greater in Dia and influenced by time postmortem (muscle × time: P = 0.01). Intrinsic leak and OXPHOS were affected by muscle and time (muscle × time: P = 0.05 and P = 0.01, respectively), with the most pronounced differences at 24 h postmortem. Stimulation of OXPHOS by cytochrome c as an indicator of outer mt membrane integrity was influenced by muscle and time postmortem (muscle × time: P = 0.03); it was greater in mt from LL. Despite intrinsic differences in respiratory function at 24 h, mt from both muscles were intact and coupled at 1 h postmortem. Reduced content and respiratory function in mt from LL are associated with early fragmentation, which could impact protease activation and subsequently meat quality.
Collapse
|
5
|
Berry BJ, Wojtovich AP. Mitochondrial light switches: optogenetic approaches to control metabolism. FEBS J 2020; 287:4544-4556. [PMID: 32459870 DOI: 10.1111/febs.15424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Developing new technologies to study metabolism is increasingly important as metabolic disease prevalence increases. Mitochondria control cellular metabolism and dynamic changes in mitochondrial function are associated with metabolic abnormalities in cardiovascular disease, cancer, and obesity. However, a lack of precise and reversible methods to control mitochondrial function has prevented moving from association to causation. Recent advances in optogenetics have addressed this challenge, and mitochondrial function can now be precisely controlled in vivo using light. A class of genetically encoded, light-activated membrane channels and pumps has addressed mechanistic questions that promise to provide new insights into how cellular metabolism downstream of mitochondrial function contributes to disease. Here, we highlight emerging reagents-mitochondria-targeted light-activated cation channels or proton pumps-to decrease or increase mitochondrial activity upon light exposure, a technique we refer to as mitochondrial light switches, or mtSWITCH . The mtSWITCH technique is broadly applicable, as energy availability and metabolic signaling are conserved aspects of cellular function and health. Here, we outline the use of these tools in diverse cellular models of disease. We review the molecular details of each optogenetic tool, summarize the results obtained with each, and outline best practices for using optogenetic approaches to control mitochondrial function and downstream metabolism.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, NY, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| |
Collapse
|
6
|
Korzeniewski B, Rossiter HB. Exceeding a "critical" muscle P i: implications for [Formula: see text] and metabolite slow components, muscle fatigue and the power-duration relationship. Eur J Appl Physiol 2020; 120:1609-1619. [PMID: 32435984 DOI: 10.1007/s00421-020-04388-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The consequences of the assumption that the additional ATP usage, underlying the slow component of oxygen consumption ([Formula: see text]) and metabolite on-kinetics, starts when cytosolic inorganic phosphate (Pi) exceeds a certain "critical" Pi concentration, and muscle work terminates because of fatigue when Pi exceeds a certain, higher, "peak" Pi concentration are investigated. METHODS A previously developed computer model of the myocyte bioenergetic system is used. RESULTS Simulated time courses of muscle [Formula: see text], cytosolic ADP, pH, PCr and Pi at various ATP usage activities agreed well with experimental data. Computer simulations resulted in a hyperbolic power-duration relationship, with critical power (CP) as an asymptote. CP was increased, and phase II [Formula: see text] on-kinetics was accelerated, by progressive increase in oxygen tension (hyperoxia). CONCLUSIONS Pi is a major factor responsible for the slow component of the [Formula: see text] and metabolite on-kinetics, fatigue-related muscle work termination and hyperbolic power-duration relationship. The successful generation of experimental system properties suggests that the additional ATP usage, underlying the slow component, indeed starts when cytosolic Pi exceeds a "critical" Pi concentration, and muscle work terminates when Pi exceeds a "peak" Pi concentration. The contribution of other factors, such as cytosolic acidification, or glycogen depletion and central fatigue should not be excluded. Thus, a detailed quantitative unifying mechanism underlying various phenomena related to skeletal muscle fatigue and exercise tolerance is offered that was absent in the literature. This mechanism is driven by reciprocal stimulation of Pi increase and additional ATP usage when "critical" Pi is exceeded.
Collapse
Affiliation(s)
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.,Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Ramani M, Miller K, Brown J, Kumar R, Kadasamy J, McMahon L, Ballinger S, Ambalavanan N. Early Life Supraphysiological Levels of Oxygen Exposure Permanently Impairs Hippocampal Mitochondrial Function. Sci Rep 2019; 9:13364. [PMID: 31527593 PMCID: PMC6746707 DOI: 10.1038/s41598-019-49532-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Preterm infants requiring prolonged oxygen therapy often develop cognitive dysfunction in later life. Previously, we reported that 14-week-old young adult mice exposed to hyperoxia as newborns had spatial and learning deficits and hippocampal shrinkage. We hypothesized that the underlying mechanism was the induction of hippocampal mitochondrial dysfunction by neonatal hyperoxia. C57BL/6J mouse pups were exposed to 85% oxygen or room air from P2-P14. Hippocampal proteomic analysis was performed in young adult mice (14 weeks). Mitochondrial bioenergetics were measured in neonatal (P14) and young adult mice. We found that hyperoxia exposure reduced mitochondrial ATP-linked oxygen consumption and increased state 4 respiration linked proton leak in both neonatal and young adult mice while complex I function was decreased at P14 but increased in young adult mice. Proteomic analysis revealed that hyperoxia exposure decreased complex I NDUFB8 and NDUFB11 and complex IV 7B subunits, but increased complex III subunit 9 in young adult mice. In conclusion, neonatal hyperoxia permanently impairs hippocampal mitochondrial function and alters complex I function. These hippocampal mitochondrial changes may account for cognitive deficits seen in children and adolescents born preterm and may potentially be a contributing mechanism in other oxidative stress associated brain disorders.
Collapse
Affiliation(s)
- Manimaran Ramani
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Kiara Miller
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jamelle Brown
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ranjit Kumar
- Departments of Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jegen Kadasamy
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lori McMahon
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Scott Ballinger
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Namasivayam Ambalavanan
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
8
|
P i-induced muscle fatigue leads to near-hyperbolic power-duration dependence. Eur J Appl Physiol 2019; 119:2201-2213. [PMID: 31399839 DOI: 10.1007/s00421-019-04204-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Consequences of combining three ideas proposed previously by other authors: (1) that there exists a critical power (CP), above which no steady state in [Formula: see text]O2 (oxygen consumption) and metabolites can be achieved in voluntary constant-power exercise; (2) that muscle fatigue is related to decreased exercise efficiency (increased [Formula: see text]O2/power output ratio); and (3) that Pi (inorganic phosphate) is the main fatigue-related metabolite are investigated. METHODS A previously-developed computer model of the skeletal muscle bioenergetic system is used. It was assumed in computer simulations that skeletal muscle work terminates when cytosolic Pi (inorganic phosphate) exceeds a certain critical level. RESULTS Simulated changes in muscle [Formula: see text]O2, cytosolic ADP, pH, PCr and Pi as a function of time at various ATP usage activities (corresponding to power outputs) agreed well with experimental data. Computer simulations resulted in a fourth previously-published idea: (4) that the power-duration relationship describing the dependence of power output (PO) on the time to exhaustion of voluntary constant-power exercise at a given PO has a (near-)hyperbolic shape. CONCLUSIONS Pi is a major factor contributing to muscle fatigue, as such an assumption leads to a (near-)hyperbolic shape of the power-duration relationship, at least for exercise duration of ~ 1-10 min. Thus, a potential mechanism underlying the power-duration relationship shape is offered that was absent in the literature. Other factors/mechanisms, such as cytosol acidification, glycogen stores depletion and central fatigue can contribute to this relationship, especially in longer exercises.
Collapse
|
9
|
Korzeniewski B. Muscle V˙O2-power output nonlinearity in constant-power, step-incremental, and ramp-incremental exercise: magnitude and underlying mechanisms. Physiol Rep 2018. [PMCID: PMC6234149 DOI: 10.14814/phy2.13915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A computer model of the skeletal muscle bioenergetic system was used to simulate time courses of muscle oxygen consumption (V˙O2), cytosolic metabolite (ADP, PCr, Pi, and ATP) concentrations, and pH during whole‐body constant‐power exercise (CPE) (6 min), step‐incremental exercise (SIE) (30 W/3 min), and slow (10 W/min), medium (30 W/min), and fast (50 W/min) ramp‐incremental exercise (RIE). Different ESA (each‐step activation) of oxidative phosphorylation (OXPHOS) intensity‐ATP usage activity relationships, representing different muscle fibers recruitment patterns, gave best agreement with experimental data for CPE, and for SIE and RIE. It was assumed that the muscle V˙O2‐power output (PO) nonlinearity is related to a time‐ and PO‐dependent increase in the additional ATP usage underlying the slow component of the V˙O2 on‐kinetics minus the increase in ATP supply by anaerobic glycolysis leading to a decrease in V˙O2. The muscle V˙O2‐PO relationship deviated upward (+) or downward (−) from linearity above critical power (CP), and the nonlinearity equaled +16% (CPE),+12% (SIE), +8% (slow RIE), +1% (moderate RIE), and −2% (fast RIE) at the end of exercise, in agreement with experimental data. During SIE and RIE, changes in PCr and Pi accelerated moderately above CP, while changes in ADP and pH accelerated significantly with time and PO. It is postulated that the intensity of the additional ATP usage minus ATP supply by anaerobic glycolysis determines the size of the muscle V˙O2‐PO nonlinearity. It is proposed that the extent of the additional ATP usage is proportional to the time integral of PO ‐ CP above CP.
Collapse
|
10
|
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 2018; 430:3873-3891. [PMID: 29626541 DOI: 10.1016/j.jmb.2018.03.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψm) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrea M Amitrano
- Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Minsoo Kim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| |
Collapse
|