1
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Paungpin W, Thongdee M, Ketchim N, Chaiwattanarungruengpaisan S, Saechin A, Sariya L, Kaewchot S, Puthavathana P, Wiriyarat W. Evidence of Influenza A Virus Infection in Cynomolgus Macaques, Thailand. Vet Sci 2022; 9:vetsci9030132. [PMID: 35324860 PMCID: PMC8950150 DOI: 10.3390/vetsci9030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Little is known about the ecology of influenza A virus (IAV) in nonhuman primates (NHPs). We conducted active surveillance of IAV among 672 cynomolgus macaques (Macaca fascicularis) living in 27 free-ranging colonies in Thailand between March and November 2019. A hemagglutination inhibition (HI) assay was employed as the screening test against 16 subtypes of avian influenza virus (AIV) and two strains of the H1 subtype of human influenza virus. The serum samples with HI titers ≥20 were further confirmed by microneutralization (MN) assay. Real-time RT-PCR assay was performed to detect the conserved region of the influenza matrix (M) gene. The seropositive rate for subtypes of IAV, including AIV H1 (1.6%, 11/672), AIV H2 (15.2%, 102/672), AIV H3 (0.3%, 2/672), AIV H9 (3.4%, 23/672), and human H1 (NP-045) (0.9%, 6/672), was demonstrated. We also found antibody against more than one subtype of IAV in 15 out of 128 positive tested sera (11.7%). Moreover, influenza genome could be detected in 1 out of 245 pool swab samples (0.41%). Evidence of IAV infection presented here emphasizes the role of NHPs in the ecology of the virus. Our findings highlight the need to further conduct a continuous active surveillance program in NHP populations.
Collapse
Affiliation(s)
- Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Natthaphat Ketchim
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Aeknarin Saechin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Supakarn Kaewchot
- Department of National Parks, Wildlife and Plant Conservation, Bangkok 10900, Thailand;
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
- Correspondence:
| |
Collapse
|
3
|
Udonsom R, Nishikawa Y, Fereig RM, Topisit T, Kulkaweewut N, Chanamrung S, Jirapattharasate C. Exposure to Toxoplasma gondii in Asian Elephants ( Elephas maximus indicus) in Thailand. Pathogens 2021; 11:pathogens11010002. [PMID: 35055950 PMCID: PMC8778166 DOI: 10.3390/pathogens11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis in humans and various animal species worldwide. In Thailand, seroprevalence studies on T. gondii have focused on domestic animals, and information on infections in Asian elephants (Elephas maximus indicus) is scarce. This study was conducted to determine the seroprevalence of T. gondii infection in archival sera collected from 268 elephants living in Thailand. The serum samples were analyzed for anti-T. gondii immunoglobulin G antibodies using the latex agglutination test (LAT) and indirect enzyme-linked immunosorbent assay (iELISA) based on T. gondii lysate antigen (TLA-iELISA) and recombinant T. gondii dense granular antigen 8 protein (TgGRA8-iELISA). The prevalence of antibodies against T. gondii was 45.1% (121/268), 40.7% (109/268), and 44.4% (119/268) using LAT, TLA-iELISA, and TgGRA8-iELISA, respectively. Young elephants had a higher seropositivity rate than elephants aged >40 years (odds ratio = 6.6; p < 0.001; 95% confidence interval: 2.9–15.4). When LAT was used as the reference, TLA-iELISA and TgGRA8-iELISA showed a substantial (κ = 0.69) and moderate (κ = 0.42) agreement, respectively. Although our findings suggest the widespread exposure of Asian elephants to T. gondii in Thailand, the source of infection was not investigated. Therefore, investigation of the predisposing factors associated with toxoplasmosis is necessary to identify the potential risk factors for infection.
Collapse
Affiliation(s)
- Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand;
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan; (Y.N.); (R.M.F.)
| | - Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan; (Y.N.); (R.M.F.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Thitirat Topisit
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phuthamonthon sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand; (T.T.); (N.K.); (S.C.)
| | - Natchakorn Kulkaweewut
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phuthamonthon sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand; (T.T.); (N.K.); (S.C.)
| | - Supitcha Chanamrung
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phuthamonthon sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand; (T.T.); (N.K.); (S.C.)
| | - Charoonluk Jirapattharasate
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phuthamonthon sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand; (T.T.); (N.K.); (S.C.)
- Correspondence:
| |
Collapse
|
4
|
Chaiwattanarungruengpaisan S, Ketchim N, Surarith W, Thongdee M, Prompiram P, Tonchiangsai K, Tipkantha W, Wiriyarat W, Paungpin W. Serologic evidence of pandemic (H1N1) 2009 virus infection in camel and Eld's deer, Thailand. Vet World 2021; 14:2596-2601. [PMID: 34903914 PMCID: PMC8654739 DOI: 10.14202/vetworld.2021.2596-2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The pandemic (H1N1) 2009 influenza (H1N1pdm09) virus has affected both human and animal populations worldwide. The transmission of the H1N1pdm09 virus from humans to animals is increasingly more evident. Captive animals, particularly zoo animals, are at risk of H1N1pdm09 virus infection through close contact with humans. Evidence of exposure to the H1N1pdm09 virus has been reported in several species of animals in captivity. However, there is limited information on the H1N1pdm09 virus infection and circulation in captive animals. To extend the body of knowledge on exposure to the H1N1pdm09 virus among captive animals in Thailand, our study investigated the presence of antibodies against the H1N1pdm09 virus in two captive animals: Camelids and Eld's deer. Materials and Methods We investigated H1N1pdm09 virus infection among four domestic camelid species and wild Eld's deer that were kept in different zoos in Thailand. In total, 72 archival serum samples from camelid species and Eld's deer collected between 2013 and 2014 in seven provinces in Thailand were analyzed for influenza antibodies using hemagglutination inhibition (HI), microneutralization, and western blotting (WB) assays. Results The presence of antibodies against the H1N1pdm09 virus was detected in 2.4% (1/42) of dromedary camel serum samples and 15.4% (2/13) of Eld's deer serum samples. No antibodies were detected in the rest of the serum samples derived from other investigated camelids, including Bactrian camels (0/3), alpacas (0/5), and llamas (0/9). The three positive serum samples showed HI antibody titers of 80, whereas the neutralization titers were in the range of 320-640. Antibodies specific to HA and NP proteins in the H1N1pdm09 virus were detected in positive camel serum samples using WB. Conversely, the presence of the specific antibodies in the positive Eld's deer serum samples could not be determined using WB due to the lack of commercially labeled secondary antibodies. Conclusion The present study provided evidence of H1N1pdm09 virus infection in the captive dromedary camel and Eld's deer in Thailand. Our findings highlight the need for continuous surveillance for influenza A virus in the population of dromedary camels and Eld's deer. The susceptible animal populations in close contact with humans should be closely monitored. Further study is warranted to determine whether Eld's deer are indeed a competent reservoir for human influenza virus.
Collapse
Affiliation(s)
- Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Natthaphat Ketchim
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanvisa Surarith
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Phirom Prompiram
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kanittha Tonchiangsai
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanlaya Tipkantha
- The Zoological Park Organization of Thailand, Bureau of Conservation and Research, Bangkok, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- The Monitoring and Surveillance Centre for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Usui T, Ueda M, Azumano A, Nomura M, Arima T, Murata K, Ito T, Yamaguchi T. A cluster epidemic of influenza A(H1N1)pdm09 virus infection in four captive cheetahs (Acinonyx jubatus). Zoonoses Public Health 2021; 68:239-246. [PMID: 33576190 DOI: 10.1111/zph.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 12/01/2022]
Abstract
In January 2019, four cheetahs (Acinonyx jubatus) kept at a Japanese zoo intermittently showed respiratory signs following the incidence of seasonal influenza in animal caregivers. Respiratory materials (saliva, sputum and food tray swabs) were non-invasively collected from the four cheetahs. Although we were unable to isolate the virus, the NP gene of influenza A virus was detected in three of the cheetahs but not in the fourth cheetah that had nearly recovered. From a food tray swab which tested weakly positive by a commercial influenza detection kit, we were able to obtain the whole-genome sequence of the influenza A virus. Analysis of the genome, A/cheetah/Kanagawa/2/2019(H1N1), revealed that the virus was closely related to influenza A(H1N1)pdm09 viruses isolated from humans in Japan in the 2018-2019 winter. Production of haemagglutinin inhibition (HI) antibodies (64-128 HI) against an A(H1N1)pdm09 virus in plasma samples confirmed infection of all four cheetahs. The animals continued to produce antibodies for at least 314 days after disease onset. These findings strongly suggest that reverse zoonotic transmission of A(H1N1)pdm09 virus occurred from human to cheetah and subsequently from cheetah to cheetah in the zoo. We also show that specimens can be safely and non-invasively collected from non-domesticated animals and used to investigate respiratory infectious diseases.
Collapse
Affiliation(s)
- Tatsufumi Usui
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Miya Ueda
- Yokohama Zoological Gardens, Yokohama, Japan
| | | | - Mika Nomura
- Yokohama Zoological Gardens, Yokohama, Japan
| | - Toru Arima
- Yokohama Zoological Gardens, Yokohama, Japan
| | - Koichi Murata
- Yokohama Zoological Gardens, Yokohama, Japan.,Laboratory of Wildlife Science, College of Bioresource Sciences, Nihon University, Fujisawa-shi, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | | |
Collapse
|
6
|
Hoornweg TE, Schaftenaar W, Maurer G, van den Doel PB, Molenaar FM, Chamouard-Galante A, Vercammen F, Rutten VPMG, de Haan CAM. Elephant Endotheliotropic Herpesvirus Is Omnipresent in Elephants in European Zoos and an Asian Elephant Range Country. Viruses 2021; 13:v13020283. [PMID: 33670367 PMCID: PMC7917619 DOI: 10.3390/v13020283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
Elephant endotheliotropic herpesviruses (EEHVs) may cause acute, often lethal, hemorrhagic disease (EEHV-HD) in young elephants. Prevalence of EEHV in different elephant populations is still largely unknown. In order to improve diagnostic tools for the detection of EEHV infections and to obtain insight into its spread among elephants, we developed novel ELISAs based on EEHV1A gB and gH/gL. Performance of the ELISAs was assessed using sera from 41 European zoo elephants and 69 semi-captive elephants from Laos, one of the Asian elephant range countries. Sera from all (sub)adult animals tested (≥5 years of age) showed high reactivity with both gB and gH/gL, indicating that EEHV prevalence has been highly underestimated so far. Reactivity towards the antigens was generally lower for sera of juvenile animals (1 > 5 years). Only one (juvenile) animal, which was sampled directly after succumbing to EEHV-HD, was found to be seronegative for EEHV. The two other EEHV-HD cases tested showed low antibody levels, suggesting that all three cases died upon a primary EEHV infection. In conclusion, our study suggests that essentially all (semi-)captive (sub)adult elephants in European zoos and in Laos carry EEHV, and that young elephants with low antibody levels are at risk of dying from EEHV-HD.
Collapse
Affiliation(s)
- Tabitha E Hoornweg
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Section Immunology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Willem Schaftenaar
- Veterinary Advisor EAZA Elephant TAG, Rotterdam Zoo, 3041 JG Rotterdam, The Netherlands
| | - Gilles Maurer
- Center for Functional and Evolutionary Ecology (CEFE), Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, 34090 Montpellier, France
- Zooparc de Beauval & Beauval Nature, 41110 Saint-Aignan, France
| | | | - Fieke M Molenaar
- Zoological Society of London, ZSL Whipsnade Zoo, Dunstable LU6 2LF, Bedfordshire, UK
| | | | - Francis Vercammen
- Antwerp Zoo Centre for Research and Conservation, Antwerp Zoo Society, 2018 Antwerp, Belgium
| | - Victor P M G Rutten
- Section Immunology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
7
|
Abstract
Over the past decade, pandemics caused by pandemic H1N1 (pH1N1) influenza virus in 2009 and severe acute respiratory syndrome virus type 2 (SARS-CoV-2) in 2019 have emerged. Both are high-impact respiratory pathogens originating from animals. Their wide distribution in the human population subsequently results in an increased risk of human-to-animal transmission: reverse zoonosis. Although there have only been rare reports of reverse zoonosis events associated with the ongoing coronavirus disease 2019 (COVID-19) pandemic from SARS-CoV-2 so far, comparison with the pH1N1 influenza pandemic can provide a better understanding of the possible consequences of such events for public and animal health. The results of our review suggest that similar factors contribute to successful crossing of the host species barriers in both pandemics. Specific risk factors include sufficient interaction between infected humans and recipient animals, suitability of the animal host factors for productive virus infection, and suitability of the animal host population for viral persistence. Of particular concern is virus spread to susceptible animal species, in which group housing and contact network structure could potentially result in an alternative virus reservoir, from which reintroduction into humans can take place. Virus exposure in high-density populations could allow sustained transmission in susceptible animal species. Identification of the risk factors and serological surveillance in SARS-CoV-2-susceptible animal species that are group-housed should help reduce the threat from reverse zoonosis of COVID-19.
Collapse
Affiliation(s)
| | - Thijs Kuiken
- Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
8
|
Sangkachai N, Thongdee M, Chaiwattanarungruengpaisan S, Buddhirongawatr R, Chamsai T, Poltep K, Wiriyarat W, Paungpin W. Serological evidence of influenza virus infection in captive wild felids, Thailand. J Vet Med Sci 2019; 81:1341-1347. [PMID: 31341136 PMCID: PMC6785624 DOI: 10.1292/jvms.19-0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Influenza virus is known to affect wild felids. To explore the prevalence of influenza viruses in these animal species, 196 archival sera from 5 felid species including Panthera tigris (N=147), Prionailurus viverrinus (N=35), Panthera leo (N=5), Pardofelis temminckii (N=8) and Neofelis nebulosa (N=1) collected between 2011 and 2015 in 10 provinces of Thailand were determined for the presence of antibody to avian and human influenza viruses. Blocking enzyme-linked immunosorbent (ELISA) assay and hemagglutination inhibition (HI) assay were employed as the screening tests, which the serum samples with HI antibody titers ≥20 were further confirmed by cytopathic effect/hemagglutination based-microneutralization (CPE/HA-based microNT) test. Based on HI and microNT assays, the seropositive rates of low pathogenic avian influenza (LPAI) H5 virus, highly pathogenic avian influenza (HPAI) H5 virus and human H1 virus were 1.53% (3/196), 2.04% (4/196) and 6.63% (13/196), respectively. In addition, we also found antibody against both LPAI H5 virus and HPAI H5 virus in 2 out of 196 tested sera (1.02%). Evidences of influenza virus infection were found in captive P. tigris in Kanchanaburi, Nakhon Sawan and Ratchaburi provinces of Thailand. The findings of our study highlights the need of a continuous active surveillance program of influenza viruses in wild felid species.
Collapse
Affiliation(s)
- Nareerat Sangkachai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ruangrat Buddhirongawatr
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tatiyanuch Chamsai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanaporn Poltep
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|