1
|
Mastrodonato A, Jin M, Kee N, Lanio M, Tapia J, Quintana L, Muñoz Zamora A, Deng SX, Xu X, Landry DW, Denny CA. Prophylactic (R,S)-ketamine and (2S,6S)-hydroxynorketamine Decrease Fear Expression by Differentially Modulating Fear Neural Ensembles. Biol Psychiatry 2024:S0006-3223(24)01649-4. [PMID: 39389408 DOI: 10.1016/j.biopsych.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND We previously reported that a single injection of (R,S)-ketamine or its metabolite (2S,6S)-hydroxynorketamine (HNK) prior to stress attenuated learned fear. However, whether these drugs attenuate learned fear through divergent or convergent effects on neural activity remains to be determined. METHODS 129S6/SvEv male mice were injected with saline, (R,S)-ketamine, or (2S,6S)-HNK 1 week before a 3-shock contextual fear conditioning paradigm. Five days later, mice were re-exposed to the aversive context and euthanized 1 hour later to quantify active cells. Brains were processed for c-fos immunoreactivity, and neural networks were built with a novel, wide-scale imaging pipeline. RESULTS We found that (R,S)-ketamine and (2S,6S)-HNK attenuated learned fear. Fear-related neural activity was altered in dorsal CA3 following (2S,6S)-HNK; ventral CA3 and CA1, infralimbic and prelimbic regions, insular cortex, retrosplenial cortex, piriform cortex, nucleus reuniens, and periaqueductal gray following both (R,S)-ketamine and (2S,6S)-HNK; and in the paraventricular nucleus of the thalamus (PVT) following (R,S)-ketamine. Dorsal CA3 and ventral hippocampus activation correlated with freezing in the (R,S)-ketamine group, and retrosplenial cortex activation correlated with freezing in both (R,S)-ketamine and (2S,6S)-HNK groups. (R,S)-ketamine increased connectivity between cortical and subcortical regions while (2S,6S)-HNK increased connectivity within these regions. CONCLUSIONS This work identifies novel nodes in fear networks that involve the nucleus reuniens, piriform cortex, insular cortex, periaqueductal gray, and retrosplenial cortex that can be targeted with neuromodulatory strategies or pharmaceutical compounds to treat fear-induced disorders. This approach could be used to optimize target engagement and dosing strategies of existing medications.
Collapse
Affiliation(s)
- Alessia Mastrodonato
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; MIND Area, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York.
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York
| | - Noelle Kee
- Department of Neuroscience and Behavior, Barnard College, New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York
| | - Juliana Tapia
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Liliette Quintana
- Department of Neuroscience and Behavior, Barnard College, New York, New York
| | - Andrea Muñoz Zamora
- Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Shi-Xian Deng
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Xiaoming Xu
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Donald W Landry
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
2
|
Nogo D, Nazal H, Song Y, Teopiz KM, Ho R, McIntyre RS, Lui LMW, Rosenblat JD. A review of potential neuropathological changes associated with ketamine. Expert Opin Drug Saf 2022; 21:813-831. [PMID: 35502632 DOI: 10.1080/14740338.2022.2071867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ketamine is an established intervention for treatment resistant depression (TRD). However, long-term adverse effects with repeated doses remain insufficiently characterized. Although several animal models have shown N-methyl-D-aspartate glutamate receptor antagonists to produce various neuropathological reactions, attention surrounding the risk of brain lesions has been minimal. AREAS COVERED : The current review focuses on potential neuropathological changes associated with ketamine. Search terms included variations of ketamine, Olney lesions, tau hyperphosphorylation, and parvalbumin interneurons. EXPERT OPINION : Daily high-dose ketamine use in substance use disorder (SUD) populations was associated with clear neurotoxic effects, while no studies specifically evaluated effects of ketamine protocols used for TRD. It is difficult to discern effects directly attributable to ketamine due to methodological factors, such as comorbidities and dramatic differences in dose in SUD populations versus infrequent sub-anesthetic doses typically prescribed for TRD. Taken together, animal models and human ketamine SUD populations suggest potential neuropathology with chronic high-dose ketamine exposure exceeding those recommended for adults with TRD. It is unknown whether repeat sub-anesthetic dosing of ketamine in adults with TRD is associated with Olney lesions or other neuropathologies. In the interim, practitioners should be vigilant for this possibility recognizing that the condition itself is associated with neurodegenerative processes.
Collapse
Affiliation(s)
- Danica Nogo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Hana Nazal
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,McMaster University, Hamilton, Canada
| | - Yuetong Song
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
3
|
Ying L, Chen Y, Zhong Z, Wu Y, Hu L, Wen C. Effects of long-term alcohol exposure on the pharmacokinetic profiles of ketamine and norketamine in rats. Alcohol 2021; 96:55-61. [PMID: 33549609 DOI: 10.1016/j.alcohol.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcohol abuse has become a serious health issue worldwide. Ketamine can reduce addiction risk among patients with alcohol use disorders. This study aimed to determine the effects of alcohol on the pharmacokinetics of ketamine during long-term alcohol exposure. METHOD An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of ketamine and norketamine was developed and validated. A total of 15 rats were given 40% alcohol for 3 weeks. The pharmacokinetics of ketamine were measured at time zero, 1 week, 2 weeks, and 3 weeks after alcohol exposure. The metabolic capability of liver CYP450 was evaluated using three probe drugs: metoprolol, phenacetin, and tolbutamide. RESULTS During drinking of 40% alcohol, the AUC(0-t), AUC(0-∞), and Cmax of ketamine and norketamine significantly increased, while V and CL significantly decreased with time (p < 0.001). The pharmacokinetic changes of norketamine were highly consistent with ketamine. Additionally, the concentration ratio of norketamine/ketamine in sample time also decreased over time. However, there were no pharmacokinetic changes of three probe drugs, which indicated there was no significant change of liver CYPs activities. CONCLUSION Alcohol significantly increases plasma concentration of ketamine and norketamine. The effect of alcohol on pharmacokinetics of ketamine should be considered in clinical therapy.
Collapse
|
4
|
Li M, Xie K, Kuang H, Liu J, Wang D, Fox GE, Shi Z, Chen L, Zhao F, Mao Y, Tsien JZ. Neural Coding of Cell Assemblies via Spike-Timing Self-Information. Cereb Cortex 2018; 28:2563-2576. [PMID: 29688285 PMCID: PMC5998964 DOI: 10.1093/cercor/bhy081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cracking brain's neural code is of general interest. In contrast to the traditional view that enormous spike variability in resting states and stimulus-triggered responses reflects noise, here, we examine the "Neural Self-Information Theory" that the interspike-interval (ISI), or the silence-duration between 2 adjoining spikes, carries self-information that is inversely proportional to its variability-probability. Specifically, higher-probability ISIs convey minimal information because they reflect the ground state, whereas lower-probability ISIs carry more information, in the form of "positive" or "negative surprisals," signifying the excitatory or inhibitory shifts from the ground state, respectively. These surprisals serve as the quanta of information to construct temporally coordinated cell-assembly ternary codes representing real-time cognitions. Accordingly, we devised a general decoding method and unbiasedly uncovered 15 cell assemblies underlying different sleep cycles, fear-memory experiences, spatial navigation, and 5-choice serial-reaction time (5CSRT) visual-discrimination behaviors. We further revealed that robust cell-assembly codes were generated by ISI surprisals constituted of ~20% of the skewed ISI gamma-distribution tails, conforming to the "Pareto Principle" that specifies, for many events-including communication-roughly 80% of the output or consequences come from 20% of the input or causes. These results demonstrate that real-time neural coding arises from the temporal assembly of neural-clique members via silence variability-based self-information codes.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kun Xie
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Province Academy of Science and Technology, Xi-Shuang-Ban-Na Prefecture, Yunnan, China
| | - Hui Kuang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Deheng Wang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Province Academy of Science and Technology, Xi-Shuang-Ban-Na Prefecture, Yunnan, China
| | - Grace E Fox
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zhifeng Shi
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Zhao
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Province Academy of Science and Technology, Xi-Shuang-Ban-Na Prefecture, Yunnan, China
| | - Ying Mao
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Province Academy of Science and Technology, Xi-Shuang-Ban-Na Prefecture, Yunnan, China
| |
Collapse
|
5
|
Li X, Yamawaki N, Barrett JM, Körding KP, Shepherd GMG. Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse. Front Syst Neurosci 2018; 12:16. [PMID: 29867381 PMCID: PMC5962832 DOI: 10.3389/fnsys.2018.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - John M. Barrett
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Konrad P. Körding
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|