1
|
Xu J, Zhao H, Zhang Y, Yang W, Wang X, Geng C, Li Y, Guo Y, Han B, Bai Z, Vedal S, Marshall JD. Reducing Indoor Particulate Air Pollution Improves Student Test Scores: A Randomized Double-Blind Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8207-8214. [PMID: 38647545 DOI: 10.1021/acs.est.3c10372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Short-term exposure to air pollution is associated with a decline in cognitive function. Standardized test scores have been employed to evaluate the effects of air pollution exposure on cognitive performance. Few studies aimed to prove whether air pollution is responsible for reduced test scores; none have implemented a "gold-standard" method for assessing the association such as a randomized, double-blind intervention. This study used a "gold-standard" method─randomized, double-blind crossover─to assess whether reducing short-term indoor particle concentrations results in improved test scores in college students in Tianjin, China. Participants (n = 162) were randomly assigned to one of two similar classrooms and completed a standardized English test on two consecutive weekends. Air purifiers with active or sham (i.e., filter removed) particle filtration were placed in each classroom. The filtration mode was switched between the two test days. Linear mixed-effect models were used to evaluate the effect of the intervention mode on the test scores. The results show that air purification (i.e., reducing PM) was significantly associated with increases in the z score for combined (0.11 [95%CI: 0.02, 0.21]) and reading (0.11 [95%CI: 0.00, 0.22]) components. In conclusion, a short-term reduction in indoor particle concentration led to improved test scores in students, suggesting an improvement in cognitive function.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Zhao
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Li
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Yun Guo
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington 98105, United States
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington 98105, United States
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Ren J, Zhang Z, Cui Q, Tian H, Guo Z, Zhang Y, Chen F, Deng Y, Ma Y. The effect of indoor air filtration on biomarkers of inflammation and oxidative stress: a review and meta-analysis of randomized controlled trials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33212-33222. [PMID: 38687452 DOI: 10.1007/s11356-024-33414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Fengge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yandong Deng
- Department of Ultrasonic, the First Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
4
|
Zhang Y, Liu Y, Li S, Xu R, Yu P, Ramos C, Ebrahimifakhar A, Guo Y. Efficiency of portable air purification on public buses: A pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121696. [PMID: 37088254 DOI: 10.1016/j.envpol.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
High concentrations of fine particulate matter (PM2.5) have been frequently reported in public transit systems and can cause adverse health effect. The portable air purifier is an inexpensive solution that could potentially clean in-cabin PM2.5. This study aims to find the PM2.5 removal efficiency of portable air purifiers in a public transit bus. In various scenarios, after artificially preloading the in-cabin PM2.5 concentration to 400 μg/m3, the concentrations were measured every 10 s, with and without the intervention of air purifiers. In a test bus with a volume of approximately 62.5 m3, three portable air purifiers were capable of reducing the average concentration of PM2.5 by 42-74%, from 400 μg/m3, to levels below 15 μg/m3, the acceptable short-term exposure concentration recommended by WHO. When high concentrations of outdoor PM2.5 entered the bus, purifiers maintained a relatively low level of in-cabin PM2.5. Air purifiers were more effective in reducing in-cabin PM2.5 than traditional air filtration and ventilation methods (air conditioning system filtration and door opening) in public transit buses. The deployed air purifiers reduced the concentration of particulate matter inside the bus, which may reduce the health risk of PM2.5 exposure and the spreading of airborne infections in public transit, thus, implying the potential to enhance passengers' and drivers' health.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yanming Liu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia.
| |
Collapse
|
5
|
Auto repair workers exposed to PM2.5 particulate matter in Barranquilla, Colombia: telomere length and hematological parameters. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503597. [PMID: 37003649 DOI: 10.1016/j.mrgentox.2023.503597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Exposure to 2.5 µm particulate matter (PM2.5) in automotive repair shops is associated with risks to health. We evaluated the effects of occupational exposure to PM2.5 among auto repair-shop workers. Blood and urine samples were collected from 110 volunteers from Barranquilla, Colombia: 55 active workers and 55 controls. PM2.5 concentrations were assessed at each of the sampling sites and chemical content was analyzed by SEM-EDS electron microscopy. The biological samples obtained were peripheral blood (hematological profiling, DNA extraction) and urine (malondialdehyde concentration). Telomere length was assessed by qPCR and polymorphisms in the glutathione transferase genes GSTT1 and GSTM1 by PCR-RFLP, with confirmation by allelic exclusion. White blood cell (WBC), lymphocyte (LYM%) and platelet (PLT) counts and the malondialdehyde concentration were higher (4.10 ± 0.93) in the exposed group compared to the control group (1.56 ± 0.96). TL was shorter (5071 ± 891) in the exposed individuals compared to the control group (6271 ± 805). White blood cell (WBC) and platelet counts were positively associated with exposure. Age and TBARS were correlated with TL in exposed individuals. The GSTT1 gene alleles were not in Hardy-Weinberg (H-W) equilibrium. The GSTM1 gene alleles were in H-W equilibrium and allelic exclusion analysis confirmed the presence of heterozygous GSTM1 genotypes. SEM-EDS analysis showed the presence of potentially toxic elements, including Mg, Al, Fe, Mn, Rh, Zn, and Cu. Auto repair shop workers showed effects that may be associated with exposure to mixtures of pollutants present in PM2.5. The GSTM1 and GSTT1 genes had independent modulatory effects.
Collapse
|
6
|
Yin C, Li H, Cha Y, Zhang S, Du J, Li Z, Ye W. Characterizing in-cabin air quality and vehicular air filtering performance for passenger cars in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120884. [PMID: 36528200 DOI: 10.1016/j.envpol.2022.120884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The rapidly growing vehicle population has become a crucial contributor to severe air-pollution and public health issues. In urban areas, vehicles have become one of the important sources of air pollutants such as nitrogen oxides and fine particulate matter (PM2.5). In particular, the on-road concentrations of traffic-related air pollutants (TRAPs) are typically many times higher than normal ambient concentrations, potentially leading to high in-vehicle exposure levels to TRAPs. Limited studies have focused on the variability in in-vehicle concentrations of TRAPs and linked the pollution level to both out-cabin conditions and the in-cabin filtration performance during real-world travels. Therefore, this study measured on-roadway, in-cabin concentrations of PM2.5 and carbon dioxide (CO2) by using well-calibrated low-cost sensors during various conditions. Our results indicate that, although in-cabin PM2.5 concentrations are correlated to out-cabin PM2.5 concentration levels, the control efficiency would be affected by the ventilation mode and the adoption of vehicular filtration device. The PM2.5 reduction efficiencies could achieve 45% and 77% for in-use and new filters made by vehicle manufacturers respectively, with the average CO2 concentration remained at a safe level (<800 ppm) under the in-vehicle outside air ventilation. The application of a high-efficiency cabin air (HECA) filter can further enhance the PM2.5 filtration efficiency up to 85-96%, indicating the significance of advanced cabin air filtration technology for improving in-cabin air quality and reducing health risk of Chinese drivers.
Collapse
Affiliation(s)
- Chunyang Yin
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Hongyi Li
- UCL Institute for Environmental Design and Engineering, University College London, London, United Kingdom
| | - Yingying Cha
- CabinAir Sweden AB, Stockholm, Sweden; IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Shaojun Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China.
| | - Jiee Du
- CabinAir Tech (Shenzhen) Co., Ltd., Shenzhen, China
| | - Zhenhua Li
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Wu Ye
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| |
Collapse
|
7
|
Goldsborough E, Gopal M, McEvoy JW, Blumenthal RS, Jacobsen AP. Pollution and cardiovascular health: A contemporary review of morbidity and implications for planetary health. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 25:100231. [PMID: 38510496 PMCID: PMC10946040 DOI: 10.1016/j.ahjo.2022.100231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 03/22/2024]
Abstract
Pollution is a leading cause of premature morbidity and mortality and an important risk factor for cardiovascular disease. Convincing data predict increased rates of cardiovascular morbidity and mortality with current and projected pollution burden trends. Multiple classes of pollutants - including criteria air pollutants, secondhand smoke, toxic steel pollutants, and manufactured chemical pollutants - are associated with varied cardiovascular disease risk profiles. To reduce the future risk of cardiovascular disease from anthropogenic pollution, mitigation strategies, both at the individual level and population level, must be thoughtfully and intentionally employed. The literature supporting individual level interventions to protect against cardiovascular disease is growing but lacks large clinical trials. Population level interventions are crucial to larger societal change and rely upon policy and governmental support. While these mitigation strategies can play a major role in maintaining the health of individuals, planetary health - the impact on human health because of anthropogenic perturbation of natural ecosystems - must also be acknowledged. Future research is needed to further delineate the planetary health implications of current and projected pollutant burden as well as the mitigation strategies employed to attenuate future pollutant burden.
Collapse
Affiliation(s)
| | - Medha Gopal
- Saint George's University School of Medicine, University Centre Grenada, West Indies, Grenada
| | - John William McEvoy
- National Institute for Prevention and Cardiovascular Health, National University of Ireland Galway, Galway, Ireland
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan P. Jacobsen
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Xu J, Zhang N, Zhang G, Zhang Y, Wang Z, Lu P, Yang W, Geng C, Wang X, Zhang L, Han B, Bai Z. Short-term effects of the toxic component of traffic-related air pollution (TRAP) on lung function in healthy adults using a powered air purifying respirator (PAPR). ENVIRONMENTAL RESEARCH 2022; 214:113745. [PMID: 35779616 DOI: 10.1016/j.envres.2022.113745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Short-term exposure to traffic-related air pollution (TRAP) are associated with reduced lung function. However, TRAP is a mixture of various gaseous pollutants and particulate matter (PM), and therefore it is unknown that which components of TRAP are responsible for the respiratory toxicity. Using a powered air-purifying respirator (PAPR), we conducted a randomized, double-blind, crossover trial in which 40 adults were exposed to TRAP for 2 h at the sidewalk of a busy road. During the exposure, the participants wore the PAPR fitted with a PM filter, a PM and volatile organic compounds (VOCs) filter, or a sham filter (no filtration, Sham mode). The participants were blinded to the type of filter in their PAPR, and experienced three exposures, once for each intervention mode in random order. We measured two lung function measures (forced expiratory volume in 1 s [FEV1] and forced vital capacity [FVC]) and an airway inflammation marker (fraction of exhaled nitric oxide [FENO]) before and immediately after each exposure, and further measured them at different time periods after exposure. We applied linear mixed effect models to estimate the effects of the interventions on the changes of lung function from baseline values after controlling for other covariates. Compared to baseline, exposing to TRAP decreased FEV1 and FVC, and increased FEV1/FVC and FENO in all three intervention modes. The mixed models showed that with the sham mode as reference, lung function and airway inflammation post exposure were significantly improved by filtering both PM and VOCs, but marginally affected by filtering only PM. In conclusion, the VOCs component of TRAP is responsible for the reduction in lung function caused by short-term exposure to TRAP. However, the result needs to be interpreted cautiously before further verified by laboratory experiment using purely isolated component(s) of TRAP.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guotao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ping Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
9
|
Abstract
Wildfire smoke is a rapidly growing threat to global cardiovascular health. We review the literature linking wildfire smoke exposures to cardiovascular effects. We find substantial evidence that short-term exposures are associated with key cardiovascular outcomes, including mortality, hospitalization, and acute coronary syndrome. Wildfire smoke exposures will continue to increase over the majority of Earth's surface. For example, the United States alone has experienced a 5-fold increase in annual area burned since 1972, with 82 million individuals estimated to be exposed to wildfire smoke by midcentury. The associated rise in excess morbidity and mortality constitutes a growing global public health crisis. Fortunately, the effect of wildfire smoke on cardiovascular health is modifiable at the individual and population levels through specific interventions. Health systems therefore have an opportunity to help safeguard patients from smoke exposures. We provide a roadmap of evidence-based interventions to reduce risk and protect cardiovascular health. Key interventions include preparing health systems for smoke events; identifying and educating vulnerable patients; reducing outdoor activities; creating cleaner air environments; using air filtration devices and personal respirators; and aggressive management of chronic diseases and traditional risk factors. Further research is needed to test the efficacy of interventions on reducing cardiovascular outcomes.
Collapse
Affiliation(s)
| | - Sarah B Henderson
- British Columbia Centre for Disease Control, Vancouver, Canada (S.B.H.).,University of British Columbia, Vancouver, Canada (S.B.H., M.B.)
| | - Michael Brauer
- University of British Columbia, Vancouver, Canada (S.B.H., M.B.).,Institute for Health Metrics and Evaluation, University of Washington, Seattle (M.B.)
| | | |
Collapse
|
10
|
Suriaman I, Hendrarsakti J, Mardiyati Y, Pasek AD. Synthesis and Characterization of Air Filter Media Made from Cellulosic Ramie Fiber (Boehmeria nivea). CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Urinary Malondialdehyde (MDA) Concentrations in the General Population—A Systematic Literature Review and Meta-Analysis. TOXICS 2022; 10:toxics10040160. [PMID: 35448421 PMCID: PMC9024833 DOI: 10.3390/toxics10040160] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07–0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods.
Collapse
|
12
|
Lim S, Mudway I, Molden N, Holland J, Barratt B. Identifying trends in ultrafine particle infiltration and carbon dioxide ventilation in 92 vehicle models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152521. [PMID: 34953829 DOI: 10.1016/j.scitotenv.2021.152521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
There has been ongoing research aimed at reducing pollution concentrations in vehicles due to the high exposure which occurs in this setting. These studies have found using recirculate (RC) settings substantially reduces in-cabin traffic-related pollution concentrations but possibly leads to an adverse accumulation of carbon dioxide (CO2) from driver respiration. The aim of this study was to highlight how vehicle models and ventilation settings affect in-cabin concentrations to ultrafine particles (UFP) and CO2 in real-world conditions. We assessed the ability of different vehicles to balance reductions in UFP against the build-up of in-cabin CO2 concentrations by measuring these pollutants concurrently both inside and outside the vehicle to derive an in/out ratio. When ventilation settings were set to RC, UFP concentrations inside the vehicles (median: 3205 pt./cm3) were 86% lower compared to outside air (OA) (23,496 pt./cm3) across a 30-min real-world driving route. However, CO2 concentrations demonstrated a rapid linear increase under RC settings, at times exceeding 2500 ppm. These concentrations have previously been associated with decreased cognitive performance. Our study did not find an effect of gasoline fuelled vehicles affecting in-cabin UFP levels compared to hybrid or electric vehicles, suggesting that self-pollution was not an issue. We also found that certain vehicle models were better at reducing both in-cabin UFP and CO2 concentrations. The results suggest that under RC settings in/out CO2 ratios are largely determined by the leakiness of the vehicle cabin, whereas in/out UFP ratios are primarily determined by the efficacy of the in-built air filter in the vehicles ventilation system.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK.
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Nick Molden
- Emissions Analytics, High Wycombe HP14 3PD, UK
| | | | - Benjamin Barratt
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| |
Collapse
|
13
|
Han B, Zhao R, Zhang N, Xu J, Zhang L, Yang W, Geng C, Wang X, Bai Z, Vedal S. Acute cardiovascular effects of traffic-related air pollution (TRAP) exposure in healthy adults: A randomized, blinded, crossover intervention study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117583. [PMID: 34243086 DOI: 10.1016/j.envpol.2021.117583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Exposure to traffic-related air pollution (TRAP) may enhance the risk of cardiovascular disease. However, the short-term effects of TRAP components on the cardiovascular system are not well understood. We conducted a randomized, double-blinded, crossover intervention study in which 39 healthy university students spent 2 h next to a busy road. Participants wore a powered air-purifying respirator (PAPR) or an N95 mask. PAPRs were equipped with a filter for particulate matter (PM), a PM and volatile organic compounds (VOCs) filter or a sham filter. Participants were blinded to PAPR filter type and underwent randomized exposures four times, once for each intervention mode. Blood pressure (BP), heart rate (HR) and heart rate variability (HRV) were measured before, during and for 6 h after the roadside exposure. Linear mixed-effect models were used to evaluate the effects of the interventions relative to baseline controlling for other covariates. All HRV measures increased during and following exposure for all intervention modes. Some HRV measures (SDNN and rMSSD during exposure and SDNN after exposure) were marginally affected by PM filtration. Wearing the N95 mask affected VLF power and rMSSD responses to traffic exposure differently than the PAPR interventions. Both systolic and diastolic BP increased slightly during exposure, but then were generally lower than baseline after exposure for the sham and filter interventions. HR, which fell during exposure and mostly remained lower than baseline after exposure, was lower yet with all filter interventions compared to the sham mode following exposure. Therefore, short-term exposure to traffic acutely affects HRV, BP and HR, but N95 mask and PAPR interventions generally show little efficacy in reducing these effects. Removing the PM component of TRAP has some limited effects on HRV responses to exposure but exaggerates the traffic-related decrease in HR. HRV findings from N95 mask interventions need to be interpreted cautiously.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98105, USA
| | - Ruojie Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98105, USA
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98105, USA.
| | - Sverre Vedal
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
14
|
Zhu Y, Song X, Wu R, Fang J, Liu L, Wang T, Liu S, Xu H, Huang W. A review on reducing indoor particulate matter concentrations from personal-level air filtration intervention under real-world exposure situations. INDOOR AIR 2021; 31:1707-1721. [PMID: 34374125 DOI: 10.1111/ina.12922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5 ) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%-82% in indoor PM2.5 concentrations were observed with SMD of -1.19 (95% CI: -1.50, -0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
15
|
Clean Air, Smart Cities, Healthy Hearts: Action on Air Pollution for Cardiovascular Health. Glob Heart 2021; 16:61. [PMID: 34692385 PMCID: PMC8428302 DOI: 10.5334/gh.1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022] Open
Abstract
More than twenty percent of all cardiovascular disease (CVD) deaths are caused by air pollution — more than three million deaths every year — and these numbers will continue to rise unless the global community takes action. Nine out of ten people worldwide breathe polluted air, which disproportionately affects those living in low-resource settings. The World Heart Federation (WHF) is committed to reducing the impact of air pollution on people’s health and has made this a priority area of its global advocacy efforts. In pursuit of this goal, WHF has formed an Air Pollution Expert Group to inform action on air pollution for CVD health and recommend changes to public health policy. This policy paper lays out the health impacts of air pollution, examines its position on the global policy agenda, demonstrates its relevance to the cardiovascular community, and proposes actionable policy measures to mitigate this deadly risk factor to health. The paper considers the important roles to be played by the Members of WHF, including scientific societies and the physicians that constitute them, heart health foundations, and patient advocacy groups. The paper concludes with a detailed table of recommendations for the various sub-target groups at the global, national, local, and patient level.
Collapse
|
16
|
Particulate Matter Exposures under Five Different Transportation Modes during Spring Festival Travel Rush in China. Processes (Basel) 2021. [DOI: 10.3390/pr9071133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serious traffic-related pollution and high population density during the spring festival (Chinese new year) travel rush (SFTR) increases the travelers’ exposure risk to pollutants and biohazards. This study investigates personal exposure to particulate matter (PM) mass concentration when commuting in five transportation modes during and after the 2020 SFTR: China railway high-speed train (CRH train), subway, bus, car, and walking. The routes are selected between Nanjing and Xuzhou, two major transportation hubs in the Yangtze Delta. The results indicate that personal exposure levels to PM on the CRH train are the lowest and relatively stable, and so it is recommended to take the CRH train back home during the SFTR to reduce the personal PM exposure. The exposure level to PM2.5 during SFTR is twice as high as the average level of Asia, and it is higher than the WHO air quality guideline (AQG).
Collapse
|
17
|
Martins V, Correia C, Cunha-Lopes I, Faria T, Diapouli E, Manousakas MI, Eleftheriadis K, Almeida SM. Chemical characterisation of particulate matter in urban transport modes. J Environ Sci (China) 2021; 100:51-61. [PMID: 33279053 DOI: 10.1016/j.jes.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/12/2023]
Abstract
Traffic is a main source of air pollutants in urban areas and consequently daily peak exposures tend to occur during commuting. Personal exposure to particulate matter (PM) was monitored while cycling and travelling by bus, car and metro along an assigned route in Lisbon (Portugal), focusing on PM2.5 and PM10 (PM with aerodynamic diameter <2.5 and 10 µm, respectively) mass concentrations and their chemical composition. In vehicles, the indoor-outdoor interplay was also evaluated. The PM2.5 mean concentrations were 28 ± 5, 31 ± 9, 34 ± 9 and 38 ± 21 µg/m3 for bus, bicycle, car and metro modes, respectively. Black carbon concentrations when travelling by car were 1.4 to 2.0 times higher than in the other transport modes due to the closer proximity to exhaust emissions. There are marked differences in PM chemical composition depending on transport mode. In particular, Fe was the most abundant component of metro PM, derived from abrasion of rail-wheel-brake interfaces. Enhanced concentrations of Zn and Cu in cars and buses were related with brake and tyre wear particles, which can penetrate into the vehicles. In the motorised transport modes, Fe, Zn, Cu, Ni and K were correlated, evidencing their common traffic-related source. On average, the highest inhaled dose of PM2.5 was observed while cycling (55 µg), and the lowest in car travels (17 µg). Cyclists inhaled higher doses of PM2.5 due to both higher inhalation rates and longer journey times, with a clear enrichment in mineral elements. The presented results evidence the importance of considering the transport mode in exposure assessment studies.
Collapse
Affiliation(s)
- Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal.
| | - Carolina Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Inês Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Evangelia Diapouli
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Manousos Ioannis Manousakas
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Konstantinos Eleftheriadis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
18
|
Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020; 142:e411-e431. [PMID: 33150789 DOI: 10.1161/cir.0000000000000931] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM2.5, or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM2.5. Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM2.5. The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM2.5, guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM2.5, but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.
Collapse
|
19
|
Allen RW, Barn P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep 2020; 7:424-440. [PMID: 33241434 PMCID: PMC7749091 DOI: 10.1007/s40572-020-00296-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We reviewed recent peer-reviewed literature on three categories of individual- and household-level interventions against air pollution: air purifiers, facemasks, and behavior change. RECENT FINDINGS High-efficiency particulate air/arresting (HEPA) filter air purifier use over days to weeks can substantially reduce fine particulate matter (PM2.5) concentrations indoors and improve subclinical cardiopulmonary health. Modeling studies suggest that the population-level benefits of HEPA filter air purification would often exceed costs. Well-fitting N95 and equivalent respirators can reduce PM2.5 exposure, with several randomized crossover studies also reporting improvements in subclinical cardiovascular health. The health benefits of other types of face coverings have not been tested and their effectiveness in reducing exposure is highly variable, depends largely on fit, and is unrelated to cost. Behavior modifications may reduce exposure, but there has been little research on health impacts. There is now substantial evidence that HEPA filter air purifiers reduce indoor PM2.5 concentrations and improve subclinical health indicators. As a result, their use is being recommended by a growing number of government and public health organizations. Several studies have also reported subclinical cardiovascular health benefits from well-fitting respirators, while evidence of health benefits from other types of facemasks and behavior changes remains very limited. In situations when emissions cannot be controlled at the source, such as during forest fires, individual- or household-level interventions may be the primary option. In most cases, however, such interventions should be supplemental to emission reduction efforts that benefit entire communities.
Collapse
Affiliation(s)
- Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Prabjit Barn
- Legacy for Airway Health, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
20
|
Hachem M, Bensefa-Colas L, Lahoud N, Akel M, Momas I, Saleh N. Cross-sectional study of in-vehicle exposure to ultrafine particles and black carbon inside Lebanese taxicabs. INDOOR AIR 2020; 30:1308-1316. [PMID: 32496613 DOI: 10.1111/ina.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Taxi drivers' exposure to traffic-related air pollutants inside their vehicles has been reported in different countries but not yet in Lebanon. Thus, we conducted a cross-sectional study on 20 Lebanese taxi drivers to (1) assess their exposure to ultrafine particles (UFP) and black carbon (BC) inside their vehicles and (2) identify determinants of this exposure. UFP and BC were measured using Diffusion Size Classifier Miniature® and microAeth® Model AE51, respectively, for 5 hours. Data on characteristics of vehicles and trips were collected by face-to-face interviews. Associations between pollutant levels and their determinants were analyzed by multiple linear regression. The mean of UFP count (35.2 ± 17.6 x 103 particles cm-3 ) and BC (5.2 ± 1.9 μg m-3 ) concentrations in-taxis was higher in the morning measurements compared with those in the afternoon measurements. UFP count increased in-taxis by 60% for every 10 minutes spent in blocked traffic and by 84% starting from two trips with smokers compared to trips without smokers. Conversely, UFP count decreased by 30% for every 10 minutes under both air-conditioning and air recirculation mode with windows closed. BC was not affected by any of these factors. Our findings suggest easy ways to reduce UFP exposure inside vehicles for all commuters.
Collapse
Affiliation(s)
- Melissa Hachem
- CRESS - INSERM UMR_1153, INRAE, HERA team, Paris University, Paris, France
- Faculty of Public Health, Pharmacoepidemiology Surveillance Unit, CERIPH, Lebanese University, Fanar, Lebanon
| | - Lynda Bensefa-Colas
- CRESS - INSERM UMR_1153, INRAE, HERA team, Paris University, Paris, France
- Department of Occupational and Environmental Diseases, Hotel-Dieu Hospital, APHP, Centre - Paris University, Paris, France
| | - Nathalie Lahoud
- Faculty of Public Health, Pharmacoepidemiology Surveillance Unit, CERIPH, Lebanese University, Fanar, Lebanon
- Faculty of Public Health II, INSPECT-LB, Lebanese University, Fanar, Lebanon
| | - Marwan Akel
- Faculty of Public Health II, INSPECT-LB, Lebanese University, Fanar, Lebanon
- Pharmacy Practice Department, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Isabelle Momas
- CRESS - INSERM UMR_1153, INRAE, HERA team, Paris University, Paris, France
| | - Nadine Saleh
- Faculty of Public Health, Pharmacoepidemiology Surveillance Unit, CERIPH, Lebanese University, Fanar, Lebanon
- Faculty of Public Health II, INSPECT-LB, Lebanese University, Fanar, Lebanon
| |
Collapse
|
21
|
Pratiwi DA, Haryanto B. Effect of particulate matter 2.5 exposure to urinary malondialdehyde levels of public transport drivers in Jakarta. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:295-300. [PMID: 32639945 DOI: 10.1515/reveh-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Background People who work long hours on the road are intensively exposed to high levels of fine particulate matters (PM2.5) which may lead to oxidative stress mechanisms in the human body that cause deleterious health problems. Malondialdehyde (MDA) is the major metabolite produced during lipid peroxidation metabolism that serves as a reliable biomarker for oxidative stress in cells. Objectives To identify the association between PM2.5 exposure and other characteristics with urinary MDA levels among public transport drivers in Jakarta. Methods A cross-sectional design was implemented by involving 130 public transport drivers of nine trajectories from Kampung Melayu Terminal, Jakarta. The continuous PM2.5 data were collected in personal measurement during one round trip of driving. Weight and height measurements were obtained to calculate body mass index (BMI) and structured questionnaires were completed to identify other characteristics. MDA levels were examined from the driver's urine right after driving and evaluated using TBARS analysis. Results The average of PM2.5 exposure was 91.56 ± 20.05 μg/m3 and MDA levels were 2.23 ± 1.57 nmoL/mL. Drivers with overweight and obese BMI had significantly higher MDA levels (2.66 ± 1.65 nmoL/mL) compared to those with normal and underweight BMI status (1.97 ± 1.47 nmoL/mL). Multiple linear regression analysis demonstrated low PM2.5 exposure, normal and underweight BMI status, and a long period of working as drivers were associated with MDA levels (p<0.05). Contrary to the prior study, PM2.5 exposure was negatively associated with MDA levels due to most drivers' BMI status being normal and underweight. Conclusion Our study suggests that the drivers who were obese and overweight should lose weight to lower the risk of increased MDA levels. We also suggest the drivers to consider maintaining their vehicle's ventilation system or using personal protection equipment (PPE) to avoid high PM2.5 exposure while driving.
Collapse
Affiliation(s)
- Damai Arum Pratiwi
- Environmental Health, Universitas Indonesia, Depok, Jawa Barat, Indonesia
| | - Budi Haryanto
- Environmental Health, Universitas Indonesia, Depok, Jawa Barat, Indonesia
- Research Center for Climate Change, Universitas Indonesia, Gedung PAU lt.8.5 Rektorat UI, Kampus UI, 16424, Depok, Jawa Barat, Indonesia
| |
Collapse
|
22
|
Xiao Y, Yang L, Nie X, Li C, Xiong F, Wang L, Zhou G. Examining differences in phylogenetic composition enhances understanding of the phylogenetic structure of the shrub community in the northeastern Qinghai-Tibetan Plateau. Ecol Evol 2020; 10:6723-6731. [PMID: 32724545 PMCID: PMC7381756 DOI: 10.1002/ece3.6402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai-Tibet Plateau (QTP). To improve our understanding of the bio-geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade-level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.
Collapse
Affiliation(s)
- Yuanming Xiao
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lucun Yang
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Key Laboratory of Tibetan Medicine ResearchChinese Academy of SciencesXiningChina
- Qinghai Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| | - Xiuqing Nie
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Changbin Li
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Feng Xiong
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lingling Wang
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guoying Zhou
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Key Laboratory of Tibetan Medicine ResearchChinese Academy of SciencesXiningChina
- Qinghai Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| |
Collapse
|
23
|
Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. J Appl Toxicol 2020; 40:722-736. [PMID: 31960485 DOI: 10.1002/jat.3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Abstract
There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Bard RL, Ijaz MK, Zhang JJ, Li Y, Bai C, Yang Y, Garcia WD, Creek J, Brook RD. Interventions to Reduce Personal Exposures to Air Pollution: A Primer for Health Care Providers. Glob Heart 2020; 14:47-60. [PMID: 31036302 DOI: 10.1016/j.gheart.2019.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Robert L Bard
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Khalid Ijaz
- Research and Development, RB, Montvale, NJ, USA; Department of Biology, Medgar Evers College of the City University of New York, Brooklyn, NY, USA.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | - John Creek
- Research and Development, RB, Montvale, NJ, USA
| | - Robert D Brook
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Frey HC. Trends in onroad transportation energy and emissions. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:514-563. [PMID: 29589998 DOI: 10.1080/10962247.2018.1454357] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Globally, 1.3 billion on-road vehicles consume 79 quadrillion BTU of energy, mostly gasoline and diesel fuels, emit 5.7 gigatonnes of CO2, and emit other pollutants to which approximately 200,000 annual premature deaths are attributed. Improved vehicle energy efficiency and emission controls have helped offset growth in vehicle activity. New technologies are diffusing into the vehicle fleet in response to fuel efficiency and emission standards. Empirical assessment of vehicle emissions is challenging because of myriad fuels and technologies, intervehicle variability, multiple emission processes, variability in operating conditions, and varying capabilities of measurement methods. Fuel economy and emissions regulations have been effective in reducing total emissions of key pollutants. Real-world fuel use and emissions are consistent with official values in the United States but not in Europe or countries that adopt European standards. Portable emission measurements systems, which uncovered a recent emissions cheating scandal, have a key role in regulatory programs to ensure conformity between "real driving emissions" and emission standards. The global vehicle fleet will experience tremendous growth, especially in Asia. Although existing data and modeling tools are useful, they are often based on convenience samples, small sample sizes, large variability, and unquantified uncertainty. Vehicles emit precursors to several important secondary pollutants, including ozone and secondary organic aerosols, which requires a multipollutant emissions and air quality management strategy. Gasoline and diesel are likely to persist as key energy sources to mid-century. Adoption of electric vehicles is not a panacea with regard to greenhouse gas emissions unless coupled with policies to change the power generation mix. Depending on how they are actually implemented and used, autonomous vehicles could lead to very large reductions or increases in energy consumption. Numerous other trends are addressed with regard to technology, emissions controls, vehicle operations, emission measurements, impacts on exposure, and impacts on public health. IMPLICATIONS Without specific policies to the contrary, fossil fuels are likely to continue to be the major source of on-road vehicle energy consumption. Fuel economy and emission standards are generally effective in achieving reductions per unit of vehicle activity. However, the number of vehicles and miles traveled will increase. Total energy use and emissions depend on factors such as fuels, technologies, land use, demographics, economics, road design, vehicle operation, societal values, and others that affect demand for transportation, mode choice, energy use, and emissions. Thus, there are many opportunities to influence future trends in vehicle energy use and emissions.
Collapse
Affiliation(s)
- H Christopher Frey
- a Department of Civil, Construction, and Environmental Engineering , North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|