1
|
Wang C, Yang Y, Zhang X, Shi Z, Gao H, Zhong M, Fan Y, Zhang H, Liu B, Qing G. Secreted endogenous macrosomes reduce Aβ burden and ameliorate Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eade0293. [PMID: 37235655 DOI: 10.1126/sciadv.ade0293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Innovative therapeutic strategies are urgently needed for Alzheimer's disease (AD) due to the increasing size of the aging population and the lack of effective drug treatment. Here, we report the therapeutic effects of extracellular vesicles (EVs) secreted by microglia, including macrosomes and small EVs, on AD-associated pathology. Macrosomes strongly inhibited β-amyloid (Aβ) aggregation and rescued cells from Aβ misfolding-induced cytotoxicity. Furthermore, macrosome administration reduced Aβ plaques and ameliorated cognitive impairment in mice with AD. In contrast, small EVs slightly promoted Aβ aggregation and did not improve AD pathology. Proteomic analysis of small EVs and macrosomes revealed that macrosomes harbor several important neuroprotective proteins that inhibit Aβ misfolding. In particular, the small integral membrane protein 10-like protein 2B in macrosomes has been shown to inhibit Aβ aggregation. Our observations provide an alternative therapeutic strategy for the treatment of AD over conventional ineffective drug treatments.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yiming Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yonggang Fan
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, 110122, P. R. China
| | - Hongyan Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Sunderland K, Jia W, He W, Jiang J, Zhao F. Impact of spatial and temporal stability of flow vortices on vascular endothelial cells. Biomech Model Mechanobiol 2023; 22:71-83. [PMID: 36271263 PMCID: PMC9975038 DOI: 10.1007/s10237-022-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Intracranial aneurysms (IAs) are pathological dilations of cerebrovascular vessels due to degeneration of the mechanical strength of the arterial wall, precluded by altered cellular functionality. The presence of swirling hemodynamic flow (vortices) is known to alter vascular endothelial cell (EC) morphology and protein expression indicative of IAs. Unfortunately, less is known if vortices with varied spatial and temporal stability lead to differing levels of EC change. The aim of this work is to investigate vortices of varying spatial and temporal stability impact on ECs. METHODS Vortex and EC interplay was investigated by a novel combination of parallel plate flow chamber (PPFC) design and computational analysis. ECs were exposed to laminar (7.5 dynes/[Formula: see text] wall shear stress) or low (<1 dynes/[Formula: see text]) stress vortical flow using PPFCs. Immunofluorescent imaging analyzed EC morphology, while ELISA tests quantified VE-cadherin (cell-cell adhesion), VCAM-1 (macrophage-EC adhesion), and cleaved caspase-3 (apoptotic signal) expression. PPFC flow was simulated, and vortex stability was calculated via the temporally averaged degree of (volume) overlap (TA-DVO) of vortices within a given area. RESULTS EC morphological changes were independent of vortex stability. Increased stability promoted VE-cadherin degradation (correlation coefficient r = [Formula: see text]0.84) and 5-fold increased cleaved caspase-3 post 24 h in stable (TA-DVO 0.736 ± 0.05) vs unstable (TA-DVO 0.606 [Formula: see text]0.2) vortices. ECs in stable vortices displayed a 4.5-fold VCAM-1 increase than unstable counterparts after 12 h. CONCLUSION This work demonstrates highly stable disturbed flow imparts increased inflammatory signaling, degraded cell-cell adhesion, and increased cellular apoptosis than unstable vortices. Such knowledge offers novel insight toward understanding IA development and rupture.
Collapse
Affiliation(s)
- Kevin Sunderland
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Wenkai Jia
- Biomedical Engineering, Texas A &M University, 400 Bizzell St, College Station, TX, 77843, USA
| | - Weilue He
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Jingfeng Jiang
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| | - Feng Zhao
- Biomedical Engineering, Texas A &M University, 400 Bizzell St, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Xie F, Shao S, Zhang B, Deng S, Ur Rehman Aziz A, Liao X, Liu B. Differential phosphorylation regulates the shear stress-induced polar activity of Rho-specific guanine nucleotide dissociation inhibitor α. J Cell Physiol 2020; 235:6978-6989. [PMID: 32003021 DOI: 10.1002/jcp.29594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
The activity of Rho-specific guanine nucleotide dissociation inhibitor α (RhoGDIα) is regulated by its own phosphorylation at different amino acid sites. These phosphorylation sites may have a crucial role in local Rho GTPases activation during cell migration. This paper is designed to explore the influence of phosphorylation on shear stress-induced spatial RhoGDIα activation. Based on the fluorescence resonance energy transfer biosensor sl-RhoGDIα, which was constructed to test the RhoGDIα activity in living cells, new RhoGDIα phosphomimetic mutation (sl-S101E/S174E, sl-Y156E, sl-S101E, sl-S174E) and phosphorylation-deficient mutation (sl-S101A/S174A, sl-Y156A, sl-S101A, sl-S174A) biosensors were designed to test their effects on RhoGDIα activation upon shear stress application in human umbilical vein endothelial cells (HUVECs). The results showed lower RhoGDIα activity at the downstream of HUVECs (the region from the edge of the nucleus to the edge of the cell along with the flow). The overall decrease in RhoGDIα activity was inhibited by Y156A-mutant, whereas the polarized RhoGDIα and Rac1 activity were blocked by S101A/S174A mutant. It is concluded that the Tyr156 phosphorylation mainly mediates shear stress-induced overall RhoGDIα activity, while Ser101/Ser174 phosphorylation mediates its polarization. This study demonstrates that differential phosphorylation of RhoGDIα regulates shear stress-induced spatial RhoGDIα activation, which could be a potential target to control cell migration.
Collapse
Affiliation(s)
- Fei Xie
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Shao
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Baohong Zhang
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Sha Deng
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Aziz Ur Rehman Aziz
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Liu
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Wang X, Gao S, Dai L, Wang Z, Wu H. Identification of key microRNAs in the carotid arteries of ApoE -/- mice exposed to disturbed flow. Hereditas 2019; 156:35. [PMID: 31719822 PMCID: PMC6833270 DOI: 10.1186/s41065-019-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Atherosclerosis (AS) is one of the main causes of cardiovascular disease. AS plaques often occur in blood vessels with oscillatory blood flow and their formation can be regulated by microRNAs (miRNAs). The aim of this study is to identify the key miRNAs and molecular pathways involved in this pathological process. Methods In this study, gene chip data obtained from the GEO database was analyzed using the LIMMA package to find differentially expressed miRNAs (DE miRNAs) in the carotid arteries of ApoE−/− mice exposed to different blood flow rates. Predicted targets of the DE miRNAs were identified using the TargetScan, miRDB, and DIANA databases respectively, and the potential target genes (PTGs) were found by analyzing the common results of three databases. The DAVID database was used to enrich the PTGs based on gene ontology (GO) and pathway (Kyoto Encyclopedia of Genes and Genomes, KEGG), and the STRING database was used to uncover any protein-protein interactions (PPI) of the PTGs. Results The networks of the DE miRNAs-PTGs, Pathway-PTGs-DE miRNAs, and PTGs PPI, were constructed using Cytoscape, and 11 up-regulated and 13 down-regulated DE miRNAs and 1479 PTGs were found. GO results showed that PTGs were significantly enriched in functions such as transcriptional regulation and DNA binding. KEGG results showed that PTGs were significantly enriched in inflammation-related mitogen-activated protein kinase (MAPK) and AS-related FOXO pathways. The PPI network revealed some key target genes in the PTGs. Conclusions The analysis of key miRNAs and molecular pathways that regulate the formation of AS plaques induced by oscillatory blood flow will provide new ideas for AS treatment.
Collapse
Affiliation(s)
- Xinzhou Wang
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China
| | - Shuibo Gao
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China
| | - Liping Dai
- 2School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Zhentao Wang
- 3Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002 China
| | - Hong Wu
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China.,3Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002 China
| |
Collapse
|
7
|
Zhang B, Xie F, Aziz AUR, Shao S, Li W, Deng S, Liao X, Liu B. Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress. Biomolecules 2019; 9:biom9020050. [PMID: 30704117 PMCID: PMC6406706 DOI: 10.3390/biom9020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Collapse
Affiliation(s)
- Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
8
|
Shao S, Liao X, Xie F, Deng S, Liu X, Ristaniemi T, Liu B. FRET biosensor allows spatio-temporal observation of shear stress-induced polar RhoGDIα activation. Commun Biol 2018; 1:224. [PMID: 30564745 PMCID: PMC6288100 DOI: 10.1038/s42003-018-0232-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022] Open
Abstract
Rho GDP-dissociation inhibitor α (RhoGDIα) is a known negative regulator of the Rho family that shuts off GDP/GTP cycling and cytoplasm/membrane translocation to regulate cell migration. However, to our knowledge, no reports are available that focus on how the RhoGDIα-Rho GTPases complex is activated by laminar flow through exploring the activation of RhoGDIα itself. Here, we constructed a new biosensor using fluorescence resonance energy transfer (FRET) technology to measure the spatio-temporal activation of RhoGDIα in its binding with Rho GTPases in living HeLa cells. Using this biosensor, we find that the dissociation of the RhoGDIα-Rho GTPases complex is increased by shear stress, and its dissociation rate varies with subcellular location. Moreover, this process is mediated by membrane fluidity, cytoskeleton and Src activity, which indicates that the regulation of RhoGDIα activation under shear stress application represents a relatively separate pathway from the shear stress-induced Rho pathway.
Collapse
Affiliation(s)
- Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Xue Liu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| |
Collapse
|
9
|
Li W, Yu X, Xie F, Zhang B, Shao S, Geng C, Aziz AUR, Liao X, Liu B. A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. iScience 2018; 7:180-190. [PMID: 30267679 PMCID: PMC6153118 DOI: 10.1016/j.isci.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023] Open
Abstract
Cell membrane is the first medium from where a cell senses and responds to external stress stimuli. Exploring the tension changes in cell membrane will help us to understand intracellular force transmission. Here, a biosensor (named MSS) based on fluorescence resonance energy transfer is developed to visualize cell membrane tension. Validity of the biosensor is first verified for the detection of cell membrane tension. Results show a shear stress-induced heterogeneous distribution of membrane tension with the biosensor, which is strengthened by the disruption of microfilaments or enhancement of membrane fluidity, but weakened by the reduction of membrane fluidity or disruption of microtubules. These findings suggest that the MSS biosensor is a beneficial tool to visualize the changes and distribution of cell membrane tension. Besides, cell membrane tension does not display obvious polar distribution, indicating that cellular polarity changes do not first occur on the cell membrane during mechanical transmission. A FRET-based biosensor (named MSS) is developed to study cell membrane tension MSS is a beneficial tool to visualize the distribution of membrane tension Membrane tension is inhomogeneous in response to shear stress Membrane tension does not display polar distribution during mechanotransduction
Collapse
Affiliation(s)
- Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xinlei Yu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Chunyang Geng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing 400030, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|