1
|
Dorn PL, Monroy MC, Stevens L. Sustainable, integrated control of native vectors: The case of Chagas disease in Central America. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.971000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite successes in reducing transmission, Chagas disease (American trypanosomiasis) remains the greatest economic burden of any parasitic disease in Latin America afflicting mostly the poor and further contributing to poverty. We review a long-term (2001-2022), integrated Ecohealth approach that addresses sustainable development goals to reduce risk of Chagas transmission by the main native vector in Central America, Triatoma dimidiata, s.l. The basis of the Ecohealth intervention was the identification of the risk factors for house infestation, an understanding of and collaboration with local communities, and genetic and proteomic studies that revealed the epidemiology and mechanisms of the rapid reinfestation seen following insecticide application. We review the development of this approach from a pilot project in two Guatemalan villages, to an expanded initiative across three countries with vastly different ecology, cultures, and municipal organization, and finally development of a multi-institutional, large-scale project to develop a strategy to tackle the remaining hot spots in Central America. This integrated Ecohealth approach resulted in reduced risk of transmission as measured by a sustained decrease in house infestation without further use of insecticides, a reduction in vectors with human blood meals and the Chagas parasite, as well as other health and economic benefits. We discuss lessons learned and how this approach could be applied to other vector-borne diseases.
Collapse
|
2
|
Identification of blood meal sources in species of genus Rhodnius in four different environments in the Brazilian amazon. Acta Trop 2022; 232:106486. [PMID: 35525313 DOI: 10.1016/j.actatropica.2022.106486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022]
Abstract
Chagas disease is a zoonotic disease caused by the hemoflagellate Trypanosoma cruzi and transmitted primarily by triatomine vectors. Triatomines are hematophagous insects that feed on a variety of vertebrate hosts. The Chagas disease transmission cycle is closely related to the interactions between vectors, parasites, and vertebrate hosts. Knowledge of triatomine food sources is critical to understanding Chagas disease transmission dynamics. The aim of this study was to identify blood meal sources used by triatomines from different environments in the Brazilian Amazon. A total of 25 captures were conducted in four environments. Triatomine specimens were captured on palm trees and were identified by morphological and morphometric characters. Blood meal sources identification was conducted using a traditional PCR followed by Sanger sequencing of mtDNA cytb gene. Sequencing was successful in 167 specimens and a total of 21 blood meal sources were identified: two reptilians, six birds, and 13 mammals. Among these 21 species, three (Tamandua tetradactyla, Didelphis marsupialis and Rattus rattus) are considered reservoir of T. cruzi. Knowledge of the relationship between triatomines and possible reservoirs can help to elucidate the enzootic cycle of T. cruzi in the Amazon region and guide control strategies for Chagas disease transmission in that region.
Collapse
|
3
|
Modernizing the Toolkit for Arthropod Bloodmeal Identification. INSECTS 2021; 12:insects12010037. [PMID: 33418885 PMCID: PMC7825046 DOI: 10.3390/insects12010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary The ability to identify the source of vertebrate blood in mosquitoes, ticks, and other blood-feeding arthropod vectors greatly enhances our knowledge of how vector-borne pathogens are spread. The source of the bloodmeal is identified by analyzing the remnants of blood remaining in the arthropod at the time of capture, though this is often fraught with challenges. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification with a focus on progress made in the field over the past decade. We highlight genome regions that can be used to identify the vertebrate source of arthropod bloodmeals as well as technological advances made in other fields that have introduced innovative new ways to identify vertebrate meal source based on unique properties of the DNA sequence, protein signatures, or residual molecules present in the blood. Additionally, engineering progress in miniaturization has led to a number of field-deployable technologies that bring the laboratory directly to the arthropods at the site of collection. Although many of these advancements have helped to address the technical challenges of the past, the challenge of successfully analyzing degraded DNA in bloodmeals remains to be solved. Abstract Understanding vertebrate–vector interactions is vitally important for understanding the transmission dynamics of arthropod-vectored pathogens and depends on the ability to accurately identify the vertebrate source of blood-engorged arthropods in field collections using molecular methods. A decade ago, molecular techniques being applied to arthropod blood meal identification were thoroughly reviewed, but there have been significant advancements in the techniques and technologies available since that time. This review highlights the available diagnostic markers in mitochondrial and nuclear DNA and discusses their benefits and shortcomings for use in molecular identification assays. Advances in real-time PCR, high resolution melting analysis, digital PCR, next generation sequencing, microsphere assays, mass spectrometry, and stable isotope analysis each offer novel approaches and advantages to bloodmeal analysis that have gained traction in the field. New, field-forward technologies and platforms have also come into use that offer promising solutions for point-of-care and remote field deployment for rapid bloodmeal source identification. Some of the lessons learned over the last decade, particularly in the fields of DNA barcoding and sequence analysis, are discussed. Though many advancements have been made, technical challenges remain concerning the prevention of sample degradation both by the arthropod before the sample has been obtained and during storage. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification and reviews how advances in molecular technology over the past decade have been applied in this unique biomedical context.
Collapse
|
4
|
Hlavackova K, Dvorak V, Chaskopoulou A, Volf P, Halada P. A novel MALDI-TOF MS-based method for blood meal identification in insect vectors: A proof of concept study on phlebotomine sand flies. PLoS Negl Trop Dis 2019; 13:e0007669. [PMID: 31498786 PMCID: PMC6733444 DOI: 10.1371/journal.pntd.0007669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Identification of blood sources of hematophagous arthropods is crucial for understanding the transmission cycles of vector-borne diseases. Many different approaches towards host determination were proposed, including precipitin test, ELISA, DNA- and mass spectrometry-based methods; yet all face certain complications and limitations, mostly related to blood degradation. This study presents a novel method for blood meal identification, peptide mass mapping (PMM) analysis of host-specific hemoglobin peptides using MALDI-TOF mass spectrometry. Methodology/Principal findings To identify blood meal source, proteins from abdomens of engorged sand fly females were extracted, cleaved by trypsin and peptide fragments of host hemoglobin were sequenced using MALDI-TOF MS. The method provided correct host identification of 100% experimentally fed sand flies until 36h post blood meal (PBM) and for 80% samples even 48h PBM. In females fed on two hosts, both blood meal sources were correctly assigned for 60% of specimens until 36h PBM. In a validation study on field-collected females, the method yielded unambiguous host determination for 96% of specimens. The suitability of PMM-based MALDI-TOF MS was proven experimentally also on lab-reared Culex mosquitoes. Conclusions/Significance PMM-based MALDI-TOF MS analysis targeting host specific hemoglobin peptides represents a sensitive and cost-effective method with a fast and simple preparation protocol. As demonstrated here on phlebotomine sand flies and mosquitoes, it allows reliable and rapid blood source determination even 48h PBM with minimal material input and provides more robust and specific results than other currently used methods. This approach was also successfully tested on field-caught engorged females and proved to be a promising useful tool for large-scale screening of host preferences studies. Unlike other methods including MALDI-TOF protein profiling, it allows correct identification of mixed blood meals as was demonstrated on both experimentally fed and field-collected sand flies. Leishmaniases belong among the most important and yet neglected vector-borne diseases, transmitted mostly by bite of female phlebotomine sand flies. To understand role of different reservoir hosts in the transmission cycles, it is important to determine blood meal sources of bloodfeeding females. Most of currently used methods face challenges due to tiny volumes of engorged blood, in case of mammals also enucleated, as well as quick progress of blood digestion which leads to rapid DNA and protein degradation. New approach towards blood source determination presented in this study is based on MALDI-TOF mass spectrometry that identifies unique peptide sequences of host hemoglobins, showing high precision and sensitivity together with a longer time period for successful host determination when compared to nowadays standardly used DNA sequencing. It was tested and verified on engorged phlebotomine sand flies from both laboratory colonies and natural endemic areas and also on Culex mosquitoes and shall be universal to hematophagous insects. Beside blood meal identification, it allows also the use of both morphological and molecular methods (DNA- or protein-based) for the species identification of the analysed specimen.
Collapse
Affiliation(s)
- Kristyna Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vit Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
5
|
Keller JI, Lima-Cordón R, Monroy MC, Schmoker AM, Zhang F, Howard A, Ballif BA, Stevens L. Protein mass spectrometry detects multiple bloodmeals for enhanced Chagas disease vector ecology. INFECTION GENETICS AND EVOLUTION 2019; 74:103998. [PMID: 31401306 DOI: 10.1016/j.meegid.2019.103998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Chagas disease, a neglected tropical disease endemic in Latin America, is caused by the protozoan parasite Trypanosoma cruzi and is responsible for significant health impacts, especially in rural communities. The parasite is transmitted by insect vectors in the Triatominae subfamily and due to lack of vaccines and limited treatment options, vector control is the main way of controlling the disease. Knowing what vectors are feeding on directly enhances our understanding of the ecology and biology of the different vector species and can potentially aid in engaging communities in active disease control, a concept known as Ecohealth management. We evaluated bloodmeals in rural community, house-caught insect vectors previously evaluated for bloodmeals via DNA analysis as part of a larger collaborative project from three countries in Central America, including Guatemala. In addition to identifying bloodmeals in 100% of all samples using liquid chromatography tandem mass spectrometry (LC-MS/MS) (n = 50), strikingly for 53% of these samples there was no evidence of a recent bloodmeal by DNA-PCR. As individual vectors often feed on multiple sources, we developed an enhanced detection pipeline, and showed the ability to quantify a bloodmeal using stable-isotope-containing synthetic references peptides, a first step in further exploration of species-specific bloodmeal composition. Furthermore, we show that a lower resolution mass spectrometer is sufficient to correctly identify taxa from bloodmeals, an important and strong attribute of our LC-MS/MS-based method, opening the door to using proteomics in countries where Chagas disease is endemic.
Collapse
Affiliation(s)
- Judith I Keller
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Raquel Lima-Cordón
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - M Carlota Monroy
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Edificio T-10 Ciudad Universitaria Zona 12, Ciudad de Guatemala, Guatemala; Department of Biology, University of Vermont, Burlington, VT, United States
| | - Anna M Schmoker
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Fan Zhang
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Alan Howard
- Statistical Software Support and Consulting Services, University of Vermont, Burlington, VT, United States
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, United States.
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
6
|
Beatty NL, Behrens-Bradley N, Love M, McCants F, Smith S, Schmidt JO, Hamer SA, Dorn PL, Ahmad N, Klotz SA. Rapid detection of human blood in triatomines (kissing bugs) utilizing a lateral flow immunochromatographic assay - A pilot study. Mem Inst Oswaldo Cruz 2019; 114:e190047. [PMID: 31166422 PMCID: PMC6543902 DOI: 10.1590/0074-02760190047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES We tested a rapid and specific immunochromatographic assay (that detects human blood in forensic samples) to determine if human blood was present in triatomines and their fecal excreta. METHODS We fed Triatoma rubida human blood (positive control) or mouse blood (negative control) and performed the assay on the abdominal contents and fecal excreta. Triatomine field specimens collected in and around human habitations and excreta were also tested. FINDINGS The assay was positive in triatomines fed human blood (N = 5/5) and fecal excreta from bugs known to have ingested human blood (N = 5/5). Bugs feeding on mice (N = 15/15) and their fecal excreta (N = 8/8) were negative for human blood. Human blood was detected in 47% (N = 23/49) triatomines, representing six different species, collected in the field. MAIN CONCLUSIONS The pilot study shows that this rapid and specific test may have applications in triatomine research. Further study is needed to determine the sensitivity of this assay compared to other well-established techniques, such as DNA- and proteomics-based methodologies and the assay’s application in the field.
Collapse
Affiliation(s)
- Norman L Beatty
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| | - Nicole Behrens-Bradley
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Maria Love
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Finn McCants
- Loyola University New Orleans, Department of Biological Sciences, New Orleans, LA, United States of America
| | - Shannon Smith
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| | - Justin O Schmidt
- Southwestern Biological Institute, Tucson, AZ, United States of America
| | - Sarah A Hamer
- Texas A&M University, Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
| | - Patricia L Dorn
- Loyola University New Orleans, Department of Biological Sciences, New Orleans, LA, United States of America
| | - Nafees Ahmad
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Stephen A Klotz
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| |
Collapse
|
7
|
Minuzzi-Souza TTC, Silva LR, Hagström L, Hecht M, Nitz N, Gurgel-Gonçalves R. Molecular bloodmeal analyses reveal that Trypanosoma cruzi-infected, native triatomine bugs often feed on humans in houses in central Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:504-508. [PMID: 30003568 DOI: 10.1111/mve.12324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
The identification of bloodmeal sources in triatomine bugs (Hemiptera: Reduviidae) is important in understanding vector-host associations and in measuring the risk for Chagas' disease transmission. The bloodmeal sources of triatomines infected with Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) caught in houses in central Brazil (Goiás State and the Federal District) were investigated during 2012-2014. Mitochondrial cytochrome b amplicons were used to identify bloodmeals through high-resolution melting and DNA sequencing. Most bugs were found to have fed on either humans (45.7%) or chickens (43.1%). Human blood was detected in Triatoma sordida (n = 22/50 bugs), Triatoma pseudomaculata (n = 7/11 bugs), Panstrongylus megistus (n = 10/24 bugs), Panstrongylus geniculatus (n = 1/3 bugs) and Rhodnius neglectus (n = 18/28 bugs) (all: Hemiptera: Reduviidae). Sequencing identified Necromys (Rodentia: Cricetidae) mouse blood in P. geniculatus and Tropidurus (Squamata: Tropiduridae) lizard blood in T. pseudomaculata and T. sordida. These findings reveal new vector-host associations. The present results suggest frequent contact between humans and T. cruzi-infected triatomines in central Brazil and indicate that Chagas' disease transmission by native vectors is an ongoing threat.
Collapse
Affiliation(s)
- T T C Minuzzi-Souza
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - L R Silva
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - L Hagström
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - M Hecht
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - N Nitz
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - R Gurgel-Gonçalves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
8
|
Lima-Cordón RA, Stevens L, Solórzano Ortíz E, Rodas GA, Castellanos S, Rodas A, Abrego V, Zúniga Valeriano C, Monroy MC. Implementation science: Epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Negl Trop Dis 2018; 12:e0006952. [PMID: 30485265 PMCID: PMC6287883 DOI: 10.1371/journal.pntd.0006952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/10/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
The Ecohealth strategy is a multidisciplinary data-driven approach used to improve the quality of people's lives in Chagas disease endemic areas, such as regions of Central America. Chagas is a vector-borne disease caused by the parasite Trypanosoma cruzi. In Central America, the main vector is Triatoma dimidiata. Because successful implementation of the Ecohealth approach reduced home infestation in Jutiapa department, Guatemala, it was scaled-up to three localities, one in each of three Central American countries (Texistepeque, El Salvador; San Marcos de la Sierra, Honduras and Olopa, Guatemala). As a basis for the house improvement phase of the Ecohealth program, we determined if the localities differ in the role of sylvatic, synanthropic and domestic animals in the Chagas transmission cycle by measuring entomological indices, blood meal sources and parasite infection from vectors collected in and around houses. The Polymerase Chain Reaction (PCR) with taxa specific primers to detect both, blood sources and parasite infection, was used to assess 71 T. dimidiata from Texistepeque, 84 from San Marcos de la Sierra and 568 from Olopa. Our results show that infestation (12.98%) and colonization (8.95%) indices were highest in Olopa; whereas T. cruzi prevalence was higher in Texistepeque and San Marcos de la Sierra (>40%) than Olopa (8%). The blood meal source profiles showed that in Olopa, opossum might be important in linking the sylvatic and domestic Chagas transmission cycle, whereas in San Marcos de la Sierra dogs play a major role in maintaining domestic transmission. For Texistepeque, bird was the major blood meal source followed by human. When examining the different life stages, we found that in Olopa, the proportion bugs infected with T. cruzi is higher in adults than nymphs. These findings highlight the importance of location-based recommendations for decreasing human-vector contact in the control of Chagas disease.
Collapse
Affiliation(s)
- Raquel Asunción Lima-Cordón
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth Solórzano Ortíz
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Gabriela Anaité Rodas
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Salvador Castellanos
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Antonieta Rodas
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Vianney Abrego
- Centro de Investigación y desarrollo en salud (CENSALUD-CID), Universidad de El Salvador, San Salvador, El Salvador
| | | | - María Carlota Monroy
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| |
Collapse
|
9
|
Keller JI, Schmidt JO, Schmoker AM, Ballif BA, Stevens L. Protein mass spectrometry extends temporal blood meal detection over polymerase chain reaction in mouse-fed Chagas disease vectors. Mem Inst Oswaldo Cruz 2018; 113:e180160. [PMID: 30277492 PMCID: PMC6167943 DOI: 10.1590/0074-02760180160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chagas disease is highly prevalent in Latin America, and vector control is the most effective control strategy to date. We have previously shown that liquid chromatography tandem mass spectrometry (LC-MS/MS) is a valuable tool for identifying triatomine vector blood meals. OBJECTIVES The purpose of this study was to determine blood meal detection ability as a function of method [polymerase chain reaction (PCR) vs. LC-MS/MS], time since feeding, and the effect of molting in mouse-fed triatomine insect vectors targeting hemoglobin and albumin proteins with LC-MS/MS and short interspersed nuclear elements (SINE)-based PCR. METHODS We experimentally fed Triatoma protracta on mice and used LC-MS/MS to detect hemoglobin and albumin peptides over time post-feeding and post-molting (≤ 12 weeks). We compared LC-MS/MS results with those of a standard PCR method based on SINEs. FINDINGS Hemoglobin-based LC-MS/MS detected blood meals most robustly at all time points post-feeding. Post-molting, no blood meals were detected with PCR, whereas LC-MS/MS detected mouse hemoglobin and albumin up to 12 weeks. MAIN CONCLUSIONS In our study, the hemoglobin signature in the insect abdomen lasted longer than that of albumin and DNA. LC-MS/MS using hemoglobin shows promise for identifying triatomine blood meals over long temporal scales and even post-molting. Clarifying the frequency of blood-feeding on different hosts can foster our understanding of vector behavior and may help devise sounder disease-control strategies, including Ecohealth (community based ecosystem management) approaches.
Collapse
Affiliation(s)
- Judith I Keller
- University of Vermont, Department of Biology, Burlington, VT, United States of America
| | - Justin O Schmidt
- Southwestern Biological Institute, Tucson, AZ, United States of America
| | - Anna M Schmoker
- University of Vermont, Department of Biology, Burlington, VT, United States of America
| | - Bryan A Ballif
- University of Vermont, Department of Biology, Burlington, VT, United States of America
| | - Lori Stevens
- University of Vermont, Department of Biology, Burlington, VT, United States of America
| |
Collapse
|
10
|
Tandina F, Laroche M, Davoust B, K Doumbo O, Parola P. Blood meal identification in the cryptic species Anopheles gambiae and Anopheles coluzzii using MALDI-TOF MS. ACTA ACUST UNITED AC 2018; 25:40. [PMID: 30052501 PMCID: PMC6063721 DOI: 10.1051/parasite/2018041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/07/2018] [Indexed: 12/23/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged in entomology as a technique to identify arthropods and their blood meal source. In this study, female Anopheles gambiae were fed on five host blood sources: ocelot (Leopardus pardalis), binturong (Arctictis binturong), springbok (Antidorcas marsupialis), jaguar (Panthera onca) and Hamadryas baboon (Papio hamadryas), while Anopheles coluzzii were fed on three hosts: dromedary (Camelus dromedarius), Barbary sheep (Ammotragus lervia) and pig (Sus scrofa). We obtained the MS spectra from 240 engorged mosquito abdomens and selected high quality ones from 72 mosquito abdomens to upgrade our home-made database. We excluded from the analysis any spectra of low quality (n = 80), and the remaining 88 specimens were subjected to a blind test analysis against the home-made database. We obtained 100% correct identification of the blood meal source for the specimens collected, 1, 12 and 24 h post-feeding, whereas for the specimens collected 36 h post-feeding, the correct identification rate decreased dramatically. We confirm here that MALDI-TOF MS can be used to identify the blood meal origin of freshly engorged mosquitoes, which opens new perspectives for further studies, including the impact of the mosquito species on blood meal identification.
Collapse
Affiliation(s)
- Fatalmoudou Tandina
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France - Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|