1
|
Bai XR, Liu PX, Wang WC, Jin YH, Wang Q, Qi Y, Zhang XY, Sun WD, Fang WH, Han XG, Jiang W. TssL2 of T6SS2 is required for mobility, biofilm formation, wrinkly phenotype formation, and virulence of Vibrio parahaemolyticus SH112. Appl Microbiol Biotechnol 2024; 108:537. [PMID: 39688690 DOI: 10.1007/s00253-024-13351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024]
Abstract
Type VI secretion system 2 (T6SS2) of Vibrio parahaemolyticus is required for cell adhesion and autophagy in macrophages; however, other phenotypes conferred by this T6SS have not been thoroughly investigated. We deleted TssL2, a key component of T6SS2 assembly, to explore the role of the T6SS2 in environmental adaptation and virulence. TssL2 deletion reduced Hcp2 secretion, suggesting that TssL2 played an important role in activity of functional T6SS2. We found that TssL2 was necessary for cell aggregation, wrinkly phenotype formation, and participates in motility and biofilm formation by regulating related genes, suggesting that TssL2 was essential for V. parahaemolyticus to adapt changing environments. In addition, this study demonstrated TssL2 significantly affected adhesion, cytotoxicity, bacterial colonization ability, and mortality in mice, even the levels of the proinflammatory cytokines IL-6 and IL-8, suggesting that TssL2 was involved in bacterial virulence and immunity. Proteome analysis revealed that TssL2 significantly affected the expression of 163 proteins related to ABC transporter systems, flagellar assembly, biofilm formation, and multiple microbial metabolism pathways, some of which supported the effect of TssL2 on the different phenotypes of V. parahaemolyticus. Among them, the decreased expression of the T3SS1 and T2SS proteins was confirmed by the results of gene transcription, which may be the main reason for the decrease in cytotoxicity. Altogether, these findings further our understanding of T6SS2 components on environmental adaption and virulence during bacterial infection. KEY POINTS: • The role of T6SS2 in V. parahaemolyticus was far from clear. • TssL2 participates in cell aggregation, wrinkly phenotype formation, motility, and biofilm formation. • TssL2 is essential for cell bacterial colonization, cytotoxicity, virulence, and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Xue-Rui Bai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Department of Animal Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen-Chao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying-Hong Jin
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiao-Yun Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wei-Dong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Longyan University, Longyan, 364012, China.
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Mevada V, Patel R, Dudhagara P, Chaudhari R, Vohra M, Khan V, J. H. Shyu D, Chen YY, Zala D. Whole Genome Sequencing and Pan-Genomic Analysis of Multidrug-Resistant Vibrio cholerae VC01 Isolated from a Clinical Sample. Microorganisms 2023; 11:2030. [PMID: 37630590 PMCID: PMC10457874 DOI: 10.3390/microorganisms11082030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Cholera, a disease caused by the Vibrio cholerae bacteria, threatens public health worldwide. The organism mentioned above has a significant historical record of being identified as a prominent aquatic environmental pollutant capable of adapting its phenotypic and genotypic traits to react to host patients effectively. This study aims to elucidate the heterogeneity of the sporadic clinical strain of V. cholerae VC01 among patients residing in Silvasa. The study involved conducting whole-genome sequencing of the isolate obtained from patients exhibiting symptoms, including those not commonly observed in clinical practice. The strain was initially identified through a combination of biochemical analysis, microscopy, and 16s rRNA-based identification, followed by type strain-based identification. The investigation demonstrated the existence of various genetic alterations and resistance profiles against multiple drugs, particularly chloramphenicol (catB9), florfenicol (floR), oxytetracycline (tet(34)), sulfonamide (sul2), and Trimethoprim (dfrA1). The pan-genomic analysis indicated that 1099 distinct clusters were detected within the genome sequences of recent isolates worldwide. The present study helps to establish a correlation between the mutation and the coexistence of antimicrobial resistance toward current treatment.
Collapse
Affiliation(s)
- Vishal Mevada
- DNA Division, Directorate of Forensic Science, Gandhinagar 382007, India;
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Pravin Dudhagara
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Rajesh Chaudhari
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad 382424, India;
| | - Mustafa Vohra
- Directorate of Medical & Health Services, UT of Dadra & Nagar Haveli and Daman & Diu, Silvassa 396230, India; (M.V.); (V.K.)
| | - Vikram Khan
- Directorate of Medical & Health Services, UT of Dadra & Nagar Haveli and Daman & Diu, Silvassa 396230, India; (M.V.); (V.K.)
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600, Taiwan;
| | - Dolatsinh Zala
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad 382424, India;
| |
Collapse
|
3
|
Wiens KE, Iyer AS, Bhuiyan TR, Lu LL, Cizmeci D, Gorman MJ, Yuan D, Becker RL, Ryan ET, Calderwood SB, LaRocque RC, Chowdhury F, Khan AI, Levine MM, Chen WH, Charles RC, Azman AS, Qadri F, Alter G, Harris JB. Predicting Vibrio cholerae infection and symptomatic disease: a systems serology study. THE LANCET. MICROBE 2023; 4:e228-e235. [PMID: 36907197 PMCID: PMC10186354 DOI: 10.1016/s2666-5247(22)00391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Lenette L Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine and Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Parkland Health and Hospital System, Dallas, TX, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Rachel L Becker
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Galit Alter
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
6
|
Richards A, Baranova DE, Pizzuto MS, Jaconi S, Willsey GG, Torres-Velez FJ, Doering JE, Benigni F, Corti D, Mantis NJ. Recombinant Human Secretory IgA Induces Salmonella Typhimurium Agglutination and Limits Bacterial Invasion into Gut-Associated Lymphoid Tissues. ACS Infect Dis 2021; 7:1221-1235. [PMID: 33728898 PMCID: PMC8154420 DOI: 10.1021/acsinfecdis.0c00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/11/2022]
Abstract
As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.
Collapse
Affiliation(s)
- Angelene
F. Richards
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Danielle E. Baranova
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Matteo S. Pizzuto
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Graham G. Willsey
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fernando J. Torres-Velez
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Jennifer E. Doering
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fabio Benigni
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Nicholas J. Mantis
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| |
Collapse
|
7
|
Humans Surviving Cholera Develop Antibodies against Vibrio cholerae O-Specific Polysaccharide That Inhibit Pathogen Motility. mBio 2020; 11:mBio.02847-20. [PMID: 33203761 PMCID: PMC7683404 DOI: 10.1128/mbio.02847-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae. V. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner. The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.
Collapse
|
8
|
Mojarad AE, Gargaria SLM. Aptamer-nanobody based ELASA for detection of Vibrio cholerae O1. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:263-272. [PMID: 32994896 PMCID: PMC7502147 DOI: 10.18502/ijm.v12i4.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives In recent years, the prevalence of diseases caused by Vibrio spp. is increasing in the world, and among them species, Vibrio cholerae is the most important Vibrio associated with pandemic and epidemic cholera outbreaks. Therefore, the development of a reliable method for early and accurate detection of V. cholerae for management of diseases is a real need. Aptamers with the ability to detect targets with high specificity and accuracy can be one of the candidates used for the whole cell and thereby V. cholerae detection. Materials and Methods In this research high-affinity DNA aptamers against with two major serotypes of Inaba (ATCC 39315) and Ogawa (clinical sample) were selected from DNA aptamer library through 12 rounds of Systematic Evolution of Ligands by Exponential (SELEX) enrichment procedure using live cells as a target which monitored with flow cytometry. Results The binding efficiency and dissociation constant of the isolated aptamers V.ch47 and V.ch27 were 56.4%, 53.3% and 15.404 ± 4.776 pM, 20.186 ± 3.655 pM, respectively. A sandwich Enzyme-linked aptamer sorbent assay (ELASA) was developed with the biotinylated V.ch47 aptamer and our previously developed nanobody anti-Lipopolysaccharides (LPS). We optimized this system with V. cholerae O1 and analyzed their cross reactivity with close physiological bacteria. The threshold of detection was obtained 104 CFU/ml in the sandwich ELASA process. Conclusion Our results showed that the sandwich ELASA is sensitive enough for the rapid detection of V. cholerae from other bacteria.
Collapse
|
9
|
Baranova DE, Willsey GG, Levinson KJ, Smith C, Wade J, Mantis NJ. Transcriptional profiling of Vibrio cholerae O1 following exposure to human anti- lipopolysaccharide monoclonal antibodies. Pathog Dis 2020; 78:ftaa029. [PMID: 32589220 PMCID: PMC7371154 DOI: 10.1093/femspd/ftaa029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023] Open
Abstract
Following an episode of cholera, a rapidly dehydrating, watery diarrhea caused by the Gram-negative bacterium, Vibrio cholerae O1, humans mount a robust anti-lipopolysaccharide (LPS) antibody response that is associated with immunity to subsequent re-infection. In neonatal mouse and rabbit models of cholera, passively administered anti-LPS polyclonal and monoclonal (MAb) antibodies reduce V. cholerae colonization of the intestinal epithelia by inhibiting bacterial motility and promoting vibrio agglutination. Here we demonstrate that human anti-LPS IgG MAbs also arrest V. cholerae motility and induce bacterial paralysis. A subset of those MAbs also triggered V. cholerae to secrete an extracellular matrix (ECM). To identify changes in gene expression that accompany antibody exposure and that may account for motility arrest and ECM production, we subjected V. cholerae O1 El Tor to RNA-seq analysis after treatment with ZAC-3 IgG, a high affinity MAb directed against the core/lipid A region of LPS. We identified > 160 genes whose expression was altered following ZAC-3 IgG treatment, although canonical outer membrane stress regulons were not among them. ompS (VCA1028), a porin associated with virulence and indirectly regulated by ToxT, and norR (VCA0182), a σ54-dependent transcription factor involved in late stages of infection, were two upregulated genes worth noting.
Collapse
Affiliation(s)
- Danielle E Baranova
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Graham G Willsey
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Kara J Levinson
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Carol Smith
- Division of Molecular Genetics, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Joseph Wade
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Molecular Genetics, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| |
Collapse
|
10
|
Baranova DE, Chen L, Destrempes M, Meade H, Mantis NJ. Passive Immunity to Vibrio cholerae O1 Afforded by a Human Monoclonal IgA1 Antibody Expressed in Milk. Pathog Immun 2020; 5:89-116. [PMID: 34136728 PMCID: PMC8204294 DOI: 10.20411/pai.v5i1.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: In cholera epidemics, the spread of disease can easily outpace vaccine
control measures. The advent of technologies enabling the expression of
recombinant proteins, including antibodies, in the milk of transgenic
animals raises the prospect of developing a self-administered and
cost-effective monoclonal antibody (MAb)-based prophylactic to reduce the
incidence of Vibrio cholerae infection. Methods: We generated a transgenic mouse line in which the heavy and light chain
variable regions (Fv) specific for a conserved epitope in the core/lipid A
of V. cholerae O1 lipopolysaccharide were expressed as a
full-length human dimeric IgA1 (ZAC-3) and secreted into the milk of
lactating dams. Milk containing ZAC-3 IgA1 was assessed for the ability to
passively protect against experimental cholera infection in a newborn mouse
model and to impact bacterial swimming behavior. Results: Newborn mice that were passively administered ZAC-3 IgA1 containing milk, or
that suckled on dams expressing ZAC-3 IgA1, were immune to experimental
cholera infection, as measured by a reduction of V.
cholerae O1 colony forming units recovered from intestinal
lysates 12 hours after oral challenge. In vitro analysis
revealed that ZAC-3 hIgA1-containing milk arrested V.
cholerae motility in soft agar and liquid media and was
effective at promoting bacterial agglutination, possibly accounting for the
observed reduction in bacterial colonization in vivo. Conclusions: These results demonstrate that consumption of milk-derived antibodies may
serve as a strategy to passively protect against cholera and possibly other
enteric pathogens.
Collapse
Affiliation(s)
- Danielle E Baranova
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| | | | | | | | - Nicholas J Mantis
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| |
Collapse
|
11
|
Structure of the capsule and lipopolysaccharide O-antigen from the channel catfish pathogen, Aeromonas hydrophila. Carbohydr Res 2019; 486:107858. [PMID: 31683071 DOI: 10.1016/j.carres.2019.107858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
A hypervirulent A. hydrophila (vAh) pathotype has been identified as the etiologic agent responsible for disease outbreaks in farmed carp species and channel catfish (Ictalurus punctatus) in China and the Southeastern United States, respectively. The possible route of infection has previously been unknown; however, virulence is believed to be multifactorial, involving the production/secretion of several virulence factors, including a high molecular weight group 4 capsular polysaccharide. Here we present chemical structural evidence of a novel capsule- and LPS-associated O-antigen found present in vAh isolated during these disease outbreaks. In this study, the chemical structure of the vAh O-antigen was determined by chemical analysis, Smith degradation, mass spectrometry, and 2D proton and carbon nuclear magnetic resonance (NMR) spectroscopy and found to be unique among described bacterial O-antigens. The O-antigen consists of hexasaccharide repeating units featuring a 4)-α-l-Fucp-(1-3)-β-d-GlcpNAc-(1-4)-α-l-Fucp-(1-4)-β-d-Glcp-(1- backbone, substituted with single residue side chains of α-d-Glcp and α-d-Quip3NAc linked to O-3 of the two fucose residues. The polysaccharide is partially O-acetylated on O-6 of the 4-substituted β-Glcp residue.
Collapse
|
12
|
Meijerink M, Rösch C, Taverne N, Venema K, Gruppen H, Schols HA, Wells JM. Structure Dependent-Immunomodulation by Sugar Beet Arabinans via a SYK Tyrosine Kinase-Dependent Signaling Pathway. Front Immunol 2018; 9:1972. [PMID: 30369923 PMCID: PMC6194903 DOI: 10.3389/fimmu.2018.01972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
There is much interest in the immunomodulatory properties of dietary fibers but their activity may be influenced by contamination with microbial-associated molecular patterns (MAMPs) such as lipopolysaccharide (LPS) and lipoteichoic acids, which are difficult to remove completely from biological samples. Bone marrow-derived dendritic cells (BMDCs) from TLR2x4 double-KO mice were shown to be a reliable approach to analyse the immunomodulatory properties of a diverse range of dietary fibers, by avoiding immune cell activation due to contaminating MAMPs. Several of the 44 tested dietary fiber preparations induced cytokine responses in BMDCs from TLR2x4 double-KO mice. The particulate fractions of linear arabinan (LA) and branched arabinan (BA) from sugar beet pectin were shown to be strongly immune stimulatory with LA being more immune stimulatory than BA. Enzymatic debranching of BA increased its immune stimulatory activity, possibly due to increased particle formation by the alignment of debranched linear arabinan. Mechanistic studies showed that the immunostimulatory activity of LA and BA was independent of the Dectin-1 recognition but Syk kinase-dependent.
Collapse
Affiliation(s)
- Marjolein Meijerink
- Host Microbe Interactomics, Department of Animal Science, Wageningen University & Research, Wageningen, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Christiane Rösch
- Top Institute Food and Nutrition, Wageningen, Netherlands
- Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Nico Taverne
- Host Microbe Interactomics, Department of Animal Science, Wageningen University & Research, Wageningen, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Koen Venema
- Top Institute Food and Nutrition, Wageningen, Netherlands
- Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, Netherlands
- Beneficial Microbes Consultancy, Wageningen, Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Henk A. Schols
- Top Institute Food and Nutrition, Wageningen, Netherlands
- Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Jerry M. Wells
- Host Microbe Interactomics, Department of Animal Science, Wageningen University & Research, Wageningen, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
| |
Collapse
|