1
|
Jiang L, Wen J, Tan D, Xie J, Li J, Li C. Growth stage-related capsular polysaccharide translocon Wza in Vibrio splendidus modifies phage vB_VspM_VS2 susceptibility. Commun Biol 2024; 7:1338. [PMID: 39414953 PMCID: PMC11484964 DOI: 10.1038/s42003-024-07038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Bacteria at different growth stages usually coordinate capsular polysaccharide (CPS) formation and may affect their susceptibility to phage. In this study, we evaluated the infection efficacy of phage vB_VspM_VS2 in V. splendidus AJ01 at different growth stages and explored the role of growth stage-related CPS translocon Wza in the susceptibility of V. splendidus to phage vB_VspM_VS2. The results showed that V. splendidus locked in the stationary growth stage (SGS) or early exponential stage (EES) infected with phage (EES-P) has a low susceptibility to phage vB_VspM_VS and exhibit a pronounced reduction in phage adsorption rate as compared to the EES bacteria. The expression of wza of CPS transport gene was significantly increased in EES bacteria compared to that bacteria locked in the SGS or EES-P. Bacteria with deleted wza (Δwza mutant) escaped phage adsorption due to absence of Wza mediated down-regulation of CPS expression, otherwise. Our results reveal that the Wza of V. splendidus can promotes phage to infect these bacteria via increasing the phage absorption, which provides important implications for using phages therapeutically target pathogenic bacteria in dynamics communities.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiasong Xie
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Sun Y, Yan Y, Yan S, Li F, Li Y, Yan L, Yang D, Peng Z, Yang B, Sun J, Xu J, Dong Y, Bai Y. Prevalence, antibiotic susceptibility, and genomic analysis of Vibrio alginolyticus isolated from seafood and freshwater products in China. Front Microbiol 2024; 15:1381457. [PMID: 39050630 PMCID: PMC11266014 DOI: 10.3389/fmicb.2024.1381457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction This study characterized Vibrio alginolyticus isolated from seafood and freshwater products in China (2020). Methods and Results In total, 122 (95.31%) V. alginolyticus isolates were resistant to at least 1 antibiotic category, and 2 (1.56%) isolates were resistant to at least 3 antibiotic categories and belong to multi-drug resistance (MDR) isolates. A high prevalence rate was observed to be blaCARB (98.04%) encoding beta-lactam resistance, followed by tet (97.06%) encoding tetracycline resistance and fos (4.90%) encoding resistance to fosfomycin. Among the 57 V. alginolyticus isolates, the commonest virulence genes were type III secretion system translocated gene vopD, vopB, and vcrH (54.4%, 31/57), type III secretion system regulated gene tyeA (54.39%), followed by vscI and vscF (50.88%) encoded type III secretion system inner rod protein and needle protein, respectively. Multilocus sequence typing (MLST) showed considerable genetic diversity, with 34 distinct sequence types (STs) identified among 55 isolates. ST421 (n = 5), ST166 (n = 4), ST523 (n = 3), ST516 (n = 3), and ST507 (n = 3) were dominant STs among 55 V. alginolyticus isolates. Discussion These findings highlight the widespread occurrence of V. alginolyticus in both freshwater and seafood products, underscoring the critical need for vigilant monitoring of these bacteria. Such measures are essential for ensuring effective food safety management and safeguarding public health.
Collapse
Affiliation(s)
- Yanan Sun
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
- School of Public Health, Shandong University, Jinan, China
| | - Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
3
|
Romero J, Blas-Chumacero S, Urzúa V, Villasante A, Opazo R, Gajardo F, Miranda CD, Rojas R. Lysin and Lytic Phages Reduce Vibrio Counts in Live Feed and Fish Larvae. Microorganisms 2024; 12:904. [PMID: 38792735 PMCID: PMC11123823 DOI: 10.3390/microorganisms12050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/26/2024] Open
Abstract
Vibrio species are naturally found in estuarine and marine ecosystems, but are also recognized as significant human enteropathogens, often linked to seafood-related illnesses. In aquaculture settings, Vibrio poses a substantial risk of infectious diseases, resulting in considerable stock losses and prompting the use of antimicrobials. However, this practice contributes to the proliferation of antimicrobial-resistant (AMR) bacteria and resistance genes. Our investigation aimed to explore the potential of biological agents such as bacteriophage CH20 and endolysin LysVPp1 in reducing Vibrio bacterial loads in both rotifer and fish larvae. LysVPp1's lytic activity was assessed by measuring absorbance reduction against various pathogenic Vibrio strains. Phage CH20 exhibited a limited host range, affecting only Vibrio alginolyticus GV09, a highly pathogenic strain. Both CH20 and LysVPp1 were evaluated for their effectiveness in reducing Vibrio load in rotifers or fish larvae through short-setting bioassays. Our results demonstrated the significant lytic effect of endolysin LysVPp1 on strains of Vibrio alginolyticus, Vibrio parahaemolyticus, and Vibrio splendidus. Furthermore, we have showcased the feasibility of reducing the load of pathogenic Vibrio in live feed and fish larvae by using a non-antibiotic-based approach, such as lytic phage and endolysin LysVPp1, thus contributing to the progress of a sustainable aquaculture from a One Health perspective.
Collapse
Affiliation(s)
- Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Sergueia Blas-Chumacero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Victoria Urzúa
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Alejandro Villasante
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Rafael Opazo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Felipe Gajardo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| |
Collapse
|
4
|
Yaşa İ, Evran S, Eren Eroğlu AE, Önder C, Allahyari M, Menderes G, Kullay M. Partial Characterization of Three Bacteriophages Isolated from Aquaculture Hatchery Water and Their Potential in the Biocontrol of Vibrio spp. Microorganisms 2024; 12:895. [PMID: 38792725 PMCID: PMC11123731 DOI: 10.3390/microorganisms12050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Bacteriophages are currently considered one of the most promising alternatives to antibiotics under the 'One Health' approach due to their ability to effectively combat bacterial infections. This study aimed to characterize Vibrio species in hatchery water samples collected from an aquaculture farm and investigate the biocontrol potential of their bacteriophages. Vibrio spp. (n = 32) isolates confirmed by LNA probe-based qPCR were used as hosts. Three Vibrio phages were isolated. IKEM_vK exhibited a broad host range, infecting V. harveyi (n = 8), V. alginolyticus (n = 2), V. azureus (n = 1), and V. ordalii (n = 1). IKEM_v5 showed lytic activity against V. anguillarum (n = 4) and V. ordalii (n = 1), while IKEM_v14 was specific to V. scophtalmi (n = 4). The morphological appearance of phages and their lytic effects on the host were visualized using scanning electron microscopy (SEM). All three phages remained relatively stable within the pH range of 6-11 and up to 60 °C. The lytic activities and biofilm inhibition capabilities of these phages against planktonic Vibrio cells support their potential applications in controlling vibriosis in aquaculture systems.
Collapse
Affiliation(s)
- İhsan Yaşa
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Asiye Esra Eren Eroğlu
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Cengiz Önder
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| | - Maryam Allahyari
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Gülçin Menderes
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| | - Müberra Kullay
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| |
Collapse
|
5
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|
7
|
Duan X, Jiang L, Guo M, Li C. Isolation, characterization and application of a lytic phage vB_VspM_VS1 against Vibrio splendidus biofilm. PLoS One 2023; 18:e0289895. [PMID: 37656737 PMCID: PMC10473537 DOI: 10.1371/journal.pone.0289895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/03/2023] Open
Abstract
Vibrio splendidus is a common pathogen in the ocean that infects Apostichopus japonicus, Atlantic salmon and Crassostrea gigas, leading to a variety of diseases. In this study, a virulent phage vB_VspM_VS1, which infects V. splendidus, was isolated from aquaculture ponds in Dalian, China, and it belongs to the family Straboviridae in the order Caudoviricetes. vB_VspM_VS1 had an adsorption rate of 96% in 15 min, a latent period of 65 min, and a burst size of 140 ± 6 PFU/cell. The complete genome of phage vB_VspM_VS1 consists of a linear double-stranded DNA that is 248,270 bp in length with an average G + C content of 42.5% and 389 putative protein-coding genes; 116 genes have known functions. There are 4 tail fiber genes in the positive and negative strands of the phage vB_VspM_VS1 genome. The protein domain of the phage vB_VspM_VS1 tail fibers was obtained from the Protein Data Bank and the SMART (http://smart.embl.de) database. Bacterial challenge tests revealed that the growth of V. splendidus HS0 was apparently inhibited (OD600 < 0.01) in 12 h at an MOI of 10. In against biofilms, we also showed that the OD570 value of the vB_VspM_VS1-treated group (MOI = 1) decreased significantly to 0.04 ± 0.01 compared with that of the control group (0.48 ± 0.08) at 24 h. This study characterizes the genome of the phage vB_VspM_VS1 that infects the pathogenic bacterium V. splendidus of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
9
|
Tsertou MI, Triga A, Droubogiannis S, Kokkari C, Anasi G, Katharios P. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a Mediterranean fish hatchery: Description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie. Front Microbiol 2023; 14:1078669. [PMID: 36925475 PMCID: PMC10013915 DOI: 10.3389/fmicb.2023.1078669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Tenacibaculum larymnensis sp. nov., a novel species of the Tenacibaculum genus was isolated from a commercial fish hatchery in Greece. The novel species is phylogenetically close to T. discolor and was biochemically and genetically characterized. The genome of T. larymnensis has 3.66 Mbps length, 31.83% GC content and the genomic analysis demonstrated that it harbors a wide enzymatic repertoire suggestive of increased degrading capacity but also several virulence factors including hemolysins, secretion systems, transporters, siderophores, pili and extracellular proteins. Using the novel strain, a virulent bacteriophage designated as Tenacibaculum phage Larrie was isolated and characterized. Larrie is a novel Siphovirus with relatively large genome, 77.5 kbps with 111 ORFs, a GC content of 33.7% and an exclusively lytic lifestyle. The new phage-host system can serve as an efficient model to study microbial interactions in the aquatic environment which contribute to the nutrient cycling.
Collapse
Affiliation(s)
- Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
10
|
Genomic analysis and biological characterization of a novel Schitoviridae phage infecting Vibrio alginolyticus. Appl Microbiol Biotechnol 2023; 107:749-768. [PMID: 36520169 DOI: 10.1007/s00253-022-12312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
Collapse
|
11
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
12
|
Droubogiannis S, Pavlidi L, Tsertou MI, Kokkari C, Skliros D, Flemetakis E, Katharios P. Vibrio Phage Artemius, a Novel Phage Infecting Vibrio alginolyticus. Pathogens 2022; 11:pathogens11080848. [PMID: 36014969 PMCID: PMC9416449 DOI: 10.3390/pathogens11080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Lydia Pavlidi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Maria Ioanna Tsertou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Constantina Kokkari
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Correspondence:
| |
Collapse
|
13
|
Droubogiannis S, Katharios P. Genomic and Biological Profile of a Novel Bacteriophage, Vibrio phage Virtus, Which Improves Survival of Sparus aurata Larvae Challenged with Vibrio harveyi. Pathogens 2022; 11:pathogens11060630. [PMID: 35745484 PMCID: PMC9229204 DOI: 10.3390/pathogens11060630] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/15/2023] Open
Abstract
Due to the emergence of multidrug-resistant bacteria, commonly known as “superbugs”, phage therapy for the control of bacterial diseases rose in popularity. In this context, the use of phages for the management of many important bacterial diseases in the aquaculture environment is auspicious. Vibrio harveyi, a well-known and serious bacterial pathogen, is responsible for many disease outbreaks in aquaculture, resulting in huge economic and production losses. We isolated and fully characterized a novel bacteriophage, Vibrio phage Virtus, infecting V. harveyi strain VH2. Vibrio phage Virtus can infect a wide spectrum of Vibrio spp., including strains of V. harveyi, V. owensii, V. campbellii, V. parahaemolyticus, and V. mediterranei. It has a latent period of 40 min with an unusually high burst size of 3200 PFU/cell. Vibrio phage Virtus has a double-stranded DNA of 82,960 base pairs with 127 predicted open reading frames (ORFs). No virulence, antibiotic resistance, or integrase-encoding genes were detected. In vivo phage therapy trials in gilthead seabream, Sparus aurata, larvae demonstrated that Vibrio phage Virtus was able to significantly improve the survival of larvae for five days at a multiplicity of infection (MOI) of 10, which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece;
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece;
- Correspondence:
| |
Collapse
|
14
|
Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol (Praha) 2022; 67:573-590. [PMID: 35305247 DOI: 10.1007/s12223-022-00965-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
The escalation of antibiotic resistance has revitalized bacteriophage (phage) therapy. Recently, phage therapy has been gradually applied in medicine, agriculture, food, and environmental fields due to its distinctive features of high efficiency, specificity, and environmental friendliness compared to antibiotics. Likewise, phage therapy also holds great promise in controlling pathogenic bacteria in aquaculture. The application of phage therapy instead of antibiotics to eliminate pathogenic bacteria such as Vibrio, Pseudomonas, Aeromonas, and Flavobacterium and to reduce fish mortality in aquaculture has been frequently reported. In this context, the present review summarizes and analyzes the current status of phage therapy in aquaculture, focusing on the key parameters of phage application, such as phage isolation, selection, dosage, and administration modes, and introducing the strategies and methods to boost efficacy and restrain the emergence of resistance. In addition, we discussed the human safety, environmental friendliness, and techno-economic practicability of phage therapy in aquaculture. Finally, this review outlines the current challenges of phage therapy application in aquaculture from the perspectives of phage resistance, phage-mediated resistance gene transfer, and effects on the host immune system.
Collapse
|
15
|
Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage ϕVC8. Nucleic Acids Res 2021; 49:11974-11985. [PMID: 34751404 PMCID: PMC8599892 DOI: 10.1093/nar/gkab955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
All genetic information in cellular life is stored in DNA copolymers composed of four basic building blocks (ATGC-DNA). In contrast, a group of bacteriophages belonging to families Siphoviridae and Podoviridae has abandoned the usage of one of them, adenine (A), replacing it with 2-aminoadenine (Z). The resulting ZTGC-DNA is more stable than its ATGC-DNA counterpart, owing to the additional hydrogen bond present in the 2-aminoadenine:thymine (Z:T) base pair, while the additional amino group also confers resistance to the host endonucleases. Recently, two classes of replicative proteins found in ZTGC-DNA-containing phages were characterized and one of them, DpoZ from DNA polymerase A (PolA) family, was shown to possess significant Z-vs-A specificity. Here, we present the crystallographic structure of the apo form of DpoZ of vibriophage ϕVC8, composed of the 3′-5′ exonuclease and polymerase domains. We captured the enzyme in two conformations that involve the tip of the thumb subdomain and the exonuclease domain. We highlight insertions and mutations characteristic of ϕVC8 DpoZ and its close homologues. Through mutagenesis and functional assays we suggest that the preference of ϕVC8 DpoZ towards Z relies on a polymerase backtracking process, more efficient when the nascent base pair is A:T than when it is Z:T.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Unit of Architecture and Dynamics of Biological Macromolecules, CNRS UMR 3528, 25-28 rue du Docteur Roux, Institut Pasteur, 75015 Paris, France.,Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Haidai Hu
- Unit of Architecture and Dynamics of Biological Macromolecules, CNRS UMR 3528, 25-28 rue du Docteur Roux, Institut Pasteur, 75015 Paris, France
| | - Filippo Romoli
- Unit of Architecture and Dynamics of Biological Macromolecules, CNRS UMR 3528, 25-28 rue du Docteur Roux, Institut Pasteur, 75015 Paris, France
| | - Marc Delarue
- Unit of Architecture and Dynamics of Biological Macromolecules, CNRS UMR 3528, 25-28 rue du Docteur Roux, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
16
|
Ramos-Vivas J, Superio J, Galindo-Villegas J, Acosta F. Phage Therapy as a Focused Management Strategy in Aquaculture. Int J Mol Sci 2021; 22:10436. [PMID: 34638776 PMCID: PMC8508683 DOI: 10.3390/ijms221910436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Joshua Superio
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
| |
Collapse
|
17
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
18
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
19
|
D’Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy. Microorganisms 2021; 9:261. [PMID: 33513949 PMCID: PMC7911525 DOI: 10.3390/microorganisms9020261] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses that exclusively kill bacteria and are the most ubiquitous organisms on the planet. Since their discovery, bacteriophages have been considered an important weapon to fight human and animal infections of bacterial origin due to their specific ability to attack the associated target bacteria. With the discovery of antibiotics, phage treatment was progressively abandoned in Western countries. However, due to the recent emergence of growing antimicrobial resistance (AMR) to antibiotics, interest in phage use in human therapy has once again grown. Similarly, at the environmental level, the extensive use of disinfectants based on chemicals, including biocides in agriculture, has been associated with the emergence of resistance against disinfectants themselves, besides having a high environmental impact. Due to these issues, the applications of phages with biocontrol purposes have become an interesting option in several fields, including farms, food industry, agriculture, aquaculture and wastewater plants. Notably, phage action is maintained even when the target bacteria are multidrug resistant (MDR), rendering this option extremely interesting in counteracting AMR emergence both for therapeutical and decontamination purposes. Based on this, bacteriophages have been interestingly proposed as environmental routine sanitizers in hospitals, to counteract the spread of the pathogenic MDR bacteria that persistently contaminate hard surfaces. This review summarizes the studies aimed at evaluating the potential use of phages as decontaminants, with a special focus on hospital sanitation.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sante Mazzacane
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
20
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
21
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
22
|
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics (Basel) 2020; 9:E493. [PMID: 32784768 PMCID: PMC7460141 DOI: 10.3390/antibiotics9080493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Lara Areal-Hermida
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Ángeles Pichardo-Gallardo
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Raquel Almuiña-González
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Sandra Sánchez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydnay NSN 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| |
Collapse
|
23
|
Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Front Microbiol 2020; 11:259. [PMID: 32153543 PMCID: PMC7047879 DOI: 10.3389/fmicb.2020.00259] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has indicated that the multiple drug resistant Vibrio parahaemolyticus may pose a serious threat to public health and economic concerns for humans globally. Here, two lytic bacteriophages, namely vB_VpS_BA3 and vB_VpS_CA8, were isolated from sewage collected in Guangzhou, China. Electron microscopy studies revealed both virions taxonomically belonged to the Siphoviridae family with icosahedral head and a long non-contractile tail. The double-stranded DNA genome of phage BA3 was composed of 58648 bp with a GC content of 46.30% while phage CA8 was 58480 bp with an average GC content of 46.42%. In total, 85 putative open reading frames (ORFs) were predicted in the phage BA3 genome while 84 were predicted in that of CA8. The ORFs were associated with phage structure, packing, host lysis, DNA metabolism, and additional functions. Furthermore, average nucleotide identity analysis, comparative genomic features and phylogenetic analysis revealed that BA3 and CA8 represented different isolates but novel members of the family, Siphoviridae. Regarding the host range of the 61 V. parahaemolyticus isolates, BA3 and CA8 had an infectivity of 8.2 and 36.1%, respectively. Furthermore, ∼100 plaque-forming units (pfu)/cell for phage BA3 and ∼180 pfu/cell for phage CA8 were determined to be the viral load under laboratory growth conditions. Accordingly, the phage-killing assay in vitro revealed that phage CA8 achieved approximately 3.65 log unit reductions. The present results indicate that CA8 is potentially applicable for biological control of multidrug resistant V. parahaemolyticus.
Collapse
Affiliation(s)
- Meiyan Yang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yongjian Liang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shixuan Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Hanfang Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuanming Ye
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Thammatinna K, Egan ME, Htoo HH, Khanna K, Sugie J, Nideffer JF, Villa E, Tassanakajon A, Pogliano J, Nonejuie P, Chaikeeratisak V. A novel vibriophage exhibits inhibitory activity against host protein synthesis machinery. Sci Rep 2020; 10:2347. [PMID: 32047244 PMCID: PMC7012835 DOI: 10.1038/s41598-020-59396-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Since the emergence of deadly pathogens and multidrug-resistant bacteria at an alarmingly increased rate, bacteriophages have been developed as a controlling bioagent to prevent the spread of pathogenic bacteria. One of these pathogens, disease-causing Vibrio parahaemolyticus (VPAHPND) which induces acute hepatopancreatic necrosis, is considered one of the deadliest shrimp pathogens, and has recently become resistant to various classes of antibiotics. Here, we discovered a novel vibriophage that specifically targets the vibrio host, VPAHPND. The vibriophage, designated Seahorse, was classified in the family Siphoviridae because of its icosahedral capsid surrounded by head fibers and a non-contractile long tail. Phage Seahorse was able to infect the host in a broad range of pH and temperatures, and it had a relatively short latent period (nearly 30 minutes) in which it produced progeny at 72 particles per cell at the end of its lytic cycle. Upon phage infection, the host nucleoid condensed and became toroidal, similar to the bacterial DNA morphology seen during tetracycline treatment, suggesting that phage Seahorse hijacked host biosynthesis pathways through protein translation. As phage Seahorse genome encodes 48 open reading frames with many hypothetical proteins, this genome could be a potential untapped resource for the discovery of phage-derived therapeutic proteins.
Collapse
Affiliation(s)
- Khrongkhwan Thammatinna
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Jason F Nideffer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
25
|
Yang M, Liang Y, Su R, Chen H, Wang J, Zhang J, Ding Y, Kong L, Zeng H, Xue L, Wu H, Wu Q. Genome characterization of the novel lytic Vibrio parahaemolyticus phage vB_VpP_BA6. Arch Virol 2019; 164:2627-2630. [PMID: 31363923 DOI: 10.1007/s00705-019-04351-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022]
Abstract
A lytic bacteriophage, designated Vibrio phage vB_VpP_BA6, was isolated from sewage collected in Guangzhou, China. The double-stranded DNA genome of phage BA6 is composed of 50,520 bp with a G+C content of 41.77%. It possesses 64 open reading frames relating to phage structure, packaging, host lysis, DNA metabolism, and additional functions. Three tRNAs genes (encoding Pro, Ile and Trp) were detected. Comparison of its genomic features and phylogenetic analysis revealed that phage BA6 is a novel member of the family Podoviridae. This phage may represent a potential therapeutic agent against multidrug-resistant Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Meiyan Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China.,College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongjian Liang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China.,College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Runbin Su
- College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Hanfang Chen
- College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jing Wang
- College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li Kong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Zhong Road 100, Guangzhou, 510070, Guangdong, China.
| |
Collapse
|
26
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
27
|
Buttimer C, Hendrix H, Lucid A, Neve H, Noben JP, Franz C, O'Mahony J, Lavigne R, Coffey A. Novel N4-Like Bacteriophages of Pectobacterium atrosepticum. Pharmaceuticals (Basel) 2018; 11:E45. [PMID: 29757952 PMCID: PMC6027278 DOI: 10.3390/ph11020045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023] Open
Abstract
Pectobacterium atrosepticum is an economically important phytopathogen that is responsible for potato blackleg and soft rot, and for which current control strategies are limited. In this study, stem samples of potato crops exhibiting blackleg were taken from three farms in Co. Cork, Ireland, and they were found to be infected with P. atrosepticum. Three closely related bacteriophages (phages) that are specific to this phytopathogen were isolated and characterized, namely vB_PatP_CB1, vB_PatP_CB3, and vB_PatP_CB4 (abbreviated as CB1, CB3, and CB4). Both CB1 and CB3 were determined to infect 12 strains and CB4 10 strains of the 19 strains of P. atrosepticum tested. Morphology, latent periods, burst sizes, and their stability at various temperatures and pHs were also examined. Genome sequencing of the three phages revealed that they shared a minimum nucleotide identity of 93% with each other. Their genomes exhibited an Enquartavirinae genome organization, possessing several conserved proteins that were associated with phages of this group, like the type species Escherichia virus N4. Tandem electrospray ionization-mass spectrometry (ESI-MS/MS) allowed for the identification of ten structural proteins that form the virion of CB1, six that are conserved in phage N4. Biocontrol experiments demonstrated that the phages suppress soft rot formation upon co-inoculation with P. atrosepticum on whole tubers. The results of this study indicate that CB1 related phages could be good candidates for phage-based control.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium.
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, 3590 Hasselt, Belgium.
| | - Charles Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland.
| |
Collapse
|
28
|
Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics (Basel) 2018; 7:antibiotics7010015. [PMID: 29495270 PMCID: PMC5872126 DOI: 10.3390/antibiotics7010015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.
Collapse
|