1
|
Tsibulnikov S, Fayzullina D, Karlina I, Schroeder BA, Karpova O, Timashev P, Ulasov I. Ewing sarcoma treatment: a gene therapy approach. Cancer Gene Ther 2023; 30:1066-1071. [PMID: 37037906 PMCID: PMC10088695 DOI: 10.1038/s41417-023-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Ewing sarcoma (ES) is an aggressive malignant tumor, characterized by non-random chromosomal translocations that produce fusion genes. Fusion genes and fusion protein products are promising targets for gene therapy. Therapeutic approaches and strategies vary based on target molecules (nucleotides, proteins) of interest. We present an extensive literature review of active molecules for gene therapy and methods of gene therapy delivery, both of which are necessary for successful treatment.
Collapse
Affiliation(s)
- Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Olga Karpova
- Section of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Maranda V, Zhang Y, Vizeacoumar FS, Freywald A, Vizeacoumar FJ. A CRISPR Platform for Targeted In Vivo Screens. Methods Mol Biol 2023; 2614:397-409. [PMID: 36587138 DOI: 10.1007/978-1-0716-2914-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.
Collapse
Affiliation(s)
- Vincent Maranda
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Yue Zhang
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, Canada.
| |
Collapse
|
3
|
Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, Gout J, Roger E, Beutel AK, Zizer E, Tharehalli U, Daiss N, Russell R, Perkhofer L, Oellinger R, Lin Q, Azoitei N, Weiss F, Lerch MM, Liebau S, Katz S, Lechel A, Rad R, Seufferlein T, Kestler HA, Ott M, Sharma AD, Hermann PC, Kleger A. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100626. [PMID: 34306986 PMCID: PMC8292873 DOI: 10.1002/advs.202100626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Pallavi U Mahaddalkar
- Institute for Diabetes and RegenerationHelmholtz Zentrum MünchenIngolstädter Landstraße 185764 NeuherbergGermany
| | - Johann M. Kraus
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Xiaowei Zhong
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell AnalysisUniversity Medical Center RostockSchillingallee 7018057 RostockGermany
| | - Dharini Srinivasan
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Johann Gout
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Elodie Roger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Eugen Zizer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Umesh Tharehalli
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Nora Daiss
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Ronan Russell
- Diabetes CenterUniversity of CaliforniaSan FranciscoCA94143USA
| | - Lukas Perkhofer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Qiong Lin
- Bayer AG Research & DevelopmentPharmaceuticalsMüllerstraße 17813353 BerlinGermany
| | - Ninel Azoitei
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Frank‐Ulrich Weiss
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
| | - Markus M. Lerch
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
- Klinikum der Ludwig‐Maximilians‐Universität München‐GroßhadernMarchioninistraße 1581377 MünchenGermany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology INDBEberhard Karls University TübingenÖsterbergstr. 372074 TübingenGermany
| | - Sarah‐Fee Katz
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - André Lechel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Thomas Seufferlein
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Michael Ott
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Amar Deep Sharma
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Patrick C. Hermann
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alexander Kleger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| |
Collapse
|
4
|
Dahn ML, Marcato P. In Vivo Genome-Wide Pooled RNAi Screens in Cancer Cells to Identify Determinants of Chemotherapy/Drug Response. Methods Mol Biol 2021; 2381:189-200. [PMID: 34590277 DOI: 10.1007/978-1-0716-1740-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Large-scale RNAi screens (i.e., genome-wide arrays and pools) can reveal the essential biological functions of previously uncharacterized genes. Due to the nature of the selection process involved in screens, RNAi screens are also very useful for identifying genes involved in drug responses. The information gained from these screens could be used to predict a cancer patient's response to a specific drug (i.e., precision medicine) or identify anti-cancer drug resistance genes, which could be targeted to improve treatment outcomes. In this capacity, screens have been most often performed in vitro. However, there is limitation to performing these screens in vitro: genes which are required in only an in vivo setting (e.g., rely on the tumor microenvironment for function) will not be identified. As such, it can be desirable to perform RNAi screens in vivo. Here we outline the additional technical details that should be considered for performing genome-wide RNAi drug screens of cancer cells under in vivo conditions (i.e., tumor xenografts).
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
RNaseH-mediated simultaneous piggyback knockdown of multiple genes in adult zebrafish. Sci Rep 2020; 10:20187. [PMID: 33214638 PMCID: PMC7677540 DOI: 10.1038/s41598-020-76655-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/30/2020] [Indexed: 01/23/2023] Open
Abstract
We recently developed a piggyback knockdown method that was used to knockdown genes in adult zebrafish. In this method, a vivo morpholino (VMO) piggybacks an antisense deoxyoligonucleotide (dO) into the somatic cells and reduces the cognate mRNA levels. In this paper, we tested whether we can piggyback more than one dO with one VMO. We designed various hybrids that had more than one dO that could be piggybacked with one VMO. We chose f7, f8, and αIIb genes and tested their knockdown by the appropriate assays. The knockdown with piggybacking either two or three dOs by one VMO yielded > 85% knockdown efficiency. We also performed knockdown of argonautes and rnaseh separately along with f7. We found the knockdown of f7 occurs when knockdown of argonautes happens and not when rnaseh knockdown was performed, suggesting that RNaseH is involved in mRNA degradation. In conclusion, we developed a method where we could knockdown three genes at one time, and by increasing the concentration of VMO by twofold, we could knockdown six genes simultaneously. These multiple gene knockdowns will not only increase the efficiency of the method in whole genome-wide knockdowns but will also be useful to study multifactorial disorders.
Collapse
|
6
|
Rogers LM, Wang Z, Mott SL, Dupuy AJ, Weiner GJ. A Genetic Screen to Identify Gain- and Loss-of-Function Modifications that Enhance T-cell Infiltration into Tumors. Cancer Immunol Res 2020; 8:1206-1214. [PMID: 32611665 PMCID: PMC7483799 DOI: 10.1158/2326-6066.cir-20-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
T-cell-mediated cancer immunotherapies, including anti-PD-1 and T cells expressing chimeric antigen receptors (CAR-T cells), are becoming standard treatments for many cancer types. CAR-T therapy, in particular, has been successful in treating circulating, but not solid, tumors. One challenge limiting immunotherapy success is that tumors lacking T-cell infiltration do not respond to treatment. Therefore, one potential strategy to overcome resistance is to enhance the ability of T cells to traffic into tumors. Here, we describe an unbiased in vivo genetic screen approach utilizing the Sleeping Beauty mutagenesis system to identify candidate genes in T cells that might be modified to drive intratumoral T-cell accumulation. This screen identified over 400 candidate genes in three tumor models. These results indicated substantial variation in gene candidate selection, depending on the tumor model and whether or not mice were treated with anti-PD-1, yet some candidate genes were identified in all tumor models and with anti-PD-1 therapy. Inhibition of the most frequently mutated gene, Aak1, affected chemokine receptor expression and enhanced T-cell trafficking in vitro and in vivo Screen candidates should be further validated as therapeutic targets, with particular relevance to enhancing infiltration of adoptively transferred T cells into solid tumors.
Collapse
Affiliation(s)
- Laura M Rogers
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Adam J Dupuy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Berning P, Hennemann C, Tulotta C, Schaefer C, Lechtape B, Hotfilder M, El Gourari Y, Jürgens H, Snaar-Jagalska E, Hempel G, Dirksen U, Potratz J. The Receptor Tyrosine Kinase RON and Its Isoforms as Therapeutic Targets in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12040904. [PMID: 32272784 PMCID: PMC7226494 DOI: 10.3390/cancers12040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.
Collapse
Affiliation(s)
- Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Hennemann
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christiane Schaefer
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Yassmine El Gourari
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Uta Dirksen
- Division of Hematology and Oncology, Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jenny Potratz
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
8
|
Vanneste M, Feddersen CR, Varzavand A, Zhu EY, Foley T, Zhao L, Holt KH, Milhem M, Piper R, Stipp CS, Dupuy AJ, Henry MD. Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Front Oncol 2020; 10:442. [PMID: 32346533 PMCID: PMC7169429 DOI: 10.3389/fonc.2020.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with malignant melanoma have a 5-year survival rate of only 15-20% once the tumor has metastasized to distant tissues. While MAP kinase pathway inhibitors (MAPKi) are initially effective for the majority of patients with melanoma harboring BRAFV600E mutation, over 90% of patients relapse within 2 years. Thus, there is a critical need for understanding MAPKi resistance mechanisms. In this manuscript, we performed a forward genetic screen using a whole genome shRNA library to identify negative regulators of vemurafenib resistance. We identified loss of NF1 and CUL3 as drivers of vemurafenib resistance. NF1 is a known driver of vemurafenib resistance in melanoma through its action as a negative regulator of RAS. However, the mechanism by which CUL3, a key protein in E3 ubiquitin ligase complexes, is involved in vemurafenib resistance was unknown. We found that loss of CUL3 was associated with an increase in RAC1 activity and MEKS298 phosphorylation. However, the addition of the Src family inhibitor saracatinib prevented resistance to vemurafenib in CUL3KD cells and reversed RAC1 activation. This finding suggests that inhibition of the Src family suppresses MAPKi resistance in CUL3KD cells by inactivation of RAC1. Our results also indicated that the loss of CUL3 does not promote the activation of RAC1 through stabilization, suggesting that CUL3 is involved in the stability of upstream regulators of RAC1. Collectively, our study identifies the loss of CUL3 as a driver of MAPKi resistance through activation of RAC1 and demonstrates that inhibition of the Src family can suppress the MAPKi resistance phenotype in CUL3KD cells by inactivating RAC1 protein.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Charlotte R. Feddersen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Afshin Varzavand
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Elliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Tyler Foley
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kathleen H. Holt
- Viral Vector Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohammed Milhem
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Robert Piper
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Christopher S. Stipp
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Bao J, Song Z, Song C, Wang Y, Li W, Mai W, Shi Q, Yu H, Ni L, Liu Y, Lu X, He C, Chen L, Qu G. Identification of Biomarkers for Osteosarcoma Based on Integration Strategy. Med Sci Monit 2020; 26:e920803. [PMID: 32173717 PMCID: PMC7101204 DOI: 10.12659/msm.920803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant tumor of bone. The identification of novel biomarkers is necessary for the diagnosis and treatment of osteosarcoma. Material/Methods We obtained 11 paired fresh-frozen OS samples and normal controls from patients between September 2015 and February 2017. We used an integration strategy that analyzes next-generation sequencing data by bioinformatics methods based on the pathogenesis of osteosarcoma. Results One susceptibility lncRNA and 7 susceptibility genes regulated by the lncRNA for osteosarcoma were effectively identified, and real-time PCR and clinical index ALP data were used to test their effectiveness. Conclusions The results showed that the expression levels of the 7 genes were highly consistent in the training and test sample sets, especially between the expression value of the gene ALPL and the plasma detection value of its encoded protein ALP. In particular, both the expression of gene ALPL and the plasma detection values of protein ALP encoded by gene ALPL showed a high degree of consistency among different data types. The identified lncRNA and genes effectively classified the samples proved so that they could be used as potential biomarkers of osteosarcoma. Our strategy may also be helpful for the identification of biomarkers for other diseases.
Collapse
Affiliation(s)
- Junjie Bao
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Zhaona Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chunyu Song
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wei Mai
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Qingyu Shi
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Hongwei Yu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Linying Ni
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yishu Liu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Chuan He
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guofan Qu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|