1
|
Ferreira RS, Assis RIF, Racca F, Bontempi AC, da Silva RA, Wiench M, Andia DC. Analyzes In Silico Indicate the lncRNAs MIR31HG and LINC00939 as Possible Epigenetic Inhibitors of the Osteogenic Differentiation in PDLCs. Genes (Basel) 2023; 14:1649. [PMID: 37628700 PMCID: PMC10454380 DOI: 10.3390/genes14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs.
Collapse
Affiliation(s)
- Rogério S. Ferreira
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rahyza I. F. Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória 29043-910, ES, Brazil
| | - Francesca Racca
- Periodontology Department, The Ohio State University College of Dentistry, Columbus, OH 43210-1267, USA;
| | - Ana Carolina Bontempi
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rodrigo A. da Silva
- Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil;
| | - Malgorzata Wiench
- School of Dentistry, Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Denise C. Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| |
Collapse
|
2
|
Ghafouri-Fard S, Shoorei H, Noferesti L, Hussen BM, Moghadam MHB, Taheri M, Rashnoo F. Nanoparticle-mediated delivery of microRNAs-based therapies for treatment of disorders. Pathol Res Pract 2023; 248:154667. [PMID: 37422972 DOI: 10.1016/j.prp.2023.154667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
miRNAs represent appropriate candidates for treatment of several disorders. However, safe and efficient delivery of these small-sized transcripts has been challenging. Nanoparticle-based delivery of miRNAs has been used for treatment of a variety of disorders, particularly cancers as well as ischemic stroke and pulmonary fibrosis. The wide range application of this type of therapy is based on the important roles of miRNAs in the regulation of cell behavior in physiological and pathological conditions. Besides, the ability of miRNAs to inhibit or increase expression of several genes gives them the superiority over mRNA or siRNA-based therapies. Preparation of nanoparticles for miRNA delivery is mainly achieved through using protocols originally developed for drugs or other types of biomolecules. In brief, nanoparticle-based delivery of miRNAs is regarded as a solution for overcoming all challenges in the therapeutic application of miRNAs. Herein, we provide an overview of studies which used nanoparticles as delivery systems for facilitation of miRNAs entry into target cells for the therapeutic purposes. However, our knowledge about miRNA-loaded nanoparticles is limited, and it is expected that numerous therapeutic possibilities will be revealed for miRNA-loaded nanoparticles in future.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Noferesti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Susnik E, Bazzoni A, Taladriz-Blanco P, Balog S, Moreno-Echeverri AM, Glaubitz C, Oliveira BB, Ferreira D, Baptista PV, Petri-Fink A, Rothen-Rutishauser B. Epidermal growth factor alters silica nanoparticle uptake and improves gold-nanoparticle-mediated gene silencing in A549 cells. FRONTIERS IN NANOTECHNOLOGY 2023; 5:1220514. [PMID: 37954478 PMCID: PMC7615298 DOI: 10.3389/fnano.2023.1220514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Introduction Delivery of therapeutic nanoparticles (NPs) to cancer cells represents a promising approach for biomedical applications. A key challenge for nanotechnology translation from the bench to the bedside is the low amount of administered NPs dose that effectively enters target cells. To improve NPs delivery, several studies proposed NPs conjugation with ligands, which specifically deliver NPs to target cells via receptor binding. One such example is epidermal growth factor (EGF), a peptide involved in cell signaling pathways that control cell division by binding to epidermal growth factor receptor (EGFR). However, very few studies assessed the influence of EGF present in the cell environment, on the cellular uptake of NPs. Methods We tested if the stimulation of EGFR-expressing lung carcinomacells A549 with EGF affects the uptake of 59 nm and 422 nm silica (SiO2) NPs. Additionally, we investigated whether the uptake enhancement can be achieved with gold NPs, suitable to downregulate the expression of cancer oncogene c-MYC. Results Our findings show that EGF binding to its receptor results in receptor autophosphorylation and initiate signaling pathways, leading to enhanced endocytosis of 59 nm SiO2 NPs, but not 422 nm SiO2 NPs. Additionally, we demonstrated an enhanced gold (Au) NPs endocytosis and subsequently a higher downregulation of c-MYC. Discussion These findings contribute to a better understanding of NPs uptake in the presence of EGF and that is a promising approach for improved NPs delivery.
Collapse
Affiliation(s)
- Eva Susnik
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Amelie Bazzoni
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | | | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | | | | | - Beatriz Brito Oliveira
- i4HB, UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- i4HB, UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- i4HB, UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
4
|
Li Q, Deng Y, Liu X. Delivering Multifunctional Peptide-Conjugated Gene Carrier/miRNA-218 Complexes from Monodisperse Microspheres for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42904-42914. [PMID: 36102571 PMCID: PMC10016386 DOI: 10.1021/acsami.2c10728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) play a pivotal role in regulating gene expression and are considered new molecular targets in bone tissue engineering. However, effective delivery of miRNAs to the defect areas and transfection of the miRNAs into osteogenic progenitor cells has been an obstacle in the application. In this work, miRNA-218 (miR-218) was used as an osteogenic miRNA regulator, and a multifunctional peptide-conjugated gene carrier poly(lactide-co-glycolide)-g-polyethylenimine-b-polyethylene glycol-R9-G4-IKVAVW (PPP-RGI) was developed to condense with miR-218 to form PPP-RGI/miR-218 complexes that were further encapsulated into monodisperse injectable microspheres for enhanced bone regeneration. The PPP-RGI was synthesized via conjugating R9-G4-IKVAVW (RGI), a multifunctional peptide, onto poly(lactide-co-glycolide)-g-polyethylenimine-b-polyethylene glycol (PPP). A microfluidic and synchronous photo-cross-linking process was further developed to encapsulate the PPP-RGI/miR-218 complexes into monodisperse gelatin methacryloyl microspheres. The monodisperse microspheres controlled the delivery of PPP-RGI/miR-218 to the designated defect site, and PPP-RGI facilitated the transfection of miR-218 into osteogenic progenitor cells. An in vivo calvarial defect model showed that the PPP-RGI/miR-218-loaded microspheres significantly enhanced bone tissue regeneration. This work provides a novel approach to effectively deliver miRNA and transfect targeting cells in vivo for advanced regenerative therapies.
Collapse
Affiliation(s)
- Qian Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas 75246, United States
| | - Yuejia Deng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas 75246, United States
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas 75246, United States
| |
Collapse
|
5
|
Weigl M, Kocijan R, Ferguson J, Leinfellner G, Heimel P, Feichtinger X, Pietschmann P, Grillari J, Zwerina J, Redl H, Hackl M. Longitudinal Changes of Circulating miRNAs During Bisphosphonate and Teriparatide Treatment in an Animal Model of Postmenopausal Osteoporosis. J Bone Miner Res 2021; 36:1131-1144. [PMID: 33598975 PMCID: PMC8252367 DOI: 10.1002/jbmr.4276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs regulate bone homeostasis, and circulating microRNAs have been proposed as novel bone biomarkers. The effect of anti-osteoporotic treatment on circulating microRNAs has not been described in detail. Therefore, we performed a comprehensive analysis of microRNA serum levels in ovariectomized (OVX) and sham-operated (SHAM) rats over 12 weeks of antiresorptive or osteoanabolic treatment. Forty-two Sprague Dawley rats underwent SHAM surgery (n = 10) or ovariectomy (n = 32). After 8 weeks, OVX rats were randomized to antiresorptive treatment with zoledronate (n = 11), osteoanabolic treatment with teriparatide (n = 11), or vehicle treatment (n = 10). Serum samples were collected at weeks 8, 12, 16, and 20 after surgery. A total of 91 microRNAs were analyzed by RT-qPCR in serum samples collected at week 20. Based on the results, 29 microRNAs were selected for longitudinal analysis at all four study time points. Changes in bone mineral density and microstructure were followed up by in vivo micro-CT and ex vivo nano-CT. Ovariectomy resulted in the loss of trabecular bone, which was reversed by osteoanabolic and antiresorptive treatment. Differential expression analysis identified 11 circulating miRNAs that were significantly regulated after treatment. For example, miR-107 and miR-31-5p increased in vehicle-treated OVX animals, whereas they decreased during teriparatide treatment. Additional miRNAs were identified that showed significant correlations to bone microstructure or bone miRNA expression, including miR-203a-3p, which exhibited a significant negative correlation to vertebral and tibial trabecular bone volume fraction (%). Longitudinal analysis confirmed eight microRNAs with significant changes in serum over time that were prevented by teriparatide and zoledronate treatment (miR-34a-5p, miR-31-5p, miR-30d-3p, miR-378a-5p) or teriparatide treatment only (miR-375-3p, miR-183-5p, miR-203a-3p, miR-203b-3p). Gene target network analysis identified WNT and Notch signaling as the main signaling pathways controlled by these miRNAs. Thus, ovariectomy results in time-dependent deregulation of circulating miRNAs compared with SHAM animals. Anti-osteoporotic treatments can rescue this effect, showing that bone-related miRNAs might act as novel biomarkers for treatment monitoring. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Moritz Weigl
- TAmiRNA GmbHViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre MeidlingViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
- Medical Faculty of Bone DiseasesSigmund Freud UniversityViennaAustria
| | - James Ferguson
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
| | - Gabriele Leinfellner
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
- Karl Donath Laboratory for Hard Tissue and Biomaterial ResearchUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
| | - Xaver Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Johannes Grillari
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaViennaAustria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre MeidlingViennaAustria
| | - Heinz Redl
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research CenterViennaAustria
| | - Matthias Hackl
- TAmiRNA GmbHViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
6
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
7
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Kuhn J, Papanastasiou G, Tai CW, Moran CM, Jansen MA, Tavares AA, Lennen RJ, Corral CA, Wang C, Thomson AJ, Berry CC, Yiu HH. Tri-modal imaging of gold-dotted magnetic nanoparticles for magnetic resonance imaging, computed tomography and intravascular ultrasound: an in vitro study. Nanomedicine (Lond) 2020; 15:2433-2445. [PMID: 32914695 DOI: 10.2217/nnm-2020-0236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.
Collapse
Affiliation(s)
- Joel Kuhn
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Giorgos Papanastasiou
- School of Computer Science & Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.,Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Cheuk-Wai Tai
- Department of Materials & Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Carmel M Moran
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Maurits A Jansen
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriana As Tavares
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ross J Lennen
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carlos Alcaide Corral
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Chengjia Wang
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Adrian Jw Thomson
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Catherine C Berry
- Centre for Cell Engineering, IMCSB, Joseph Black Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Humphrey Hp Yiu
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
9
|
Arias LS, Butcher MC, Short B, McKloud E, Delaney C, Kean R, Monteiro DR, Williams C, Ramage G, Brown JL. Chitosan Ameliorates Candida auris Virulence in a Galleria mellonella Infection Model. Antimicrob Agents Chemother 2020; 64:e00476-20. [PMID: 32482674 PMCID: PMC7526850 DOI: 10.1128/aac.00476-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Candida auris has emerged as a multidrug-resistant nosocomial pathogen over the last decade. Outbreaks of the organism in health care facilities have resulted in life-threatening invasive candidiasis in over 40 countries worldwide. Resistance by C. auris to conventional antifungal drugs such as fluconazole and amphotericin B means that alternative therapeutics must be explored. As such, this study served to investigate the efficacy of a naturally derived polysaccharide called chitosan against aggregative (Agg) and nonaggregative (non-Agg) isolates of C. aurisin vitro and in vivo. In vitro results indicated that chitosan was effective against planktonic and sessile forms of Agg and non-Agg C. auris In a Galleria mellonella model to assess C. auris virulence, chitosan treatment was shown to ameliorate killing effects of both C. auris phenotypes (NCPF 8973 and NCPF 8978, respectively) in vivo Specifically, chitosan reduced the fungal load and increased survival rates of infected Galleria, while treatment alone was nontoxic to the larvae. Finally, chitosan treatment appeared to induce a stress-like gene expression response in NCPF 8973 in the larvae likely arising from a protective response by the organism to resist antifungal activity of the compound. Taken together, results from this study demonstrate that naturally derived compounds such as chitosan may be useful alternatives to conventional antifungals against C. auris.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- São Paulo State University (Unesp), School of Dentistry, Department of Preventive and Restorative Dentistry, São Paulo, Brazil
| | - Mark C Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Emily McKloud
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Chris Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Department of Preventive and Restorative Dentistry, São Paulo, Brazil
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Prudente/São Paulo, Brazil
| | - Craig Williams
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| | - Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Biofilm Research Network, Glasgow Dental School, Glasgow, United Kingdom
| |
Collapse
|
10
|
|
11
|
Iminitoff M, Damani T, Williams E, Brooks AES, Feisst V, Sheppard HM. microRNAs in Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells (ASC) Undergo Rapid Culture-Induced Changes in Expression, Including miR-378 which Promotes Adipogenesis. Int J Mol Sci 2020; 21:ijms21041492. [PMID: 32098272 PMCID: PMC7073112 DOI: 10.3390/ijms21041492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
There is clinical interest in using human adipose tissue-derived mesenchymal stromal cells (ASC) to treat a range of inflammatory and regenerative conditions. Aspects of ASC biology, including their regenerative potential and paracrine effect, are likely to be modulated, in part, by microRNAs, small RNA molecules that are embedded as regulators of gene-expression in most biological pathways. However, the effect of standard isolation and expansion protocols on microRNA expression in ASC is not well explored. Here, by using an untouched and enriched population of primary human ASC, we demonstrate that there are rapid and significant changes in microRNA expression when ASC are subjected to standard isolation and expansion methods. Functional studies focusing on miR-378 indicate that these changes in expression may have an impact on phenotype and function. Specifically, we found that increased levels of miR-378 significantly promoted adipogenesis in late passage ASC. These results are informative to maximizing the potential of ASC for use in various clinical applications, and they have implications for targeting microRNAs as a therapeutic strategy for obesity or metabolic disease.
Collapse
Affiliation(s)
- Megan Iminitoff
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Eloise Williams
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| | - Vaughan Feisst
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| |
Collapse
|
12
|
miR-140-3p exhibits repressive functions on preosteoblast viability and differentiation by downregulating MCF2L in osteoporosis. In Vitro Cell Dev Biol Anim 2019; 56:49-58. [PMID: 31732956 DOI: 10.1007/s11626-019-00405-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
Abstract
Previous research manifested that miR-140-3p was a latent biomarker for osteoporosis. Nevertheless, the mechanism of miR-140-3p in osteoporosis is still not clear and needs ulteriorly studying. The purpose of our paper was to ulteriorly probe the underlying mechanism of miR-140-3p on osteoporosis. Firstly, based on the data acquired from GEO database, we found that miR-140-3p was highly expressed; meanwhile, MCF2L was lowly expressed in osteoporosis patients. Upregulation/downregulation of miR-140-3p by miR-140-3p mimic/inhibitor restrained/promoted MC3T3-E1 cell viability and differentiation. However, miR-140-3p over-expression/downregulation accelerated/repressed MC3T3-E1 cell apoptosis. MCF2L was forecasted as a target of miR-140-3p by miRanda, miRWalk, and TargetScan miRNA target gene prediction software. Luciferase reporter assay confirmed that MCF2L could be directly targeted by miR-140-3p. Moreover, we identified that the expression of MCF2L was negatively regulated by miR-140-3p. From rescue assays, we discovered that knockdown of MCF2L weakened the promoting influence of miR-140-3p ablation on MC3T3-E1 cell viability and differentiation, and receded the suppressing impact of miR-140-3p reduction on MC3T3-E1 cell apoptosis. Above all, this research disclosed that miR-140-3p repressed preosteoblast viability and differentiation while promoted preosteoblast apoptosis via targeting MCF2L. Our discoveries might afford a theoretical basis of developing a latent novel target for osteoporosis therapy.
Collapse
|
13
|
Brown JL, Johnston W, Delaney C, Rajendran R, Butcher J, Khan S, Bradshaw D, Ramage G, Culshaw S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci Rep 2019; 9:15779. [PMID: 31673005 PMCID: PMC6823452 DOI: 10.1038/s41598-019-52115-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface.
Collapse
Affiliation(s)
- Jason L Brown
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Chris Delaney
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Ranjith Rajendran
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shaz Khan
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - David Bradshaw
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
14
|
de Vasconcellos LMR, do Prado RF, Sartori EM, Mendonça DBS, Mendonça G, Marciano FR, Lobo AO. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:81. [PMID: 31254104 DOI: 10.1007/s10856-019-6271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces. A multi-walled carbon nanotube (MWCNT) was firstly grown using chemical vapor deposition and then exfoliated using chemical and oxygen plasma treatments to obtain graphene nanoribbons (GNR). The hybrid composites nHAp/GNR were prepared using the wet method assisted by ultrasound irradiation with different amounts of GNR (1.0, 2.0 and 3.0 wt %). Five groups were tested in cell cultures. Group 1: synthesized nHAp; Group 2: synthesized GNR; Group 3: nHAp and 1.0% of GNR; Group 4: nHAp and 2.0% of GNR and group 5: nHAp and 3.0% of GNR. Real time reverse transcription polymerase chain reactions were performed, and all data was submitted to Kruskal Wallis and Dunn tests, at a significance level of 5%. As a result, three nanocomposites with different proportions of GNR were successfully produced. After cell culture, the expression of osteogenic genes demonstrated no significant differences among the groups and periods. However, bone morphogenetic protein II (BMP II), integrin binding sialoprotein (IBSP), and Osterix highest expressions were observed in the group containing 3.0% of GNR. In conclusion, our hybrid composites may be useful in bone interventions requiring mesenchymal stem cell differentiation into osteoblasts for healing.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Elisa Mattias Sartori
- Department of Surgery and Integrated Clinics, School of Dentistry of Araçatuba, Sao Paulo State University, Araçatuba, Brazil
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Fernanda Roberta Marciano
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil
| | - Anderson Oliveira Lobo
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil.
- Interdisciplinary Laboratory for Advanced Materials, Post-graduation Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil.
| |
Collapse
|
15
|
Costa V, Carina V, Conigliaro A, Raimondi L, De Luca A, Bellavia D, Salamanna F, Setti S, Alessandro R, Fini M, Giavaresi G. miR-31-5p Is a LIPUS-Mechanosensitive MicroRNA that Targets HIF-1α Signaling and Cytoskeletal Proteins. Int J Mol Sci 2019; 20:E1569. [PMID: 30925808 PMCID: PMC6480017 DOI: 10.3390/ijms20071569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The roles of low-intensity pulsed ultrasound (LIPUS) and microRNAs (miRNAs) on hMSCs commitments have already been investigated; however, the effects of the application of their co-treatments in an in vitro cell model are still unknown. Our previous studies demonstrated that (i) LIPUS modulated hMSCs cytoskeletal organization and (ii) miRNA-675-5p have a role in HIF-1α signaling modulation during hMSCs osteoblast commitment. We investigated for the first time the role of LIPUS as promoter tool for miRNA expression. Thanks to bioinformatic analysis, we identified miR-31-5p as a LIPUS-induced miRNA and investigated its role through in vitro studies of gain and loss of function. Results highlighted that LIPUS stimulation induced a hypoxia adaptive cell response, which determines a reorganization of cell membrane and cytoskeleton proteins. MiR-31-5p gain and loss of function studies, demonstrated as miR-31-5p overexpression, were able to induce hypoxic and cytoskeletal responses. Moreover, the co-treatments LIPUS and miR-31-5p inhibitor abolished the hypoxic responses including angiogenesis and the expression of Rho family proteins. MiR-31-5p was identified as a LIPUS-mechanosensitive miRNAs and may be considered a new therapeutic option to promote or abolish hypoxic response and cytoskeletal organization on hMSCs during the bone regeneration process.
Collapse
Affiliation(s)
- Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Alice Conigliaro
- Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90100 Palermo, Italy.
| | | | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Francesca Salamanna
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, 40136 Bologna, Italy.
| | | | - Riccardo Alessandro
- Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90100 Palermo, Italy.
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, 90100 Palermo, Italy.
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, 40136 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, 40136 Bologna, Italy.
| |
Collapse
|