1
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Geteneh A, Tadesse S, Biset S, Girma L, Fissiha P. Rapid stool antigenic test for typhoid fever among suspected cases, Northeast, Ethiopia. Sci Rep 2023; 13:649. [PMID: 36635427 PMCID: PMC9837061 DOI: 10.1038/s41598-023-27909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Typhoid fever continued to be the key cause of morbidity and mortality in developing countries with poor hygienic practices and limited access to safe drinking water. The Widal card agglutination test is the main diagnostic tool in Ethiopia, which is limited in differentiating the overlapping symptoms with other acute febrile illnesses such as malaria and viral enteritis. This eventually leds to unnecessary antibiotic use and eventual drug resistance. Therefore this study wants to assess the burden and associated potential risk factors of typhoid fever among suspected cases using the typhoid rapid stool antigen test in Northeast Ethiopia. A hospital-based cross-sectional study was conducted at Gaint and Meket Shediho primary hospitals from May to July 2021. A total of 255 patients clinically suspected of typhoid fever, and willing to grant informed consent were included systematically. The demographic and hygiene-related variables were collected using a pre-tested structured questionnaire. The rapid stool antigenic test and xylose-lysine-deoxycholate agar (XLD) stool culture were evaluated for the level of agreement. The present study indicated that the prevalence of typhoid fever was 15.3%. This displayed that the human-restricted infectious disease, typhoid fever remained a challenge to Ethiopians. Washing hands with soap, history of typhoid fever, having previous history of hospitalization, and chronic underlying disease was the significant potential factor for typhoid fever. The higher agreement of the rapid stool antigenic test with the stool culture can indicate the factual burden of typhoid fever in the suspected population. This could minimize empiric treatment and the possible emergence of drug resistance. Thus, resource-poor settings may need to look for a rapid and reliable stool antigenic test.
Collapse
Affiliation(s)
- Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia.
| | - Selamyhun Tadesse
- grid.507691.c0000 0004 6023 9806Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sirak Biset
- grid.59547.3a0000 0000 8539 4635Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Lencho Girma
- Department of Medical Laboratory Science, Mizan Aman College of Health Sciences, Aman, Ethiopia
| | | |
Collapse
|
3
|
Vinayaka AC, Golabi M, Than TLQ, Wolff A, Bang DD. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification. N Biotechnol 2022; 66:1-7. [PMID: 34428583 DOI: 10.1016/j.nbt.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
Invasive non-typhoidal salmonellosis is gaining worldwide attention as an emerging disease cluster among bloodstream infections. The disease has the highest burden among immunocompromised and malnourished children in resource-limited areas due to poor access to reliable and rapid diagnostics. Point-of-care (POC) diagnostics are promising for use in such low infrastructure laboratory settings. However, there still remains a major challenge for POC testing to deal with the complexity of blood matrices in rapid detection of an extremely low concentration of blood-borne pathogens. In this work, the challenges were addressed by combining magnetic bead based pathogen concentration and Loop Mediated Isothermal Amplification (LAMP) technology. Sensitivity and performance of the combined approach were determined and compared with a direct PCR method. A direct visual detection strategy, adapted using SYTO-24 DNA intercalating dye, resulted in a limit of detection (LoD) as low as 14 CFU/mL in blood samples with a total analysis time of less than 2 h, including sample preparation. This approach has the potential for wide application as a high-throughput POC testing method to analyze pathogens in clinical, food, feed and environmental samples.
Collapse
Affiliation(s)
- Aaydha C Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Thi Linh Quyen Than
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anders Wolff
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dang D Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| |
Collapse
|
4
|
Okeke IN, Feasey N, Parkhill J, Turner P, Limmathurotsakul D, Georgiou P, Holmes A, Peacock SJ. Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob Health 2021; 5:bmjgh-2020-003622. [PMID: 33268385 PMCID: PMC7712442 DOI: 10.1136/bmjgh-2020-003622] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022] Open
Abstract
The scope and trajectory of today’s escalating antimicrobial resistance (AMR) crisis is inadequately captured by existing surveillance systems, particularly those of lower income settings. AMR surveillance systems typically collate data from routine culture and susceptibility testing performed in diagnostic bacteriology laboratories to support healthcare. Limited access to high quality culture and susceptibility testing results in the dearth of AMR surveillance data, typical of many parts of the world where the infectious disease burden and antimicrobial need are high. Culture and susceptibility testing by traditional techniques is also slow, which limits its value in infection management. Here, we outline hurdles to effective resistance surveillance in many low-income settings and encourage an open attitude towards new and evolving technologies that, if adopted, could close resistance surveillance gaps. Emerging advancements in point-of-care testing, laboratory detection of resistance through or without culture, and in data handling, have the potential to generate resistance data from previously unrepresented locales while simultaneously supporting healthcare. Among them are microfluidic, nucleic acid amplification technology and next-generation sequencing approaches. Other low tech or as yet unidentified innovations could also rapidly accelerate AMR surveillance. Parallel advances in data handling further promise to significantly improve AMR surveillance, and new frameworks that can capture, collate and use alternate data formats may need to be developed. We outline the promise and limitations of such technologies, their potential to leapfrog surveillance over currently available, conventional technologies in use today and early steps that health systems could take towards preparing to adopt them.
Collapse
Affiliation(s)
- Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nicholas Feasey
- The Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | | | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Alison Holmes
- National Centre for Infection Prevention and Management, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Chirambo AC, Nyirenda TS, Jambo N, Msefula C, Kamng'ona A, Molina S, Mandala WL, Heyderman RS, Iturizza-Gomara M, Henrion MYR, Gordon MA. Performance of molecular methods for the detection of Salmonella in human stool specimens. Wellcome Open Res 2021; 5:237. [PMID: 34017923 PMCID: PMC8108707 DOI: 10.12688/wellcomeopenres.16305.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The relationship between asymptomatic
Salmonella exposure within the gastrointestinal tract and
Salmonella bacteraemia is poorly understood, in part due to the low sensitivity of stool culture and the lack of validated molecular diagnostic tests for the detection of
Salmonella in the stool. The study aimed to determine a reliable molecular diagnostic test for
Salmonella in stool specimens. Methods: We optimised an in-house monoplex real-time polymerase chain reaction (PCR) for the detection of
Salmonellattr and
InvA genes in stool by including a selenite broth pre-culture step for
Salmonella before DNA extraction and validated their specificity against other local common pathogens. Then we assessed their performance against a well-validated multiplex PCR targeting the same
ttr and
InvA genes and against stool culture using clinical stool specimens collected from a cohort of 50 asymptomatic healthy Malawian children that were sampled at 1-month intervals over 12 months. We employed a latent Markov model to estimate the specificities and sensitivities of PCR methods. Results:
Ttr and
InvA primers were both able to detect all the different
Salmonella serovars tested and had superior limits of detection when DNA was extracted after selenite pre-culture. T
tr sensitivity and specificity for monoplex-PCR were (99.53%, 95.46%) and for multiplex-PCR (90.30%, 99.30%) respectively.
InvA specificity and specificity for using monoplex-PCR was (95.06%, 90.31%) and multiplex-PCRs (89.41%, 98.00%) respectively. Sensitivity and specificity for standard stool culture were 62.88% and 99.99%, respectively. Culture showed the highest PPV (99.73%), and monoplex-
ttr had the highest NPV (99.67%). Conclusion: Test methods demonstrated high concordance, although stool culture and monoplexed
ttr primers had superior specificity and sensitivity, respectively. The use of selenite pre-enrichment step increased
Salmonella detection rate. Taken together, molecular detection methods used here could be used to reveal the true extent of both asymptomatic and symptomatic
Salmonella exposure events.
Collapse
Affiliation(s)
- Angeziwa Chunga Chirambo
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Pathology Department, College of Medicine, Malawi, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tonney S Nyirenda
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Pathology Department, College of Medicine, Malawi, Blantyre, Malawi
| | - Ndaru Jambo
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Pathology Department, College of Medicine, Malawi, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Chisomo Msefula
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Pathology Department, College of Medicine, Malawi, Blantyre, Malawi
| | - Arox Kamng'ona
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Biomedical Sciences Department, College of Medicine, Malawi, Blantyre, Malawi
| | - Sandra Molina
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Wilson L Mandala
- Malawi University of Science and Technology, Thyolo, +265, Malawi
| | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, WC1E 6EJ, UK
| | - Miren Iturizza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Marc Y R Henrion
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome (MLW) Programme, Blantyre, +265, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
6
|
Chirambo AC, Nyirenda TS, Jambo N, Msefula C, Kamng'ona A, Molina S, Mandala WL, Heyderman RS, Iturizza-Gomara M, Henrion MY, Gordon MA. Performance of molecular methods for the detection of Salmonella in human stool specimens. Wellcome Open Res 2020; 5:237. [DOI: 10.12688/wellcomeopenres.16305.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The relationship between asymptomatic Salmonella exposure within the gastrointestinal tract and Salmonella bacteraemia is poorly understood, in part due to the low sensitivity of stool culture, and the lack of validated molecular diagnostic tests for the detection of Salmonella in stool. The study aimed to determine a reliable molecular diagnostic test for Salmonella in stool specimens. Methods: We optimized an in-house monoplex real time polymerase chain reaction (PCR) for the detection of Salmonella TTR and InvA genes in stool by including a selenite broth pre-culture step for Salmonella before DNA extraction, and validated their specificity against other local common pathogens. Then we assessed their performance against a well-validated multiplex PCR targeting the same TTR and InvA genes, and against stool culture using clinical stool specimens collected from a cohort of 50 asymptomatic healthy Malawian children that were sampled at 1-month intervals over a period of 12 months. We employed a latent Markov model to estimate the specificities and sensitivities of PCR methods. Results: TTR and InvA primers were both able to detect all the different Salmonella serovars tested, and had superior limits of detection if DNA was extracted after selenite pre-culture. TTR sensitivity and specificity for monoplex-PCR were (99.53%, 95.46%) and for multiplex-PCR (90.30%, 99.30%) respectively. InvA specificity and specificity for using monoplex-PCR was (95.06%, 90.31%) and multiplex-PCRs (89.41%, 98.00%) respectively. Sensitivity and specificity for standard stool culture were 62.88% and 99.99% respectively. Culture showed the highest PPV (99.73%) and mono-TTR had the highest NPV (99.67%). Conclusion: Test methods demonstrated high concordance although stool culture and monoplexed TTR primers had superior specificity and sensitivity respectively. The use of selenite pre-enrichment step increased Salmonella detection rate. Taken together, molecular detection methods used here could be used to reveal the true extent of both asymptomatic and symptomatic Salmonella exposure events.
Collapse
|
7
|
Althaus T, Thaipadungpanit J, Greer RC, Swe MMM, Dittrich S, Peerawaranun P, Smit PW, Wangrangsimakul T, Blacksell S, Winchell JM, Diaz MH, Day NPJ, Smithuis F, Turner P, Lubell Y. Causes of fever in primary care in Southeast Asia and the performance of C-reactive protein in discriminating bacterial from viral pathogens. Int J Infect Dis 2020; 96:334-342. [PMID: 32437937 PMCID: PMC7211754 DOI: 10.1016/j.ijid.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study investigated causes of fever in the primary levels of care in Southeast Asia, and evaluated whether C-reactive protein (CRP) could distinguish bacterial from viral pathogens. METHODS Blood and nasopharyngeal swab specimens were taken from children and adults with fever (>37.5 °C) or history of fever (<14 days) in Thailand and Myanmar. RESULTS Of 773 patients with at least one blood or nasopharyngeal swab specimen collected, 227 (29.4%) had a target organism detected. Influenza virus type A was detected in 85/227 cases (37.5%), followed by dengue virus (30 cases, 13.2%), respiratory syncytial virus (24 cases, 10.6%) and Leptospira spp. (nine cases, 4.0%). Clinical outcomes were similar between patients with a bacterial or a viral organism, regardless of antibiotic prescription. CRP was higher among patients with a bacterial organism compared with those with a viral organism (median 18 mg/L, interquartile range [10-49] versus 10 mg/L [≤8-22], p = 0.003), with an area under the curve of 0.65 (95% CI 0.55-0.75). CONCLUSIONS Serious bacterial infections requiring antibiotics are an exception rather than the rule in the first line of care. CRP testing could assist in ruling out such cases in settings where diagnostic uncertainty is high and routine antibiotic prescription is common. The original CRP randomised controlled trial was registered with ClinicalTrials.gov, number NCT02758821.
Collapse
Affiliation(s)
- Thomas Althaus
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rachel C Greer
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Myo Maung Maung Swe
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Myanmar-Oxford Clinical Research Unit (MOCRU), Medical Action Myanmar (MAM), Yangon, Myanmar
| | - Sabine Dittrich
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Pimnara Peerawaranun
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pieter W Smit
- Maasstad Ziekenhuis Hospital, Department of Medical Microbiology, Rotterdam, The Netherlands; Public Health Laboratory (GGD), Amsterdam, The Netherlands
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stuart Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonas M Winchell
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maureen H Diaz
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Myanmar-Oxford Clinical Research Unit (MOCRU), Medical Action Myanmar (MAM), Yangon, Myanmar
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Cambodia-Oxford Medical Research Unit (COMRU), Angkor Hospital for Children, Siem Reap, Cambodia
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Ombelet S, Barbé B, Affolabi D, Ronat JB, Lompo P, Lunguya O, Jacobs J, Hardy L. Best Practices of Blood Cultures in Low- and Middle-Income Countries. Front Med (Lausanne) 2019; 6:131. [PMID: 31275940 PMCID: PMC6591475 DOI: 10.3389/fmed.2019.00131] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Bloodstream infections (BSI) have a substantial impact on morbidity and mortality worldwide. Despite scarcity of data from many low- and middle-income countries (LMICs), there is increasing awareness of the importance of BSI in these countries. For example, it is estimated that the global mortality of non-typhoidal Salmonella bloodstream infection in children under 5 already exceeds that of malaria. Reliable and accurate diagnosis of these infections is therefore of utmost importance. Blood cultures are the reference method for diagnosis of BSI. LMICs face many challenges when implementing blood cultures, due to financial, logistical, and infrastructure-related constraints. This review aims to provide an overview of the state-of-the-art of sampling and processing of blood cultures, with emphasis on its use in LMICs. Laboratory processing of blood cultures is relatively straightforward and can be done without the need for expensive and complicated equipment. Automates for incubation and growth monitoring have become the standard in high-income countries (HICs), but they are still too expensive and not sufficiently robust for imminent implementation in most LMICs. Therefore, this review focuses on "manual" methods of blood culture, not involving automated equipment. In manual blood cultures, a bottle consisting of a broth medium supporting bacterial growth is incubated in a normal incubator and inspected daily for signs of growth. The collection of blood for blood culture is a crucial step in the process, as the sensitivity of blood cultures depends on the volume sampled; furthermore, contamination of the blood culture (accidental inoculation of environmental and skin bacteria) can be avoided by appropriate antisepsis. In this review, we give recommendations regarding appropriate blood culture sampling and processing in LMICs. We present feasible methods to detect and speed up growth and discuss some challenges in implementing blood cultures in LMICs, such as the biosafety aspects, supply chain and waste management.
Collapse
Affiliation(s)
- Sien Ombelet
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dissou Affolabi
- Centre National Hospitalier Universitaire—Hubert Koutoucou Maga, Cotonou, Benin
| | | | - Palpouguini Lompo
- Clinical Research Unit of Nanoro, Institut de Recherche en Science de la Santé, Nanoro, Burkina Faso
| | - Octavie Lunguya
- National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
- Department of Medical Biology, Cliniques Universitaires, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
9
|
Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K, Deborggraeve S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis 2019; 13:e0007416. [PMID: 31125353 PMCID: PMC6553789 DOI: 10.1371/journal.pntd.0007416] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. Methodology/Principle findings We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering different geographical origins) and one reference strain were grown in vitro to the exponential phase. Levels of orthologous proteins quantified in all four serovars and within the typhoidal and non-typhoidal groups were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Conclusions/Significance Our comparative proteome analysis indicated differences in the expression of surface proteins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins between Salmonella Typhimurium and Enteritidis. Our findings may guide future development of novel diagnostics and vaccines, as well as understanding of disease progression. With an estimated 20 million typhoid cases and an even higher number of non-typhoid cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the bacterial species Salmonella enterica and over 2500 different serovars exist, of which four are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella infections. The proteome is the entire set of proteins that is expressed by a genome and the core proteome are all orthologous proteins detected in a given sample set. In this study we have investigated differential expression of the core proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating molecules. Our comparative proteome analysis indicated differences in the expression of surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expression may guide the development of novel diagnostics and vaccines for Salmonella, as well as understanding of disease.
Collapse
Affiliation(s)
- Sara Saleh
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
10
|
Kim TH, Hwang HJ, Kim JH. Ultra-Fast On-Site Molecular Detection of Foodborne Pathogens Using a Combination of Convection Polymerase Chain Reaction and Nucleic Acid Lateral Flow Immunoassay. Foodborne Pathog Dis 2019; 16:144-151. [DOI: 10.1089/fpd.2018.2500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tae-Hoon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Jeong Hee Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update. Expert Rev Mol Diagn 2019; 19:161-173. [DOI: 10.1080/14737159.2019.1568241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | |
Collapse
|
12
|
Ajibola O, Mshelia MB, Gulumbe BH, Eze AA. Typhoid Fever Diagnosis in Endemic Countries: A Clog in the Wheel of Progress? MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E23. [PMID: 30344254 PMCID: PMC6037256 DOI: 10.3390/medicina54020023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Typhoid fever causes significant morbidity and mortality in developing countries, with inaccurate estimates in some countries affected, especially those situated in Sub-Saharan Africa. Disease burden assessment is limited by lack of a high degree of sensitivity and specificity by many current rapid diagnostic tests. Some of the new technologies, such as PCR and proteomics, may also be useful but are difficult for low-resource settings to apply as point-of-care diagnostics. Weak laboratory surveillance systems may also contribute to the spread of multidrug resistant Salmonella serovar Typhi across endemic areas. In addition, most typhoid-endemic countries employ serological tests that have low sensitivity and specificity making diagnosis unreliable. Here we review currently available typhoid fever diagnostics, and advances in serodiagnosis of S. Typhi.
Collapse
Affiliation(s)
- Olumide Ajibola
- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi, P.M.B. 1157 Kalgo, Kebbi State, Nigeria.
| | - Mari B Mshelia
- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi, P.M.B. 1157 Kalgo, Kebbi State, Nigeria.
| | - Bashar H Gulumbe
- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi, P.M.B. 1157 Kalgo, Kebbi State, Nigeria.
| | - Anthonius A Eze
- Department of Medical Biochemistry, University of Nigeria, Enugu Campus, Enugu 400241, Nigeria.
| |
Collapse
|