1
|
Ge D, Yin C, Jing J, Li Z, Liu L. Relationship Between the Host Plant Range of Insects and Symbiont Bacteria. Microorganisms 2025; 13:189. [PMID: 39858957 PMCID: PMC11767274 DOI: 10.3390/microorganisms13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The evolution of phytophagous insects has resulted in the development of feeding specializations that are unique to this group. The majority of current research on insect palatability has concentrated on aspects of ecology and biology, with relatively little attention paid to the role of insect gut symbiotic bacteria. Symbiont bacteria have a close relationship with their insect hosts and perform a range of functions. This research aimed to investigate the relationship between insect host plant range and gut symbiotic bacteria. A synthesis of the extant literature on the intestinal commensal bacteria of monophagous, oligophagous, and polyphagous tephritids revealed no evidence of a positive correlation between the plant host range and the diversity of larval intestinal microbial species. The gut symbionts of same species were observed to exhibit discrepancies between different literature sources, which were attributed to variations in multiple environmental factors. However, following beta diversity analysis, monophagy demonstrated the lowest level of variation in intestinal commensal bacteria, while polyphagous tephritids exhibited the greatest variation in intestinal commensal bacteria community variation. In light of these findings, this study proposes the hypothesis that exclusive or closely related plant hosts provide monophagy and oligophagy with a stable core colony over long evolutionary periods. The core flora is closely associated with host adaptations in monophagous and oligophagous tephritids, including nutritional and detoxification functions. This is in contrast to polyphagy, whose dominant colony varies in different environments. Our hypothesis requires further refinement of the data on the gut commensal bacteria of monophagy and oligophagy as the number of species and samples is currently limited.
Collapse
Affiliation(s)
- Doudou Ge
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongwen Yin
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jiayu Jing
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
2
|
Haytham H, Kamel C, Wafa D, Salma F, Naima BM, George T, Ameur C, Msaad Guerfali M. Probiotic consortium modulating the gut microbiota composition and function of sterile Mediterranean fruit flies. Sci Rep 2024; 14:1058. [PMID: 38212383 PMCID: PMC10784543 DOI: 10.1038/s41598-023-50679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.. There is evidence that the bacterial symbiont of insects may play critical roles in digestion, development, reproduction, and behavior. Probiotics are an increasingly common approach for restoring the intestinal microbiota structure and fitness parameters of sterile insects, particularly in the Vienna 8 genetic sexing strain (V8-GSS) of the Mediterranean fruit fly (medfly), Ceratitis capitata. Here, we explore the influence of the previously isolated bacterial strain, Lactococcus lactis, Enterobacter sp., and Klebsiella oxytoca, administration as probiotic consortia (LEK-PC) to the larvae and/or adult diet over the course of 20 rearing generations on fitness parameters. The experiment was carried out in four colonies: a control colony (C), one to which probiotics were not added, one to which probiotics were added to the larval medium (L+), one to which probiotics were added to the adult medium (A+), and one to which probiotics were added to both the larval and adult mediums (AL+). Emergence, flight ability, survival under stress conditions, and mating competitiveness, were all significantly improved by the LEK-PC treatment independently of the administration stage. The intestinal microbiota structure of various medfly V8-GSS colonies also underwent a significant shift, despite the fact that the core microbial community was unaffected by the LEK-PC administration stage, according to 16S metagenomics sequencing. Comparison of the metabolic function prediction and associated carbohydrate enzymes among colonies treated with "LEK-PC" showed an enrichment of metabolic functions related to carbohydrates, amino acids, cofactors, and vitamins metabolism, as well as, glycoside hydrolase enzymes in the AL+ colony compared to the control. This study enriches the knowledge regarding the benefits of probiotic treatment to modulate and restore the intestinal microbiota of C. capitata sterile males for a better effectiveness of the SIT.
Collapse
Affiliation(s)
- Hamden Haytham
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Charaabi Kamel
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Djobbi Wafa
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Fadhel Salma
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Bel Mokhtar Naima
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Tsiamis George
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Cherif Ameur
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia.
| |
Collapse
|
3
|
Chen Z, Wen S, Shen J, Wang J, Liu W, Jin X. Composition and diversity of the gut microbiota across different life stages of American cockroach ( Periplaneta americana). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:787-793. [PMID: 38037350 DOI: 10.1017/s0007485323000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Periplaneta americana, one of the most widely distributed insects all over the world, can survive and reproduce in harsh environment which may be closely related to the critical roles of intestinal microorganisms in its multiple physiological functions. However, the composition and structure of gut microbiota throughout different life stages and its effects on the strong resilient and environmental adaptability of P. americana remain unclear. In this study, the gut microbiota across life stages including ootheca (embryos), nymph and adult of P. americana were investigated by 16S rRNA high-throughput sequencing. Multivariate statistical analysis showed the richness and diversity of bacterial communities were significantly different among ootheca, nymph and adult stage of P. americana. Taxonomic analysis showed Blattabacterium was the dominant genus in bacterial community of ootheca while the nutrient absorption-related genera including Christensenellaceae and Ruminococcaceae showed high relative abundance in nymph samples. Moreover, functional prediction analysis showed the metabolic categories in ootheca might have more influence on the basic life activities of the host than improved production and viability, while it was more associated to the society activities, reproduction and development of host in nymph and adult. It was suggested that the gut microbiota in each life stage might meet the requirements for environmental adaptability and survival of P. americana via transforming the composition and structure with specific metabolic capabilities. Overall, these results provided a novel sight to better understand the strong vitality and adaptability throughout life stages of P. americana.
Collapse
Affiliation(s)
- Zhiyu Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Sihao Wen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
4
|
Lixiang C, Zhenya T, Weihua M, Jingjing W, Qiaofen H, Yongping Z, Xuyuan G, Hongsong C, Zhongshi Z. Comparison of bacterial diversity in Bactrocera cucurbitae (Coquillett) ovaries and eggs based on 16S rRNA sequencing. Sci Rep 2023; 13:11793. [PMID: 37479777 PMCID: PMC10362026 DOI: 10.1038/s41598-023-38992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Next-generation sequencing allows for fine-scale studies of microbial communities. Herein, 16S ribosomal RNA high-throughput sequencing was used to identify, classify, and predict the functions of the bacterial communities in the eggs and ovaries of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), which is a pest that infests a variety of cucurbit fruits at different developmental stages. Taxonomic analyses indicate that bacteria associated with B. cucurbitae represent 19 phyla, which were spread across different developmental stages. Specifically, the egg microbiota had a higher alpha diversity than those of microbiota in the primary and mature ovaries. Significant differences were not observed between the primary and mature ovaries in terms of their microbiota's alpha diversities. Pseudomonadota, Deinococcota, Bacteroidota, Bacillota, and Actinomycetota were the dominant phyla in all three developmental stages of B. cucurbitae, and Pseudomonadaceae and Enterobacteriaceae were the most abundant families. Owing to the unique physiological environment of the ovaries, the diversity of their bacterial community was significantly lower than that in the eggs. This study provides new insights into the structure and abundance of the microbiota in B. cucurbitae at different developmental stages and contributes to forming management strategies for this pest.
Collapse
Affiliation(s)
- Chen Lixiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tian Zhenya
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ma Weihua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wang Jingjing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Huang Qiaofen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Yongping
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gao Xuyuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chen Hongsong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Zhongshi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| |
Collapse
|
5
|
Hafsi A, Delatte H. Enterobactereaceae symbiont as facilitators of biological invasion: review on Tephritidae fruit flies. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Ravigné V, Becker N, Massol F, Guichoux E, Boury C, Mahé F, Facon B. Fruit fly phylogeny imprints bacterial gut microbiota. Evol Appl 2022; 15:1621-1638. [PMID: 36330298 PMCID: PMC9624087 DOI: 10.1111/eva.13352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
One promising avenue for reconciling the goals of crop production and ecosystem preservation consists in the manipulation of beneficial biotic interactions, such as between insects and microbes. Insect gut microbiota can affect host fitness by contributing to development, host immunity, nutrition, or behavior. However, the determinants of gut microbiota composition and structure, including host phylogeny and host ecology, remain poorly known. Here, we used a well-studied community of eight sympatric fruit fly species to test the contributions of fly phylogeny, fly specialization, and fly sampling environment on the composition and structure of bacterial gut microbiota. Comprising both specialists and generalists, these species belong to five genera from to two tribes of the Tephritidae family. For each fly species, one field and one laboratory samples were studied. Bacterial inventories to the genus level were produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample bacterial compositions were analyzed with recent network-based clustering techniques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in all samples, microbial profiles varied across samples, mainly in relation to fly identity and sampling environment. Alpha diversity varied across samples and was higher in the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping samples according to their microbial profiles. The resulting groups were very congruent with fly phylogeny, with a significant modulation of sampling environment, and with a very low impact of fly specialization. Such a strong imprint of host phylogeny in sympatric fly species, some of which share much of their host plants, suggests important control of fruit flies on their gut microbiota through vertical transmission and/or intense filtering of environmental bacteria.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRADUMR PHIMMontpellierFrance
- PHIMUniv MontpellierCIRADINRAEInstitut AgroIRDMontpellierFrance
| | | | - François Massol
- InsermCHU LilleInstitut Pasteur de LilleU1019 – UMR 9017Center for Infection and Immunity of Lille (CIIL)CNRSUniversité de LilleLilleFrance
| | - Erwan Guichoux
- INRAE ‐ UMR 1202 BIOGECO ‐ Plateforme Genome Transcriptome de BordeauxCestasFrance
| | - Christophe Boury
- INRAE ‐ UMR 1202 BIOGECO ‐ Plateforme Genome Transcriptome de BordeauxCestasFrance
| | - Frédéric Mahé
- CIRADUMR PHIMMontpellierFrance
- PHIMUniv MontpellierCIRADINRAEInstitut AgroIRDMontpellierFrance
| | | |
Collapse
|
7
|
Arias MB, Hartle-Mougiou K, Taboada S, Vogler AP, Riesgo A, Elfekih S. Unveiling biogeographic patterns in the worldwide distributed Ceratitis capitata (medfly) using populations genomics and microbiome composition. Mol Ecol 2022; 31:4866-4883. [PMID: 35838255 DOI: 10.1111/mec.16616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean medfly, Ceratitis capitata, is one of the most damaging representatives of a group of rapidly expanding species in the Tephritidae family, due to their wide host range and high invasiveness potential. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate the population genomic structure and phylogeographic history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia. A total of 1,907 single nucleotide polymorphisms (SNPs) were used to identify two genetic clusters separating native and introduced ranges, consistent with previous findings. In the introduced range, all individuals were assigned to one genetic cluster except for those in Brazil, which showed introgression of an additional genetic cluster that also appeared in South Africa, and which could not be previously identified using microsatellite markers. Moreover, we assessed the microbial composition variations in medfly populations from selected sampling sites using amplicon sequencing of the 16S ribosomal RNA (V4 region). Microbiome composition and structure were highly similar across geographic regions and host plants, and only the Brazilian specimens showed increased diversity levels and a unique composition of its microbiome compared to other sampling sites. The unique SNP patterns and microbiome features in the Brazilian specimens could point to a direct migration route from Africa with subsequent adaptation of the microbiota to the specific conditions present in Brazil. These findings significantly improve our understanding of the evolutionary history of the global medfly invasions and their adaptation to newly colonised environments.
Collapse
Affiliation(s)
- María Belén Arias
- Department of Life Sciences, Natural History Museum, London, UK.,School of Life Sciences, University of Essex, Colchester, UK
| | - Katherine Hartle-Mougiou
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Ciencias de la Vida, Universidad de Alcalá de Henares, Madrid, Spain
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Biodiversity and Evolutionary Biology, Museum Nacional de Ciencias Naturales, Madrid, Spain
| | - Samia Elfekih
- CSIRO Health & Biosecurity, Black Mountain, Canberra, Australia.,PEARG, School of BioSciences, Bio21 Institute, The University of Melbourne VIC, Australia
| |
Collapse
|
8
|
Bel Mokhtar N, Catalá-Oltra M, Stathopoulou P, Asimakis E, Remmal I, Remmas N, Maurady A, Britel MR, García de Oteyza J, Tsiamis G, Dembilio Ó. Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis capitata. Front Microbiol 2022; 13:919760. [PMID: 35847076 PMCID: PMC9283074 DOI: 10.3389/fmicb.2022.919760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory adaptation process used in sterile insect technique (SIT) programs can exert a significant impact on the insect-gut microbiome relationship, which may negatively impact the quality and performance of the fly. In the present study, changes in the gut microbiota that occur through laboratory adaptation of two Ceratitis capitata populations were investigated: Vienna 8 genetic sexing strain (GSS), a long-established control line, and a wild population recently introduced to laboratory conditions. The bacterial profiles were studied for both strains using amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in larvae and in the gastrointestinal tract of teneral (1 day) and adults (5 and 15 days) reared under laboratory conditions for 14 generations (F0-F13). Findings demonstrated the development of distinct bacterial communities across the generations with differences in the bacterial composition, suggesting a strong impact of laboratory adaptation on the fly bacteriome. Moreover, different bacterial profiles were observed between wild and Vienna 8 FD-GSS displaying different patterns between the developmental stages. Proteobacteria, mainly members of the Enterobacteriaceae family, represented the major component of the bacterial community followed by Firmicutes (mainly in Vienna 8 FD-GSS adults) and Chlamydiae. The distribution of these communities is dynamic across the generations and seems to be strain- and age-specific. In the Vienna 8 FD-GSS population, Providencia exhibited high relative abundance in the first three generations and decreased significantly later, while Klebsiella was relatively stable. In the wild population, Klebsiella was dominant across most of the generations, indicating that the wild population was more resistant to artificial rearing conditions compared with the Vienna 8 FD-GSS colony. Analysis of the core bacteriome revealed the presence of nine shared taxa between most of the examined medfly samples including Klebsiella, Providencia, Pantoea, and Pseudomonas. In addition, the operational taxonomic unit co-occurrence and mutual exclusion networks of the wild population indicated that most of the interactions were classified as co-presence, while in the Vienna 8 FD-GSS population, the number of mutual exclusions and co-presence interactions was equally distributed. Obtained results provided a thorough study of the dynamics of gut-associated bacteria during the laboratory adaptation of different Ceratitis capitata populations, serving as guidance for the design of colonization protocols, improving the effectiveness of artificial rearing and the SIT application.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Imane Remmal
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amal Maurady
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | | | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| |
Collapse
|
9
|
Cappelli A, Petrelli D, Gasperi G, Serrao AGM, Ricci I, Damiani C, Favia G. Bacterial Symbionts in Ceratitis capitata. INSECTS 2022; 13:insects13050474. [PMID: 35621808 PMCID: PMC9147879 DOI: 10.3390/insects13050474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Ceratitis capitata (Diptera: Tephritidae) is responsible for extensive damage in agriculture with important economic losses. Several strategies have been proposed to control this insect pest including insecticides and the Sterile Insect Technique. Traditional control methods should be implemented by innovative tools, among which those based on insect symbionts seem very promising. Our study aimed to investigate, through the 16S Miseq analysis, the microbial communities associated with selected organs in three different medfly populations to identify possible candidates to develop symbiont-based control approaches. Our results confirm that Klebsiella and Providencia are the dominant bacteria in guts, while a more diversified microbial community has been detected in reproductive organs. Concertedly, we revealed for the first time the presence of Chroococcidiopsis and Propionibacterium as stable components of the medfly’s microbiota. Additionally, in the reproductive organs, we detected Asaia, a bacterium already proposed as a tool in the Symbiotic Control of Vector-Borne Diseases. A strain of Asaia, genetically modified to produce a green fluorescent protein, was used to ascertain the ability of Asaia to colonize specific organs of C. capitata. Our study lays the foundation for the development of control methods for C. capitata based on the use of symbiont bacteria.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032 Camerino, Italy; (A.C.); (A.G.M.S.); (I.R.); (G.F.)
| | - Dezemona Petrelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Aurelio Giuseppe Maria Serrao
- School of Biosciences & Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032 Camerino, Italy; (A.C.); (A.G.M.S.); (I.R.); (G.F.)
| | - Irene Ricci
- School of Biosciences & Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032 Camerino, Italy; (A.C.); (A.G.M.S.); (I.R.); (G.F.)
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032 Camerino, Italy; (A.C.); (A.G.M.S.); (I.R.); (G.F.)
- Correspondence: ; Tel.: +39-073-7403269
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032 Camerino, Italy; (A.C.); (A.G.M.S.); (I.R.); (G.F.)
| |
Collapse
|
10
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
11
|
Campos C, Gomes L, Rei FT, Nobre T. Olive Fruit Fly Symbiont Population: Impact of Metamorphosis. Front Microbiol 2022; 13:868458. [PMID: 35509306 PMCID: PMC9058165 DOI: 10.3389/fmicb.2022.868458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
The current symbiotic view of the organisms also calls for new approaches in the way we perceive and manage our pest species. The olive fruit fly, the most important olive tree pest, is dependent on an obligate bacterial symbiont to its larvae development in the immature fruit. This symbiont, Candidatus (Ca.) Erwinia dacicola, is prevalent throughout the host life stages, and we have shown significant changes in its numbers due to olive fruit fly metamorphosis. The olive fruit fly microbiota was analyzed through 16S metabarcoding, at three development stages: last instar larvae, pupae, and adult. Besides Ca. E. dacicola, the olive fruit flies harbor a diverse bacterial flora of which 13 operational taxonomic units (grouped in 9 genera/species) were now determined to persist excluding at metamorphosis (Corynebacterium sp., Delftia sp., Enhydrobacter sp., Kocuria sp., Micrococcus sp., Propionibacterium sp., Pseudomonas sp., Raoultella sp., and Staphylococcus sp.). These findings open a new window of opportunities in symbiosis-based pest management.
Collapse
Affiliation(s)
- Catarina Campos
- Laboratory of Molecular Biology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Luis Gomes
- MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Fernando T. Rei
- Laboratory of Entomology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Tania Nobre
- Laboratory of Entomology, MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| |
Collapse
|
12
|
Improving Natural Enemy Selection in Biological Control through Greater Attention to Chemical Ecology and Host-Associated Differentiation of Target Arthropod Pests. INSECTS 2022; 13:insects13020160. [PMID: 35206733 PMCID: PMC8877252 DOI: 10.3390/insects13020160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022]
Abstract
Host-associated differentiation (HAD) refers to cases in which genetically distinct populations of a species (e.g., herbivores or natural enemies) preferentially reproduce or feed on different host species. In agroecosystems, HAD often results in unique strains or biotypes of pest species, each attacking different species of crops. However, HAD is not restricted to pest populations, and may cascade to the third trophic level, affecting host selection by natural enemies, and ultimately leading to HAD within natural enemy species. Natural enemy HAD may affect the outcomes of biological control efforts, whether classical, conservation, or augmentative. Here, we explore the potential effects of pest and natural enemy HAD on biological control in agroecosystems, with emphases on current knowledge gaps and implications of HAD for selection of biological control agents. Additionally, given the importance of semiochemicals in mediating interactions between trophic levels, we emphasize the role of chemical ecology in interactions between pests and natural enemies, and suggest areas of consideration for biological control. Overall, we aim to jump-start a conversation concerning the relevance of HAD in biological control by reviewing currently available information on natural enemy HAD, identifying challenges to incorporating HAD considerations into biological control efforts, and proposing future research directions on natural enemy selection and HAD.
Collapse
|
13
|
Majumder R, Taylor PW, Chapman TA. Dynamics of the Queensland Fruit Fly Microbiome through the Transition from Nature to an Established Laboratory Colony. Microorganisms 2022; 10:microorganisms10020291. [PMID: 35208745 PMCID: PMC8877439 DOI: 10.3390/microorganisms10020291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
The transition from nature to laboratory or mass rearing can impose significant physiological and evolutionary impact on insects. The Queensland fruit fly (also known as ‘Qfly’), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a serious economic pest that presents major challenges for horticulture industries in Australia. The sterile insect technique (SIT) is being developed to manage outbreaks in regions that remain free of Qfly and to suppress populations in regions where this species is endemic. The biology of Qfly is intimately connected to its microbiome. Therefore, changes in the microbiome that occur through domestication have implications for SIT. There are numerous studies of the microbiome in Qfly larvae and adults, but there is little information on how the microbiome changes as Qfly laboratory colonies are established. In this study, high-throughput Illumina sequencing was used to assess the Qfly microbiome in colonies reared from wild larvae, collected from fruit, for five generations, on a gel-based larval diet. Beta diversity analysis showed that the bacterial communities from Generation 5 (G5) clustered separately from earlier generations. At the genus level, bacterial communities were significantly different between the generations and mostly altered at G5. However, communities were found similar at phyla to family taxonomic levels. We observed high abundance of Morganella and Burkholderia at the genus level in the larval and pupal stages respectively at G5, but these were not detected in earlier generations. Overall, our findings demonstrate that the domestication process strongly affects the Qfly microbiome and prompts questions about the functional relationship between the Qfly and its microbiome, as well as implications for the performance of insects that have been domesticated and mass-reared for SIT programs.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2567, Australia
- Correspondence:
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2567, Australia
| |
Collapse
|
14
|
Malacrinò A. Host species identity shapes the diversity and structure of insect microbiota. Mol Ecol 2021; 31:723-735. [PMID: 34837439 DOI: 10.1111/mec.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
As for most of the life that inhabits our planet, microorganisms play an essential role in insect nutrition, reproduction, defence, and support their host in many other functions. More recently, we assisted to an exponential growth of studies describing the taxonomical composition of bacterial communities across insects' phylogeny. However, there is still an outstanding question that needs to be answered: Which factors contribute most to shape insects' microbiomes? This study tries to find an answer to this question by taking advantage of publicly available sequencing data and reanalysing over 4000 samples of insect-associated bacterial communities under a common framework. Results suggest that insect taxonomy has a wider impact on the structure and diversity of their associated microbial communities than the other factors considered (diet, sex, life stage, sample origin and treatment). However, when specifically testing for signatures of codiversification of insect species and their microbiota, analyses found weak support for this, suggesting that while insect species strongly drive the structure and diversity of insect microbiota, the diversification of those microbial communities did not follow their host's phylogeny. Furthermore, a parallel survey of the literature highlights several methodological limitations that need to be considered in the future research endeavours.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
15
|
Msaad Guerfali M, Charaabi K, Hamden H, Djobbi W, Fadhl S, Mosbah A, Cherif A. Probiotic based-diet effect on the immune response and induced stress in irradiated mass reared Ceratitis capitata males (Diptera: Tephritidae) destined for the release in the sterile insect technique programs. PLoS One 2021; 16:e0257097. [PMID: 34506561 PMCID: PMC8432743 DOI: 10.1371/journal.pone.0257097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Ceratitis capitata (medfly) is one of the most devastating crop pests worldwide. The Sterile Insect Technique (SIT) is a control method that is based on the mass rearing of males, their sterilization, and release in the field. However, the effectiveness of the technique depends on the quality of the released males and their fitness. We previously isolated and selected a probiotic bacteria (Enterobacter sp.), from wild-caught medflies, according to criteria that improved biological quality traits of reared medfly males.We firstly evaluated the impact of the irradiation on the expression of different immune and stress genes in the medfly sterile males. Expression was measured at differents time points ranging from 0 to 168 h after irradiation to capture the response of genes with distinct temporal expression patterns. Then, we supplemented the larval diet with previously isolated Enterobacter sp.strain, live and autoclaved at various concentrations to see whether the probiotic treatments affect, through their protective role, the gene expression level, and quality traits. The irradiation had significant effect on the genes attacin, cecropin, PGPR-LC, hsp23, and hsp70 level expression. The expression of attacin and PGPR-LC was up-regulated while that of cecropin was down-regulated. Hsp genes showed decreased levels between 0 and 18 h to peak at 72 h. However, the supplementation of the probiotic strain, either live or autoclaved, was statistically significant only for attacingene. However, significant interaction time x probiotic was noticed for attacin, cecropin, hsp23 and hsp70. The probiotic treatments also improved the quality control parameters like pupal weight. From this work we can conclude that a consortium of parabiotics (autoclaved probiotics) treatment will be recommended in insectaries considering both the beneficial effects on mass reared insects and its general safety for insectary workers and for environment.
Collapse
Affiliation(s)
- Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Wafa Djobbi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Salma Fadhl
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Amor Mosbah
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
16
|
Aluja M, Zamora-Briseño JA, Pérez-Brocal V, Altúzar-Molina A, Guillén L, Desgarennes D, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Alonso-Sánchez AG, Moya A. Metagenomic Survey of the Highly Polyphagous Anastrepha ludens Developing in Ancestral and Exotic Hosts Reveals the Lack of a Stable Microbiota in Larvae and the Strong Influence of Metamorphosis on Adult Gut Microbiota. Front Microbiol 2021; 12:685937. [PMID: 34413837 PMCID: PMC8367737 DOI: 10.3389/fmicb.2021.685937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts (“criollo” peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species’ gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the “toxic” occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.
Collapse
Affiliation(s)
- Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Alexandro G Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universidad de Valencia-CSIC, Valencia, Spain
| |
Collapse
|
17
|
Zhang D, Chen S, Abd-Alla AMM, Bourtzis K. The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Front Microbiol 2021; 12:671699. [PMID: 34305838 PMCID: PMC8299835 DOI: 10.3389/fmicb.2021.671699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The sterile insect technique (SIT) has been developed as a component of area-wide integrated pest management approaches to control the populations of Aedes albopictus, a mosquito vector capable of transmission of dengue, Zika and chikungunya viruses. One of the key factors for the success of SIT is the requirement of high biological quality sterile males, which upon their release would be able to compete with wild males for matings with wild females in the field. In insects, gut bacteriome have played a catalytic role during evolution significantly affecting several aspects of their biology and ecology. Given the importance of gut-associated bacterial species for the overall ecological fitness and biological quality of their hosts, it is of interest to understand the effects of radiation on the gut-associated bacteriome of Ae. albopictus. In this study, the effect of radiation on the composition and density levels of the gut-associated bacterial species at the pupal stage as well as at 1- and 4-day-old males and females was studied using 16S rRNA gene-based next generation sequencing (NGS) and quantitative PCR (qPCR) approaches. Age, diet, sex, and radiation were shown to affect the gut-associated bacterial communities, with age having the highest impact triggering significant changes on bacterial diversity and clustering among pupae, 1- and 4-day-old adult samples. qPCR analysis revealed that the relative density levels of Aeromonas are higher in male samples compared to all other samples and that the irradiation triggers an increase in the density levels of both Aeromonas and Elizabethkingia in the mosquito gut at specific stages. Our results suggest that Aeromonas could potentially be used as probiotics to enhance protandry and sex separation in support of SIT applications against Ae. albopictus, while the functional role of Elizabethkingia in respect to oxidative stress and damage in irradiated mosquitoes needs further investigation.
Collapse
Affiliation(s)
- Dongjing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Shi Chen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institute of Biological Control, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
18
|
Role of Endocrine System in the Regulation of Female Insect Reproduction. BIOLOGY 2021; 10:biology10070614. [PMID: 34356469 PMCID: PMC8301000 DOI: 10.3390/biology10070614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
The proper synthesis and functioning of ecdysteroids and juvenile hormones (JHs) are very important for the regulation of vitellogenesis and oogenesis. However, their role and function contrast among different orders, and even in the same insect order. For example, the JH is the main hormone that regulates vitellogenesis in hemimetabolous insect orders, which include Orthoptera, Blattodea, and Hemiptera, while ecdysteroids regulate the vitellogenesis among the insect orders of Diptera, some Hymenoptera and Lepidoptera. These endocrine hormones also regulate each other. Even at some specific stage of insect life, they positively regulate each other, while at other stages of insect life, they negatively control each other. Such positive and negative interaction of 20-hydroxyecdysone (20E) and JH is also discussed in this review article to better understand the role of these hormones in regulating the reproduction. Therefore, the purpose of the present review is to deeply understand the complex interaction of endocrine hormones with each other and with the insulin signaling pathway. The role of microbiomes in the regulation of the insect endocrine system is also reviewed, as the endocrine hormones are significantly affected by the compounds produced by the microbiota.
Collapse
|
19
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Schissel M, Best R, Liesemeyer S, Tan YD, Carlson DJ, Shaffer JJ, Avuthu N, Guda C, Carlson KA. Effect of Nora virus infection on native gut bacterial communities of Drosophila melanogaster. AIMS Microbiol 2021; 7:216-237. [PMID: 34250376 PMCID: PMC8255909 DOI: 10.3934/microbiol.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal microflora is a key component in the maintenance of health and longevity across many species. In humans and mice, nonpathogenic viruses present in the gastrointestinal tract enhance the effects of the native bacterial microbiota. However, it is unclear whether nonpathogenic gastrointestinal viruses, such as Nora virus that infects Drosophila melanogaster, lead to similar observations. Longevity analysis of Nora virus infected (NV+) and uninfected (NV-) D. melanogaster in relationship to presence (B+) or absence (B-) of the native gut bacteria using four different treatment groups, NV+/B+, NV+/B-, NV-/B+, and NV-/B-, was conducted. Data from the longevity results were tested via Kaplan-Meier analysis and demonstrated that Nora virus can be detrimental to the longevity of the organism, whereas bacterial presence is beneficial. These data led to the hypothesis that gastrointestinal bacterial composition varies from NV+ to NV- flies. To test this, NV+ and NV- virgin female flies were collected and aged for 4 days. Surface sterilization followed by dissections of the fat body and the gastrointestinal tract, divided into crop (foregut), midgut, and hindgut, were performed. Ribosomal 16S DNA samples were sequenced to determine the bacterial communities that comprise the microflora in the gastrointestinal tract of NV+ and NV- D. melanogaster. When analyzing operational taxonomic units (OTUs), the data demonstrate that the NV+ samples consist of more OTUs than NV- samples. The NV+ samples were both more rich and diverse in OTUs compared to NV-. When comparing whole body samples to specific organs and organ sections, the whole fly was more diverse in OTUs, whereas the crop was the most rich. These novel data are pertinent in describing where Nora virus infection may be occurring within the gastrointestinal tract, as well as continuing discussion between the relationship of persistent viral and bacterial interaction.
Collapse
Affiliation(s)
- Makayla Schissel
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Rebecca Best
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Shelby Liesemeyer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Darby J. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Julie J. Shaffer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Kimberly A. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| |
Collapse
|
21
|
Sivakala KK, Jose PA, Matan O, Zohar-Perez C, Nussinovitch A, Jurkevitch E. In vivo predation and modification of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) gut microbiome by the bacterial predator Bdellovibrio bacteriovorus. J Appl Microbiol 2021; 131:2971-2980. [PMID: 34061420 DOI: 10.1111/jam.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
AIMS The Mediterranean fruit fly (the medfly) causes major losses of agricultural fruits. Its microbiome is mainly composed of various Enterobacteriaceae that contribute to nutrient acquisition and are associated with the fly's development. Moreover, the performance of males produced by the sterile insect technique is improved by providing mass-reared insects with specific gut bacteria. Bdellovibrio and like organisms (BALOs) are obligate predators of Gram-negative bacteria that efficiently preys upon diverse Enterobacteriaceae, making it a potential disruptor of the fly's microbiome. We hypothesized that the fly's microbiome can be targeted to control the insect. METHODS AND RESULTS Inoculation of B. bacteriovorus as free-swimming or encapsulated cells into gut extracts significantly reduced gut bacterial abundance, sustaining predator survival. Similar treatments applied to adult flies showed that the predators also survived in the gut environment. While addition of the predators did not affect total gut bacterial abundance and end-point fly mortality, a shift in the gut community structure, measured by high-throughput community sequencing was observed. CONCLUSIONS The bacterial predator of bacteria B. bacteriovorus can prey and survive in vivo in the medfly gut. SIGNIFICANCE AND IMPACT OF THE STUDY This study establishes the potential of BALOs to affect the microbiome of insect hosts.
Collapse
Affiliation(s)
- K K Sivakala
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - P A Jose
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - O Matan
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - C Zohar-Perez
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - A Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - E Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Kang WN, Jin L, Fu KY, Guo WC, Li GQ. A switch of microbial flora coupled with ontogenetic niche shift in Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21782. [PMID: 33724519 DOI: 10.1002/arch.21782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.
Collapse
Affiliation(s)
- Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Pan HB, Li MY, Wu W, Wang ZL, Yu XP. Host-Plant Induced Shifts in Microbial Community Structure in Small Brown Planthopper, Laodelphax striatellus (Homoptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:937-946. [PMID: 33459777 DOI: 10.1093/jee/toaa316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 06/12/2023]
Abstract
Microbiome associated with insects play vital roles in host ecology and physiology. The small brown planthopper (SBPH), Laodelphax striatellus, is a polyphagous insect pest that caused enormous damage to a wide range of cereal crops. Previous studies have assessed the effects of environmental factors, such as antibiotics, insecticide, and geographical habitat on the bacterial composition of SBPH. However, the influence of host plants on the microbial community in SBPH still unclear. Here, we characterized and compared the microbial community in three SBPH populations feeding on rice, barley, and wheat, respectively, using high-throughput amplicon sequencing. Our observations revealed that the microbiome harbored by SBPH was abundant and diverse. Ten phyla comprising 141 genera of bacteria were annotated, and four fungal phyla consisting of 47 genera were assigned. The bacteria belonging to the phylum Proteobacteria were the most prevalent and the fungi with the highest abundance were from the order Hypocreales. Comparative analysis showed that host plants could significantly induce structural changes of SBPH microbiome. Significant differences in abundance were observed in two main bacterial orders (Rickettsiales and Rhodospirillales) and three fungal classes (Sordariomycetes, an unclassified class in Ascomycota and Eurotiomycetes) among three host-adapted SBPH populations. Our results could broaden our understanding of interactions among SBPH, its microbial associates and host plants, and also represented the basis of future SBPH biological management.
Collapse
Affiliation(s)
- Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Noman MS, Shi G, Liu LJ, Li ZH. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:363-376. [PMID: 32091660 DOI: 10.1111/1744-7917.12768] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Fruit flies usually harbor diverse communities of bacteria in their digestive systems, which are known to play a significant role in their fitness. However, little information is available on Zeugodacus tau, a polyphagous pest worldwide. This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z. tau. Cultured bacteria were identified using the conventional method, and all bacteria were identified by high-throughput technologies (16S ribosomal RNA gene sequencing of V3-V4 region). A total of six bacterial phyla were identified in larvae, pupae, and male and female adult flies, which were distributed into 14 classes, 32 orders, 58 families and 96 genera. Proteobacteria was the most represented phylum in all the stages except larvae. Enterobacter, Klebsiella, Providencia, and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies, and Enterobacter was found to be the main genus. After being fed with antibiotics from the first instar larvae, bacterial diversity changed markedly in the adult stage. Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs, probably due to the alteration of the microbiota. These findings provide the cornerstone for unexplored research on bacterial function in Z. tau, which will help to develop an environmentally friendly management technique for this kind of harmful insect.
Collapse
Affiliation(s)
- Md Shibly Noman
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ge Shi
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Jun Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhi-Hong Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Choudhary JS, Naaz N, Prabhakar CS, Das B, Singh AK, Bhatt BP. High Taxonomic and Functional Diversity of Bacterial Communities Associated with Melon Fly, Zeugodacus cucurbitae (Diptera: Tephritidae). Curr Microbiol 2021; 78:611-623. [PMID: 33392673 DOI: 10.1007/s00284-020-02327-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
The next generation sequencing (NGS) approach has facilitated the investigations of gut microbiota with high throughput and resolution. The present study was focused on the taxonomic and functional characterization of bacterial community associated with different developmental stages of melon fly, Zeugodacus cucurbitae using 16S ribosomal RNA (rRNA) gene amplicons metagenomics. Z. cucurbitae is considered an invasive and most staid polyphagous pest of cucurbitaceous and other related crops. The taxonomic analysis of highly variable V3-V4 region of bacterial 16S rRNA gene sequencing indicated that the bacterial community associated with Z. cucurbitae consists of a total of 23 bacterial phyla (including unclassified and unassigned bacteria), comprising 32 classes, 69 orders, 99 families and 130 genera. Proteobacteria, Firmicutes, Actinobacteria and Tenericutes were dominant phyla of which family, Enterobacteriaceae was the most abundant in the larval and adult female stages, whereas Mycoplasmataceae was the dominant in the pupal stage. In larval stages of Z. cucurbitae, genus Providencia and Comamonas were the most abundant. However, genus Candidatus-Bacilloplasma and Klebsiella were the most dominant in pupae and adult females of Z. cucurbitae, respectively. PICRUSt analysis conducted for prediction of metabolic activities revealed that associated microbiota were involved in membrane transport, carbohydrate metabolism, amino acid metabolism, energy metabolism, replication and repair processes as well as cellular processes and signalling. The higher number of OTUs was annotated for phosphoglycerate mutase and transketolase in adult females followed by larval stages, which may support the digestive function of the microbiota in larvae and adult females. Our findings provide insights about the high variation in microbiota across developmental stages and basis for microbiota-based management strategies of fruit flies.
Collapse
Affiliation(s)
- Jaipal S Choudhary
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.
| | - Naiyar Naaz
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.,University Department of Botany, Ranchi University, Morabadi, Ranchi, Jharkhand, 843 008, India
| | - Chandra S Prabhakar
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.,Department of Entomology, Veer Kunwar Singh College of Agriculture, Dumraon (Bihar Agricultural University, Sabour), Buxar, Bihar, 802 136, India
| | - Bikash Das
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India
| | - Arun K Singh
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India
| | - B P Bhatt
- ICAR-Research Complex for Eastern Region, ICAR Parisar, P. O. Bihar Veterinary College, Patna, Bihar, 800 014, India
| |
Collapse
|
26
|
Nikolouli K, Augustinos AA, Stathopoulou P, Asimakis E, Mintzas A, Bourtzis K, Tsiamis G. Genetic structure and symbiotic profile of worldwide natural populations of the Mediterranean fruit fly, Ceratitis capitata. BMC Genet 2020; 21:128. [PMID: 33339507 PMCID: PMC7747371 DOI: 10.1186/s12863-020-00946-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mediterranean fruit fly, Ceratitis capitata, is a cosmopolitan agricultural pest of worldwide economic importance and a model for the development of the Sterile Insect Technique (SIT) for fruit flies of the Tephritidae family (Diptera). SIT relies on the effective mating of laboratory-reared strains and natural populations, and therefore requires an efficient mass-rearing system that will allow for the production of high-quality males. Adaptation of wild flies to an artificial laboratory environment can be accompanied by negative effects on several life history traits through changes in their genetic diversity and symbiotic communities. Such changes may lead to reduced biological quality and mating competitiveness in respect to the wild populations. Profiling wild populations can help understand, and maybe reverse, deleterious effects accompanying laboratory domestication thus providing insects that can efficiently and effectively support SIT application. RESULTS In the present study, we analyzed both the genetic structure and gut symbiotic communities of natural medfly populations of worldwide distribution, including Europe, Africa, Australia, and the Americas. The genetic structure of 408 individuals from 15 distinct populations was analyzed with a set of commonly used microsatellite markers. The symbiotic communities of a subset of 265 individuals from 11 populations were analyzed using the 16S rRNA gene-based amplicon sequencing of single individuals (adults). Genetic differentiation was detected among geographically distant populations while adults originated from neighboring areas were genetically closer. Alpha and beta diversity of bacterial communities pointed to an overall reduced symbiotic diversity and the influence of the geographic location on the bacterial profile. CONCLUSIONS Our analysis revealed differences both in the genetic profile and the structure of gut symbiotic communities of medfly natural populations. The genetic analysis expanded our knowledge to populations not analyzed before and our results were in accordance with the existing scenarios regarding this species expansion and colonization pathways. At the same time, the bacterial communities from different natural medfly populations have been characterized, thus broadening our knowledge on the microbiota of the species across its range. Genetic and symbiotic differences between natural and laboratory populations must be considered when designing AW-IPM approaches with a SIT component, since they may impact mating compatibility and mating competitiveness of the laboratory-reared males. In parallel, enrichment from wild populations and/or symbiotic supplementation could increase rearing productivity, biological quality, and mating competitiveness of SIT-important laboratory strains.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.
- Department of Biology, University of Patras, 26504, Patras, Greece.
- Present address: Department of Plant Protection, Hellenic Agricultural Organization-Demeter, Institute of Industrial and Forage Crops, 26442, Patras, Greece.
| | | | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece.
| |
Collapse
|
27
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
28
|
Wang ZL, Wang TZ, Zhu HF, Pan HB, Yu XP. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. INSECT SCIENCE 2020; 27:883-894. [PMID: 31612637 DOI: 10.1111/1744-7917.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high-throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender-dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tian-Zhao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hang-Feng Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
29
|
Wang ZL, Pan HB, Wu W, Li MY, Yu XP. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch Microbiol 2020; 203:325-333. [PMID: 32940717 DOI: 10.1007/s00203-020-02013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Gut microbiota plays vital roles in the development, evolution and environmental adaptation of the host insects. The brown planthopper (BPH) is one of the most destructive pests of rice, but little is known about its gut microbiota. In this study, we investigated the gut bacterial communities in two BPH populations feeding on susceptible and resistant rice varieties by high-throughput amplicon sequencing. Our results revealed that the gut bacterial communities in BPH were species diverse. A total of 29 phyla and 367 genera were captured, with Proteobacteria and Acinetobacter being the most prominent phylum and genus, respectively. Comparative analysis showed that significant differences in the profile of gut bacterial communities existed between the two BPH populations. The species richness detected in the population feeding on the resistant rice variety was significantly higher than that in the population rearing on the susceptible rice variety. Although the most dominant gut bacteria at all taxonomic levels showed no significant differences between the two BPH populations, the relative abundances of two subdominant phyla (Firmicutes and Bacteroidetes) and two subdominant classes (Bacteroidia and Clostridia) were significantly different. FAPROTAX analysis further indicated that host rice varieties might induce changes of the gut bacterial flora in BPH, as significant differences in five metabolism-related functional categories (fermentation, methylotrophy, xylanolysis, nitrate reduction and ureolysis) were detected between the two BPH populations. Our results are informative for studies which focused on the interactions between BPH and its symbiotic microbes and could also provide the basis of future BPH biological management.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Majumder R, Sutcliffe B, Adnan SM, Mainali B, Dominiak BC, Taylor PW, Chapman TA. Artificial Larval Diet Mediates the Microbiome of Queensland Fruit Fly. Front Microbiol 2020; 11:576156. [PMID: 33042092 PMCID: PMC7526507 DOI: 10.3389/fmicb.2020.576156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Larval diets used for artificial rearing can have a significant effect on insect biology. The Queensland fruit fly (aka "Qfly"), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is one of the greatest challenges for fruit growers in Australia. The sterile insect technique (SIT) is being developed to manage outbreaks in regions that remain free of Qfly and to reduce populations in regions where this species is endemic. Factory scale rearing is essential for SIT; however, artificial larval diets are known to affect the microbiome of Qfly, which may then affect fly performance. In this study, high-throughput Illumina sequencing was used to assess the Qfly microbiome in colonies reared, for five generations from nature, on two common artificial diets (carrot and gel). At generation five (G5), the microbiome was assessed in larvae, pupae, adult males and adult females and standard fly quality control parameters were assessed together with additional performance measures of mating propensity and survival under nutritional stress. At the genus level, bacterial communities were significantly different between the colonies reared on the two larval diets. However, communities converged at Phyla to family taxonomic levels. Bacterial genera of Morganella, Citrobacter, Providencia, and Burkholderia were highly abundant in all developmental stages of Qfly reared on the gel diet, when compared to the carrot diet. Despite abundance of these genera, a greater percentage of egg hatching, heavier pupal weight and a higher percentage of fliers were found in the Qfly reared on the gel diet. Mating propensity and survival under nutritional stress was similar for adult Qfly that had been reared on the two larval diets. Overall, our findings demonstrate that the artificial larval diet strongly influences the microbiome and quality control measures of Qfly, with likely downstream effects on performance of flies released in SIT programs.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| | - Brodie Sutcliffe
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| | - Saleh Mohammad Adnan
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bishwo Mainali
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Bernard C. Dominiak
- Biosecurity and Food Safety, NSW Department of Primary Industries, Orange, NSW, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| |
Collapse
|
31
|
Naaz N, Choudhary JS, Choudhary A, Dutta A, Das B. Developmental stage-associated microbiota profile of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing. 3 Biotech 2020; 10:390. [PMID: 32832340 DOI: 10.1007/s13205-020-02381-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
The different developmental stage-associated microbiota of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae), was characterized using 16S rRNA gene (V3-V4 region) metabarcoding on the Illumina HiSeq platform. Taxonomically, at 97% similarity, there were total 16 bacterial phyla, comprising of 24 classes, 55 orders, 90 families and 134 genera. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the most abundant phyla with Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia and Bacilli being the most abundant classes. The bacterial genus Enterobacter was dominant in the larval and adult stages and Pseudomonas in the pupal stage. A total of 2645 operational taxonomic units (OTUs) were identified, out of which 151 OTUs (core microbiota) were common among all the developmental stages of B. zonata. The genus Enterobacter, Klebsiella and Pantoea were dominant among the core microbiota. PICURSt analysis predicted that microbiota associated with B. zonata may be involved in membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair processes as well as in cellular processes and signalling. The microbiota that was shared by all the developmental stages of B. zonata in the present study could be targeted and the foundation for research on microbiota-based management of fruit flies.
Collapse
|
32
|
De Cock M, Virgilio M, Vandamme P, Bourtzis K, De Meyer M, Willems A. Comparative Microbiomics of Tephritid Frugivorous Pests (Diptera: Tephritidae) From the Field: A Tale of High Variability Across and Within Species. Front Microbiol 2020; 11:1890. [PMID: 32849469 PMCID: PMC7431611 DOI: 10.3389/fmicb.2020.01890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
The family Tephritidae includes some of the most notorious insect pests of agricultural and horticultural crops in tropical and sub-tropical regions. Despite the interest in the study of their gut microbiome, our present knowledge is largely based on the analysis of laboratory strains. In this study, we present a first comparative analysis of the gut microbiome profiles of field populations of ten African and Mediterranean tephritid pests. For each species, third instar larvae were sampled from different locations and host fruits and compared using 16S rRNA amplicon sequencing and a multi-factorial sampling design. We observed considerable variation in gut microbiome diversity and composition both between and within fruit fly species. A “core” microbiome, shared across all targeted species, could only be identified at most at family level (Enterobacteriaceae). At genus level only a few bacterial genera (Klebsiella, Enterobacter, and Bacillus) were present in most, but not all, samples, with high variability in their relative abundance. Higher relative abundances were found for seven bacterial genera in five of the fruit fly species considered. These were Erwinia in Bactrocera oleae, Lactococcus in B. zonata, Providencia in Ceratitis flexuosa, Klebsiella, and Rahnella in C. podocarpi and Acetobacter and Serratia in C. rosa. With the possible exception of C. capitata and B. dorsalis (the two most polyphagous species considered) we could not detect obvious relationships between fruit fly dietary breadth and microbiome diversity or abundance patterns. Similarly, our results did not suggest straightforward differences between the microbiome profiles of species belonging to Ceratitis and the closely related Bactrocera/Zeugodacus. These results provide a first comparative analysis of the gut microbiomes of field populations of multiple economically relevant tephritids and provide base line information for future studies that will further investigate the possible functional role of the observed associations.
Collapse
Affiliation(s)
- Maarten De Cock
- Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the UnitedNations/International Atomic Energy Agency (FAO/IAEA) Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland Fruit Fly through Metamorphosis. Microorganisms 2020; 8:microorganisms8060795. [PMID: 32466500 PMCID: PMC7356580 DOI: 10.3390/microorganisms8060795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome in larvae and adults, the transition of the microbiome through the pupal stage remains unknown. To address this knowledge gap, we used high-throughput Next-Generation Sequencing (NGS) to examine microbial communities at each developmental stage in the Qfly life cycle, targeting the bacterial 16S rRNA and fungal ITS regions. We found that microbial communities were similar at the larval and pupal stage and were also similar between adult males and females, yet there were marked differences between the larval and adult stages. Specific bacterial and fungal taxa are present in the larvae and adults (fed hydrolyzed yeast with sugar) which is likely related to differences in nutritional biology of these life stages. We observed a significant abundance of the Acetobacteraceae at the family level, both in the larval and pupal stages. Conversely, Enterobacteriaceae was highly abundant (>80%) only in the adults. The majority of fungal taxa present in Qfly were yeasts or yeast-like fungi. In addition to elucidating changes in the microbiome through developmental stages, this study characterizes the Qfly microbiome present at the establishment of laboratory colonies as they enter the domestication process.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
- Correspondence:
| | - Brodie Sutcliffe
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| |
Collapse
|
34
|
Gallo-Franco JJ, Toro-Perea N. Variations in the Bacterial Communities in Anastrepha obliqua (Diptera: Tephritidae) According to the Insect Life Stage and Host Plant. Curr Microbiol 2020; 77:1283-1291. [PMID: 32130504 DOI: 10.1007/s00284-020-01939-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Insects have established close relationships with a wide variety of microorganisms, which play a key role in insect ecology and evolution. Fruit flies in the Tephritidae family have economic importance at the global level, including species such as Anastrepha obliqua, which is an important pest in the neotropical region. Although several studies have been performed on the microbiota associated with fruit flies, there are still large gaps in our knowledge about the bacterial communities on the genus Anastrepha. During this study, we used high-throughput sequencing to characterize the bacterial communities of the polyphagous fly A. obliqua, and we evaluated the effect of the life stage (larvae and adults) and host plant (three plant species) on the structure of these communities. Our results show that the bacterial communities in A. obliqua appears to be structured according to the insect life stage and the host plant. The predominant genera belonging to the phylum Proteobacteria were Wolbachia and Enterobacter in both larvae and adults, and they displayed differences in abundance between them, with Wolbachia sp. being more abundant in larvae and Enterobacter sp. being more abundant in adults. Differences in the structures of the bacterial communities were also observed according to the host plant with higher abundance of Enterobacter and Acetobacter bacteria in mango and plum fruits. Based on our results, it can be hypothesized that the bacterial communities on A. obliqua reorganize according to the needs of these insects during their different life stages and could also play an important role in the establishment of this fly species on different host plants. This study represents the first approach to understanding microorganism-insect interactions in fruit flies in Colombia.
Collapse
Affiliation(s)
- Jenny J Gallo-Franco
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia.
| | - Nelson Toro-Perea
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia
| |
Collapse
|
35
|
Noman MS, Liu L, Bai Z, Li Z. Tephritidae bacterial symbionts: potentials for pest management. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:1-14. [PMID: 31223102 DOI: 10.1017/s0007485319000403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.
Collapse
Affiliation(s)
- M S Noman
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - L Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Bai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
36
|
Abstract
BACKGROUND The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. METHODS We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. RESULTS Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies' gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts' development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. CONCLUSIONS Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs.
Collapse
|
37
|
De Cock M, Virgilio M, Vandamme P, Augustinos A, Bourtzis K, Willems A, De Meyer M. Impact of Sample Preservation and Manipulation on Insect Gut Microbiome Profiling. A Test Case With Fruit Flies (Diptera, Tephritidae). Front Microbiol 2019; 10:2833. [PMID: 31921020 PMCID: PMC6923184 DOI: 10.3389/fmicb.2019.02833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
High-throughput sequencing (HTS) techniques are of great value for the investigation of microbial communities, and have been extensively used to study the gut microbiome. While most studies focus on the human gut, many others have investigated insects. However, because of the rapid spread of HTS techniques, a lot of variation exists in the protocols for sample preparation. In the present study, we investigated the impact of two widely adopted sample-processing procedures preceding library preparation, i.e., preservation of insect tissue in 70% ethanol (EtOH) and sample dissection. We used the fruit fly Ceratitis capitata (Diptera: Tephritidae) as a model organism and set up two experiments, one comparing the effects of sample manipulation and preservation across life stages and the other across fruit samples from different sources. The results of this study showed no major effects of dissection on the outcome of HTS. However, EtOH preservation did have effects on the recovered gut microbiome, the main effect being a significant reduction of the dominant genus, Providencia, in EtOH-preserved samples. Less abundant bacterial groups were also affected resulting in altered microbial profiles obtained from samples preserved in 70% EtOH. These results have important implications for the planning of future studies and when comparing studies that used different sample preparation protocols.
Collapse
Affiliation(s)
- Maarten De Cock
- Department of Biology and Joint Experimental Molecular Unit, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Massimiliano Virgilio
- Department of Biology and Joint Experimental Molecular Unit, Royal Museum for Central Africa, Tervuren, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Antonios Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization – Demeter, Patras, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Anne Willems
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marc De Meyer
- Department of Biology and Joint Experimental Molecular Unit, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
38
|
Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G, Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi PF, Marianelli L, Montagna M. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environ Microbiol 2019; 21:4343-4359. [PMID: 31502415 DOI: 10.1111/1462-2920.14797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.
Collapse
Affiliation(s)
- Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Nizar Goda
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Giuseppe Mazza
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Sumer Alali
- Dipartimento di Scienze e politiche ambientali (DESP), Università degli Studi di Milano, 20133, Milan, Italy
| | - Fiorella Florian
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Fabrizia Gionechetti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Francesco Paoli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Pio Federico Roversi
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Leonardo Marianelli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
39
|
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci Rep 2019; 9:14292. [PMID: 31575966 PMCID: PMC6773747 DOI: 10.1038/s41598-019-50602-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Insects typically host substantial microbial communities (the ‘microbiome’) that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni (‘Queensland fruit fly’) that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect’s microbiome and that of the surrounding host tissues.
Collapse
Affiliation(s)
- Rajib Majumder
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia. .,Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, 2567, Australia.
| | - Brodie Sutcliffe
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Phillip W Taylor
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Toni A Chapman
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.,Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, 2567, Australia
| |
Collapse
|
40
|
Augustinos AA, Tsiamis G, Cáceres C, Abd-Alla AMM, Bourtzis K. Taxonomy, Diet, and Developmental Stage Contribute to the Structuring of Gut-Associated Bacterial Communities in Tephritid Pest Species. Front Microbiol 2019; 10:2004. [PMID: 31555239 PMCID: PMC6727639 DOI: 10.3389/fmicb.2019.02004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
Insect-symbiont interactions are receiving much attention in the last years. Symbiotic communities have been found to influence a variety of parameters regarding their host physiology and fitness. Gut symbiotic communities can be dynamic, changing through time and developmental stage. Whether these changes represent real differential needs and preferential relationships has not been addressed yet. In this study, we characterized the structure of symbiotic communities of five laboratory populations that represent five Tephritidae species that are targets for pest control management through the sterile insect technique (SIT), namely Bactrocera oleae, Anastrepha grandis, Anastrepha ludens, and two morphotypes of Anastrepha fraterculus (sp.1 and the Andean lineage). These populations are under artificial or semi artificial rearing conditions and their characterization was performed for different developmental stages and age. Our results demonstrate the presence of a symbiotic community comprising mainly from different Enterobacteriaceae genera. These communities are dynamic across developmental stages, although not highly variable, and appear to have a species-specific profile. Additional factors may contribute to the observed structuring, including diet, rearing practices, and the degree of domestication. Comparison of these results with those derived from natural populations could shed light to changes occurring in the symbiotic level during domestication of Tephritidae populations. Further studies will elucidate whether the changes are associated with modification of the behavior in laboratory strains and assess their effects in the quality of the mass rearing insects. This could be beneficial for improving environmentally friendly, species-specific, pest control methods, such as the SIT.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
41
|
Meta-Omics Tools in the World of Insect-Microorganism Interactions. BIOLOGY 2018; 7:biology7040050. [PMID: 30486337 PMCID: PMC6316257 DOI: 10.3390/biology7040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Microorganisms are able to influence several aspects of insects’ life, and this statement is gaining increasing strength, as research demonstrates it daily. At the same time, new sequencing technologies are now available at a lower cost per base, and bioinformatic procedures are becoming more user-friendly. This is triggering a huge effort in studying the microbial diversity associated to insects, and especially to economically important insect pests. The importance of the microbiome has been widely acknowledged for a wide range of animals, and also for insects this topic is gaining considerable importance. In addition to bacterial-associates, the insect-associated fungal communities are also gaining attention, especially those including plant pathogens. The use of meta-omics tools is not restricted to the description of the microbial world, but it can be also used in bio-surveillance, food safety assessment, or even to bring novelties to the industry. This mini-review aims to give a wide overview of how meta-omics tools are fostering advances in research on insect-microorganism interactions.
Collapse
|
42
|
Abstract
Microbial biopesticides include several microorganisms like bacteria, fungi, baculoviruses, and nematode-associated bacteria acting against invertebrate pests in agro-ecosystems. The biopesticide sector is experiencing a significant growth and many discoveries are being developed into new biopesticidal products that are fueling a growing global market offer. Following a few decades of successful use of the entomopathogenic bacterium Bacillus thuringiensis and a few other microbial species, recent academic and industrial efforts have led to the discovery of new microbial species and strains, and of their specific toxins and virulence factors. Many of these have, therefore, been developed into commercial products. Bacterial entomopathogens include several Bacillaceae, Serratia, Pseudomonas, Yersinia, Burkholderia, Chromobacterium, Streptomyces, and Saccharopolyspora species, while fungi comprise different strains of Beauveria bassiana, B. brongniartii, Metarhizium anisopliae, Verticillium, Lecanicillium, Hirsutella, Paecilomyces, and Isaria species. Baculoviruses are species-specific and refer to niche products active against chewing insects, especially Lepidopteran caterpillars. Entomopathogenic nematodes (EPNs) mainly include species in the genera Heterorhabditis and Steinernema associated with mutualistic symbiotic bacteria belonging to the genera Photorhabdus and Xenorhabdus. An updated representation of the current knowledge on microbial biopesticides and of the availability of active substances that can be used in integrated pest management programs in agro-ecosystems is reported here.
Collapse
|