1
|
Alsharabasy AM, Aljaabary A, Farràs P, Pandit A. Engineering hemin-loaded hyaluronan needle-like microparticles with photoprotective properties against UV-induced tissue damage. J Mater Chem B 2024; 12:9639-9655. [PMID: 39194146 DOI: 10.1039/d4tb01529k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
This study aimed to develop hyaluronan (HA)-based hydrogel microparticles (MPs) loaded with hemin to address the limitations of traditional macroscale hydrogels. The objective is to design MPs such that they can modulate their physicochemical properties. Given the widespread use of ultraviolet C (UVC) light in various industries and the need for protective measures against accidental exposure, this study evaluated the potential of hemin-loaded MPs to protect human dermal fibroblasts from oxidative stress and cell death caused by UVC exposure. Multiple MP formulations were developed and analysed for size, surface charge, swelling behaviour, degradation rate, and radical scavenging capabilities, both with and without hemin loading. The most promising formulations were tested against UVC-exposed cells to assess cell viability, intracellular nitric oxide (˙NO) and reactive oxygen species levels, and protein carbonylation. The fabricated particles were in the form of microneedles, and the degree of their crosslinking and the role of hemin in the chemical crosslinking reaction were found to influence the surface charge and hydrodynamic diameter of the MPs. Increased crosslinking resulted in reduced swelling, slower degradation, and decreased hemin release rate. MPs with a higher degree of swelling were capable of releasing hemin into the culture medium, leading to enhanced bilirubin generation in dermal fibroblasts following cellular uptake. Pre-treatment with these MPs protected the cells from UVC-induced cell death, nitrosative stress, and protein carbonylation. These findings highlight the potential of the studied MPs to release hemin and to minimise the harmful effects of UVC on dermal fibroblasts.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
2
|
Lopez Arrieta Z, Rodríguez-Cavallo E, Méndez-Cuadro D. Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome. Dent J (Basel) 2024; 12:208. [PMID: 39056995 PMCID: PMC11275265 DOI: 10.3390/dj12070208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Gingival enlargement is a common clinical sign in the gingival diseases associated with orthodontic treatment. Its biological mechanisms are not completely understood; nevertheless, the biochemical changes associated with these inflammatory and overgrowth processes could alter the post-translational protein modifications occurring in various locations within the mouth. Here, changes in the profiles of the carbonylated and phosphorylated proteins in saliva were examined in donors with gingival enlargement (seven men and seven women) and healthy donors (six men and eight women). The sociodemographic characteristics of both groups did not present significant differences. Carbonylation was measured by a quantitative immunoassay (Dot Blot), whereas the profiles of the phosphorylated proteins were visualized by SDS-PAGE with quercetin staining. Some phosphopeptides were also identified using a typical LC-MS-MS approach. Our results showed that gingival enlargement induced a significant increase in oxidative damage in salivary proteins. While a significant reduction in phosphorylation was observed at the stain level in SDS-PAGE, there was a slight increase in the number of phosphorylated proteins identified by MS in samples with gingival enlargement.
Collapse
Affiliation(s)
| | - Erika Rodríguez-Cavallo
- Analytical Chemistry and Biomedicine Group, Exacts and Natural Sciences Faculty, University of Cartagena, Cartagena 130014, Colombia;
| | - Darío Méndez-Cuadro
- Analytical Chemistry and Biomedicine Group, Exacts and Natural Sciences Faculty, University of Cartagena, Cartagena 130014, Colombia;
| |
Collapse
|
3
|
Chen TX, Wang SK, Zhang YQ, Wang W, Wang Q, Yu JC, Zhao SC, Xi GL, Jin Z, Chen ZS, Tang YZ. 7,8-dihydroxyflavone displayed antioxidant effect through activating HO-1 expression and inhibiting caspase-3/PARP activation in RAW264.7 cells. J Biochem Mol Toxicol 2024; 38:e23602. [PMID: 38053484 DOI: 10.1002/jbt.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/03/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Flavonoids, which contain a benzo-γ-pyrone (C6-C3-C6) skeleton, have been reported to exhibit effective antioxidant ability. This study aimed to compare the antioxidant activities of 7,8-dihydroxyflavone (7,8-DHF) and 7-hydroxyflavone (7-HF) in H2 O2 , lipopolysaccharide (LPS), or tert-butyl hydroperoxide (t-BHP)-induced RAW264.7 cells, respectively. The antioxidant capacities of 7,8-DHF and 7-HF were firstly evaluated by 2,2-azinobis-3-ethyl-benzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Then, reactive oxygen species (ROS), super oxide dismutase (SOD), and malondialdehyde (MDA) productions in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells were tested and compared, respectively. Finally, the antioxidant mechanisms of 7-HF and 7,8-DHF were initially investigated by western blot. Our results showed that 7,8-DHF possessed stronger free-radical scavenging capacity than 7-HF. Both 7,8-DHF and 7-HF suppressed MDA production and ROS accumulation, improved the activity of SOD in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells, respectively. And 7,8-DHF exerted a better antioxidant effect than 7-HF, especially in t-BHP-induced oxidative stress. Mechanically, 7,8-DHF prevented the activation of poly ADP-ribosepolymerase and caspase-3, meanwhile markedly upregulated the expression of HO-1 protein in t-BHP-induced oxidative stress. These results suggested that 7,8-DHF might serve as a potential pharmaceutical drug against oxidative stress injury.
Collapse
Affiliation(s)
- Ting-Xiao Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu-Qing Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Chun Yu
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Sheng-Chen Zhao
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Gao-Lei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ze-Shao Chen
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Greilberger J, Erlbacher K, Stiegler P, Wintersteiger R, Herwig R. Different RONS Generation in MTC-SK and NSCL Cells Lead to Varying Antitumoral Effects of Alpha-Ketoglutarate + 5-HMF. Curr Issues Mol Biol 2023; 45:6503-6525. [PMID: 37623229 PMCID: PMC10453038 DOI: 10.3390/cimb45080410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Carbonylated proteins (CPs) serve as specific indicators of increased reactive oxygen and nitrogen species (RONS) production in cancer cells, attributed to the dysregulated mitochondrial energy metabolism known as the Warburg effect. The aim of this study was to investigate the potential of alpha-ketoglutarate (aKG), 5-hydroxymethylfurfural (5-HMF), and their combination as mitochondrial-targeting antioxidants in MTC-SK or NCI-H23 cancer cells. METHODS MTC-SK and NCI-H23 cells were cultured in the absence or presence of varying concentrations (0-500 µg/mL) of aKG, 5-HMF, and the combined aKG + 5-HMF solutions. After 0, 24, 48, and 72 h, mitochondrial activity, cancer cell membrane CP levels, cell growth, and caspase-3 activity were assessed in aliquots of MTC-SK and NCI-H23 cells. RESULTS The mitochondrial activity of MTC-SK cells exhibited a concentration- and time-dependent reduction upon treatment with aKG, 5-HMF, or the combined aKG + 5-HMF. The half-maximal inhibitory concentration (IC50%) for mitochondrial activity was achieved at 500 µg/mL aKG, 200 µg/mL 5-HMF, and 200 µg/mL aKG + 66.7 µg/mL 5-HMF after 72 h. In contrast, NCI-H23 cells showed a minimal reduction (10%) in mitochondrial activity even at the highest combined concentration of aKG + 5-HMF. The CP levels in MTC-SK cells were measured at 8.7 nmol/mg protein, while NCI-H23 cells exhibited CP levels of 1.4 nmol/mg protein. The combination of aKG + 5-HMF led to a decrease in CP levels specifically in MTC-SK cells. The correlation between mitochondrial activity and CP levels in the presence of different concentrations of combined aKG + 5-HMF in MTC-SK cells demonstrated a linear and concentration-dependent decline in CP levels and mitochondrial activity. Conversely, the effect was less pronounced in NCI-H23 cells. Cell growth of MTC-CK cells was reduced to 60% after 48 h and maintained at 50% after 72 h incubation when treated with 500 µg/mL aKG (IC50%). Addition of 500 µg/mL 5-HMF inhibited cell growth completely regardless of the incubation time. The IC50% for 5-HMF on MTC-CK cell growth was calculated at 375 µg/mL after 24 h incubation and 200 µg/mL 5-HMF after 72 h. MTC-SK cells treated with 500 µg/mL aKG + 167 µg/mL 5-HMF showed no cell growth. The calculated IC50% for the combined substances was 250 µg/mL aKG + 83.3 µg/mL 5-HMF (48 h incubation) and 200 µg/mL aKG + 66.7 µg/mL 5-HMF (72 h incubation). None of the tested concentrations of aKG, 5-HMF, or the combined solution had any effect on NCI-H23 cell growth at any incubation time. Caspase-3 activity increased to 21% in MTC-CK cells in the presence of 500 µg/mL aKG, while an increase to 59.6% was observed using 500 µg/mL 5-HMF. The combination of 500 µg/mL aKG + 167.7 µg/mL 5-HMF resulted in a caspase-3 activity of 55.2%. No caspase-3 activation was observed in NCI-H23 cells when treated with aKG, 5-HMF, or the combined solutions. CONCLUSION CPs may serve as potential markers for distinguishing between cancer cells regulated by RONS. The combination of aKG + 5-HMF showed induced cell death in high-RONS-generating cancer cells compared to low-RONS-generating cancer cells.
Collapse
Affiliation(s)
- Joachim Greilberger
- Institut für Laborwissenschaften Dr. Greilberger, Schwarzl Medical Center, 8301 Lassnitzhoehe, Austria
| | | | - Philipp Stiegler
- Division of Transplantation Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Reinhold Wintersteiger
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Ralf Herwig
- Laboratories PD Dr. R. Herwig, 80337 Munich, Germany
- Heimerer-College, 10000 Pristina, Kosovo
| |
Collapse
|
5
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
6
|
Desai VG, Azevedo-Pouly A, Vijay V, Phanavanh B, Moland CL, Han T, Revollo J, Aryal B, Rao VA, Fuscoe JC. Potential role of the apelin-APJ pathway in sex-related differential cardiotoxicity induced by doxorubicin in mice. J Appl Toxicol 2023; 43:557-576. [PMID: 36227756 DOI: 10.1002/jat.4405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Preclinical and clinical findings suggest sexual dimorphism in cardiotoxicity induced by a chemotherapeutic drug, doxorubicin (DOX). However, molecular alterations leading to sex-related differential vulnerability of heart to DOX toxicity are not fully explored. In the present study, RNA sequencing in hearts of B6C3F1 mice indicated more differentially expressed genes in males than females (224 vs. 19; ≥1.5-fold, False Discovery Rate [FDR] < 0.05) at 1 week after receiving 24 mg/kg total cumulative DOX dose that induced cardiac lesions only in males. Pathway analysis further revealed probable inactivation of cardiac apelin fibroblast signaling pathway (p = 0.00004) only in DOX-treated male mice that showed ≥1.25-fold downregulation in the transcript and protein levels of the apelin receptor, APJ. In hearts of DOX-treated females, the transcript levels of apelin (1.24-fold) and APJ (1.47-fold) were significantly (p < 0.05) increased compared to saline-treated controls. Sex-related differential DOX effect was also observed on molecular targets downstream of the apelin-APJ pathway in cardiac fibroblasts and cardiomyocytes. In cardiac fibroblasts, upregulation of Tgf-β2, Ctgf, Sphk1, Serpine1, and Timp1 (fibrosis; FDR < 0.05) in DOX-treated males and upregulation of only Tgf-β2 and Timp1 (p < 0.05) in females suggested a greater DOX toxicity in hearts of males than females. Additionally, Ryr2 and Serca2 (calcium handling; FDR < 0.05) were downregulated in conjunction with 1.35-fold upregulation of Casp12 (sarcoplasmic reticulum-mediated apoptosis; FDR < 0.05) in DOX-treated male mice. Drug effect on the transcript level of these genes was less severe in female hearts. Collectively, these data suggest a likely role of the apelin-APJ axis in sex-related differential DOX-induced cardiotoxicity in our mouse model.
Collapse
Affiliation(s)
- Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ana Azevedo-Pouly
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bounleut Phanavanh
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Baikuntha Aryal
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
7
|
El makawy AI, Mabrouk DM, Mohammed SE, Abdel-Aziem SH, EL-Kader HAA, Sharaf HA, Youssef DA, Ibrahim FM. The suppressive role of nanoencapsulated chia oil against DMBA-induced breast cancer through oxidative stress repression and tumor genes expression modulation in rats. Mol Biol Rep 2022; 49:10217-10228. [PMID: 36063350 PMCID: PMC9618492 DOI: 10.1007/s11033-022-07885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chia oil is high in omega-3 fatty acids, which have been linked to a lower risk of many diseases, including cancer. Oil encapsulation is a method that holds promise for maintaining oil content while enhancing solubility and stability. The purpose of this study is to prepare nanoencapsulated Chia oil and investigate its suppressive effects on rat chemically induced breast cancer. METHODS The oil was extracted from commercial Chia seeds and their fatty acids were analyzed using Gas Chromatography-mass spectrometry (GC/MS). Sodium alginate was used as a loading agent to create the Chia oil nanocapsules. The DPPH assay was used to assess the oil nanocapsules' capacity to scavenge free radicals. Breast cancer induction was done by single dose subcutaneously administration of 80 mg/kg dimethylbenz (a) anthracene (DMBA). Models of breast cancer were given Chia oil nanocapsules orally for one month at doses of 100 and 200 mg/kg. Through measuring intracellular reactive oxygen species (ROS) and protein carbonyl, assessing the gene expression of tumor suppressor genes (BRCA 1 & 2, TP53), and conducting histopathological analysis, the suppressive effect of Chia oil nanocapsules was examined. RESULTS The increase in ROS and PC levels brought on by DMBA was significantly decreased by the administration of Chia oil nanocapsules. In tumor tissue from rats given Chia oil nanocapsules, the mRNA expression levels of BRCA1, BRCA2, and TP53 were controlled Histopathological analysis clarified that the tissue architecture of breast tumors was improved by nanocapsules management. CONCLUSIONS These findings demonstrate the ability of Chia oil nanocapsules to inhibit cancer cells in the rat breast.
Collapse
Affiliation(s)
- Aida I. El makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia M. Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Shaimaa E. Mohammed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Sekena H. Abdel-Aziem
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Heba A. Abd EL-Kader
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Hafiza A. Sharaf
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia A. Youssef
- Pests and Plant Protection Department, Agricultural and Biology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| |
Collapse
|
8
|
Dilek O. Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases. Technol Cancer Res Treat 2022; 21:15330338221137303. [PMID: 36345252 PMCID: PMC9647279 DOI: 10.1177/15330338221137303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress resulted from reactive oxygen or nitrogen species in biological
systems has a significant role in the diagnosis/progression of several human
diseases. Human diseases associated with oxidative stress include Alzheimer's
disease, chronic lung disease, chronic renal failure, cancer, diabetes, and
fibrosis. In oxidative stress conditions, carbonylation process can be described
as one of the most common modifications in biomolecules that takes place in the
presence of carbonyl (C = O) groups which are introduced into molecules by
direct metal-catalyzed oxidation of certain amino acids or indirectly by
reaction with the oxidation of lipids and sugars. At a molecular cellular level,
carbonylation can cause some defective biological consequences or chemical
transformations in cells. During this process, specifically, carbonylated
proteins can be accumulated in cells and trigger to develop some diseases in
human body. The role of the accumulation of carbonylated proteins in the
progression of several diseases has also been reported in the literature, such
as neurodegenerative diseases, diabetes, obesity, aging, and cancer. Early
detection of carbonylation process is, therefore, very critical to monitor these
diseases at an early stage. Finding a suitable biomarker or probe is very
challenging due to the need for multiple criteria: high fluorescence efficiency,
stability, toxicity, and permeability. If they are designed with a good
strategy, these probes are highly effective in cell biology applications and
they can be used as good diagnostic tools for monitoring oxidative
stress-induced carbonylation in relevant diseases. This review highlights the
design and use of recent fluorescent probes for visualization of carbonylation
in cellular systems and the relationship between oxidative stress and carbonyl
species for causing long-term disease complications.
Collapse
Affiliation(s)
- Ozlem Dilek
- University of the District of Columbia, College of Arts and Sciences, Washington, DC, USA
| |
Collapse
|
9
|
Glover ZK, Wecksler A, Aryal B, Mehta S, Pegues M, Chan W, Lehtimaki M, Luo A, Sreedhara A, Rao VA. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species. MAbs 2022; 14:2122957. [PMID: 36151884 PMCID: PMC9519010 DOI: 10.1080/19420862.2022.2122957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs. Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography–mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography
Collapse
Affiliation(s)
| | - Aaron Wecksler
- Analytical Development, Genentech Inc, South San Francisco, CA, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Shrenik Mehta
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Melissa Pegues
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Wayman Chan
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Allen Luo
- Biological Technologies, Genentech Inc, South San Francisco, CA, USA
| | | | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| |
Collapse
|
10
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
11
|
Yu S, Wang X, Zhu L, Xie P, Zhou Y, Jiang S, Chen H, Liao X, Pu S, Lei Z, Wang B, Ren Y. A systematic analysis of a potential metabolism-related prognostic signature for breast cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:330. [PMID: 33708957 PMCID: PMC7944328 DOI: 10.21037/atm-20-7600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Metabolic pathways play an essential role in breast cancer. However, the role of metabolism-related genes in the early diagnosis of breast cancer remains unknown. Methods In our study, RNA sequencing (RNA-seq) expression data and clinicopathological information from The Cancer Genome Atlas (TCGA) and GSE20685 were obtained. Univariate cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed on the differentially expressed metabolism-related genes. Then, the formula of the metabolism-related risk model was composed, and the risk score of each patient was calculated. The breast cancer patients were divided into high-risk and low-risk groups with a cutoff of the median expression value of the risk score, and the prognostic analysis was also used to analyze the survival time between these two groups. In the end, we also analyzed the expression, interaction, and correlation among genes in the metabolism-related gene risk model. Results The results from the prognostic analysis indicated that the survival was significantly poorer in the high-risk group than in the low-risk group in both TCGA and GSE20685 datasets. In addition, after adjusting for different clinicopathological features in multivariate analysis, the metabolism-related risk model remained an independent prognostic indicator in TCGA dataset. Conclusions In summary, we systematically developed a potential metabolism-related gene risk model for predicting prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowen Wang
- Department of Second Breast surgery, the Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peiling Xie
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yudong Zhou
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heyan Chen
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqin Liao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengyu Pu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Lei
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Ene CD, Penescu MN, Georgescu SR, Tampa M, Nicolae I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020; 11:10. [PMID: 33375435 PMCID: PMC7824589 DOI: 10.3390/metabo11010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modifications are dynamic enzymatic-mediated processes, regulated in time and space, associated with cancer development. We aimed to evaluate the significance of posttranslational modifications in the pathogenesis of clear cell renal cell carcinoma. The authors developed a prospective, observational study during a period of three years and included 55 patients with localized renal cell carcinoma and 30 heathy subjects. Glycosylation, nitration and carbonylation, thiol-disulfide homeostasis, methylation, phosphorylation and proteolytic cleavage were evaluated in the serum of the evaluated subjects in the present study. Our results showed some characteristics for early ccRCC: high production of cytokines, substrate hypersialylation, induced nitrosative and carbonylic stress, arginine hypermethylation, thiol/disulfide homeostasis (TDH) alteration, the regulatory role of soluble receptors (sRAGE, sIL-6R) in RAGE and IL-6 signaling, the modulatory effect of TK-1and TuM2-PK in controlling the level of phosphometabolites in neoplastic cells. These data could be the initial point for development of a panel of biomarkers such as total sialic acid, orosomucoids, nitrotyrosine, carbonylic metabolites, ADMA, SDMA, and thiol-disulfide equilibrium for early diagnosis of ccRCC. Moreover, they could be considered a specific disease PTM signature which underlines the transition from early to advanced stages in this neoplasia, and of a therapeutic target in kidney oncogenesis.
Collapse
Affiliation(s)
- Corina Daniela Ene
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Mircea Nicolae Penescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Simona Roxana Georgescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| | - Mircea Tampa
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| | - Ilinca Nicolae
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
13
|
Rosen E, Kryndushkin D, Aryal B, Gonzalez Y, Chehab L, Dickey J, Rao VA. Acute total body ionizing gamma radiation induces long-term adverse effects and immediate changes in cardiac protein oxidative carbonylation in the rat. PLoS One 2020; 15:e0233967. [PMID: 32497067 PMCID: PMC7272027 DOI: 10.1371/journal.pone.0233967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced heart disease presents a significant challenge in the event of an accidental radiation exposure as well as to cancer patients who receive acute doses of irradiation as part of radiation therapy. We utilized the spontaneously hypertensive Wistar-Kyoto rat model, previously shown to demonstrate drug-induced cardiomyopathy, to evaluate the acute and long-term effects of sub-lethal total body gamma irradiation at two, four, and fifty-two weeks. We further examined irreversible oxidative protein carbonylation in the heart immediately following irradiation in the normotensive Wistar-Kyoto rat. Both males and females sustained weight loss and anemic conditions compared to untreated controls over a one-year period as reflected by reduced body weight and low red blood cell count. Increased inflammation was detected by elevated IL-6 serum levels selectively in males at four weeks. Serum cardiac troponin T and I analyses revealed signs of cardiomyopathy at earlier timepoints, but high variability was observed, especially at one year. Echocardiography at two weeks following 5.0Gy treatment revealed a significant decrease in cardiac output in females and a significant decrease in both diastolic and systolic volumes in males. Following 10.0Gy irradiation in the normotensive Wistar-Kyoto rat, the heart tissue showed an increase in total protein oxidative carbonylation accompanied by DNA damage indicated by an increase in γ-H2AX. Using proteomic analyses, we identified several novel proteins which showed a marked difference in carbonylation including those of mitochondrial origin and most notably, cardiac troponin T, one of the key proteins involved in cardiomyocyte contractility. Overall, we present findings of acute oxidative protein damage, DNA damage, cardiac troponin T carbonylation, and long-term cardiomyopathy in the irradiated animals.
Collapse
Affiliation(s)
- Elliot Rosen
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dmitry Kryndushkin
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Baikuntha Aryal
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yanira Gonzalez
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Leena Chehab
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jennifer Dickey
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
14
|
Erkan H, Telci D, Dilek O. Design of Fluorescent Probes for Bioorthogonal Labeling of Carbonylation in Live Cells. Sci Rep 2020; 10:7668. [PMID: 32376913 PMCID: PMC7203098 DOI: 10.1038/s41598-020-64790-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid development of chemical biology, many diagnostic fluorophore-based tools were introduced to specific biomolecules by covalent binding. Bioorthogonal reactions have been widely utilized to manage challenges faced in clinical practice for early diagnosis and treatment of several tumor samples. Herein, we designed a small molecule fluorescent-based biosensor, 2Hydrazine-5nitrophenol (2Hzin5NP), which reacts with the carbonyl moiety of biomolecules through bioorthogonal reaction, therefore can be utilized for the detection of biomolecule carbonylation in various cancer cell lines. Our almost non-fluorescent chemical probe has a fast covalent binding with carbonyl moieties at neutral pH to form a stable fluorescent hydrazone product leading to a spectroscopic alteration in live cells. Microscopic and fluorometric analyses were used to distinguish the exogenous and endogenous ROS induced carbonylation profile in human dermal fibroblasts along with A498 primary site and ACHN metastatic site renal cell carcinoma (RRC) cell lines. Our results showed that carbonylation level that differs in response to exogenous and endogenous stress in healthy and cancer cells can be detected by the newly synthesized bioorthogonal fluorescent probe. Our results provide new insights into the development of novel bioorthogonal probes that can be utilized in site-specific carbonylation labeling to enhance new diagnostic approaches in cancer.
Collapse
Affiliation(s)
- Hazel Erkan
- Department of Biotechnology, Yeditepe University, Istanbul, 34755, Turkey
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Department of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse, 6/4 8010, Graz, Austria
| | - Dilek Telci
- Department of Biotechnology, Yeditepe University, Istanbul, 34755, Turkey.
| | - Ozlem Dilek
- Department of Chemistry, University of Saint Joseph, West Hartford, 06117, Connecticut, USA.
| |
Collapse
|
15
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
16
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
17
|
Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C, Weng X, Zheng S. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer 2019; 10:6618-6634. [PMID: 31777591 PMCID: PMC6856906 DOI: 10.7150/jca.33433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/31/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Abnormal status of gene expression plays an important role in tumorigenesis, progression and metastasis of breast cancer. Mechanisms of gene silence or activation were varied. Methylation of genes may contribute to alteration of gene expression. This study aimed to identify differentially expressed hub genes which may be regulated by DNA methylation and evaluate their prognostic value in breast cancer by bioinformatic analysis. Methods: GEO2R was used to obtain expression microarray data from GSE54002, GSE65194 and methylation microarray data from GSE20713, GSE32393. Differentially expressed-aberrantly methylated genes were identified by FunRich. Biological function and pathway enrichment analysis were conducted by DAVID. PPI network was constructed by STRING and hub genes was sorted by Cytoscape. Expression and DNA methylation of hub genes was validated by UALCAN and MethHC. Clinical outcome analysis of hub genes was performed by Kaplan Meier-plotter database for breast cancer. IHC was performed to analyze protein levels of EXO1 and Kaplan-Meier was used for survival analysis. Results: 677 upregulated-hypomethylated and 361 downregulated-hypermethylated genes were obtained from GSE54002, GSE65194, GSE20713 and GSE32393 by GEO2R and FunRich. The most significant biological process, cellular component, molecular function enriched and pathway for upregulated-hypomethylated genes were viral process, cytoplasm, protein binding and cell cycle respectively. For downregulated-hypermethylated genes, the result was peptidyl-tyrosine phosphorylation, plasma membrane, transmembrane receptor protein tyrosine kinase activity and Rap1 signaling pathway (All p< 0.05). 12 hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) were sorted from 677 upregulated-hypomethylated genes. 4 hub genes (EGFR, FGF2, BCL2, PIK3R1) were sorted from 361 downregulated-hypermethylated genes. Differential expression of 16 hub genes was validated in UALCAN database (p<0.05). 7 in 12 upregulated-hypomethylated and 2 in 4 downregulated-hypermethylated hub genes were confirmed to be significantly hypomethylated or hypermethylated in breast cancer using MethHC database (p<0.05). Finally, 12 upregulated hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) and 3 downregulated genes (FGF2, BCL2, PIK3R1) contributed to significant unfavorable clinical outcome in breast cancer (p<0.05). High expression level of EXO1 protein was significantly associated with poor OS in breast cancer patients (p=0.03). Conclusion: Overexpression of TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2 and downregulation of FGF2, BCL2, PIK3R1 might serve as diagnosis and poor prognosis biomarkers in breast cancer by more research validation. EXO1 was identified as an individual unfavorable prognostic factor. Methylation might be one of the major causes leading to abnormal expression of those genes. Functional analysis and pathway enrichment analysis of those genes would provide novel ideas for breast cancer research.
Collapse
Affiliation(s)
- Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xingyue Weng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
18
|
Melanoma Growth Analysis in Blood Serum and Tissue Using Xenograft Model with Response to Cold Atmospheric Plasma Activated Medium. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Cold atmospheric plasma (CAP) proposed as a novel therapeutic tool for the various kinds of cancer treatment. Cold atmospheric Plasma-Activated Media (PAM) has exhibited its promising application in plasma medicine for the treatment of cancer. Methods: We investigated the role of PAM on the human melanoma cancer G-361 cells xenograft in vivo by estimating the biochemical and gene expression of apoptotic genes. Results: Reactive oxygen and nitrogen species (RONS) generated by PAM could significantly decrease the tumor volume (40%) and tumor weight (26%) when administered intradermally (i.d.) into the melanoma region continuously for three days. Biochemical studies in blood serum along with excised melanoma samples revealed an increase in protein carbonylation and MDA content as compared to the control, while LDH and L-DOPA in serum and melanoma tissues were decreased significantly in PAM treated group. PAM generated RONS increased apoptotic genes like Bcl-2, Bax, Parp, Casp8, and P53 in melanoma tissue. Immunohistochemistry data confirms that PAM treatment increased apoptosis at the tissue level. Conclusions: These results suggested that RONS present in PAM inhibit the induction of xenograft melanoma cancer cells through the induction of apoptosis and upregulating of various biochemical parameters within blood serum and melanoma.
Collapse
|
19
|
Kovács P, Csonka T, Kovács T, Sári Z, Ujlaki G, Sipos A, Karányi Z, Szeőcs D, Hegedűs C, Uray K, Jankó L, Kiss M, Kiss B, Laoui D, Virág L, Méhes G, Bai P, Mikó E. Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers (Basel) 2019; 11:E1255. [PMID: 31461945 PMCID: PMC6769524 DOI: 10.3390/cancers11091255] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In breast cancer patients, the diversity of the microbiome decreases, coinciding with decreased production of cytostatic bacterial metabolites like lithocholic acid (LCA). We hypothesized that LCA can modulate oxidative stress to exert cytostatic effects in breast cancer cells. Treatment of breast cancer cells with LCA decreased nuclear factor-2 (NRF2) expression and increased Kelch-like ECH associating protein 1 (KEAP1) expression via activation of Takeda G-protein coupled receptor (TGR5) and constitutive androstane receptor (CAR). Altered NRF2 and KEAP1 expression subsequently led to decreased expression of glutathione peroxidase 3 (GPX3), an antioxidant enzyme, and increased expression of inducible nitric oxide synthase (iNOS). The imbalance between the pro- and antioxidant enzymes increased cytostatic effects via increased levels of lipid and protein oxidation. These effects were reversed by the pharmacological induction of NRF2 with RA839, tBHQ, or by thiol antioxidants. The expression of key components of the LCA-elicited cytostatic pathway (iNOS and 4HNE) gradually decreased as the breast cancer stage advanced. The level of lipid peroxidation in tumors negatively correlated with the mitotic index. The overexpression of iNOS, nNOS, CAR, KEAP1, NOX4, and TGR5 or the downregulation of NRF2 correlated with better survival in breast cancer patients, except for triple negative cases. Taken together, LCA, a metabolite of the gut microbiome, elicits oxidative stress that slows down the proliferation of breast cancer cells. The LCA-oxidative stress protective pathway is lost as breast cancer progresses, and the loss correlates with poor prognosis.
Collapse
Affiliation(s)
- Patrik Kovács
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Csonka
- Departments of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsanett Sári
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Ujlaki
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrien Sipos
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Departments of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dóra Szeőcs
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Karen Uray
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura Jankó
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Borbála Kiss
- Departments of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - László Virág
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Méhes
- Departments of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Bai
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Edit Mikó
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
| |
Collapse
|
20
|
Rai V, Bose S, Saha S, Chakraborty C. Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis. Heliyon 2019; 5:e01502. [PMID: 31011652 PMCID: PMC6462775 DOI: 10.1016/j.heliyon.2019.e01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Oral Submucous fibrosis (OSF) is a chronic inflammatory mucosal disease of unknown etiology. Statistics show cases of OSF which has a high rate of overall prevalence and increase the chance of malignant transformation. As we know malignant cells is situated in a very complex microenvironment with altered metabolic pathway including intermediates which participate in oxidative stress process which enhances metabolic rewiring and promotes tumor progression. This study aims to evaluate the tumor microenvironment and their role in metabolic reprogramming. METHODS This study was conducted on the serum sample of OSF (n = 20) compared to the healthy group (n = 20) using ELISA. The serum levels of intermediate by-products of metabolic pathway and oxidative stress induced biomolecular damage products were determined. The sensitivity of results was analyzed by correlating it with markers of metabolic status (Glucose, Total cholesterol, Total protein). RESULTS Metabolic pathway intermediates molecules like Fatty Acids (FAA), Ascorbic acid, Citrate, Oxaloacetate (OAA), levels were significantly high in the serum of OSF cases. This indicated that intermediates act as a metabolic switch that drives cells to adapt malignant transformation pathway. Markers related to oxidative DNA damage (8-hydroxy-2' -deoxyguanosine), Oxidative lipid peroxidation (8-epi-Prostaglandin F2α), and Protein carbonyl were significantly up-regulated. This significant increase in oxidative stress marker revealed the reprogramming of the metabolic pathway for fulfilling the nutritional requirement of cancer cells. A further significant correlation was observed with metabolic products confirmed altered metabolic status. CONCLUSION Our findings could identify the differentiating intermediate pathway metabolites and oxidative damage to biomolecules that are leading to rewiring of metabolism in the OSF group. Findings described in the study can be helpful to explain further the molecular aspects that lead to the progression of OSF towards carcinogenesis.
Collapse
Affiliation(s)
- Vertika Rai
- School of Medical Science and Technology, IIT Kharagpur, India
| | - Surajit Bose
- Awadh Dental College and Hospital, Jamshedpur, India
| | - Satadal Saha
- School of Medical Science and Technology, IIT Kharagpur, India
| | | |
Collapse
|
21
|
Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1279250. [PMID: 30992736 PMCID: PMC6434272 DOI: 10.1155/2019/1279250] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are common by-products of normal aerobic cellular metabolism and play important physiological roles in intracellular cell signaling and homeostasis. The human body is equipped with antioxidant systems to regulate the levels of these free radicals and maintain proper physiological function. However, a condition known as oxidative stress (OS) occurs, when ROS overwhelm the body's ability to readily detoxify them. Excessive amounts of free radicals generated under OS conditions cause oxidative damage to proteins, lipids, and nucleic acids, severely compromising cell health and contributing to disease development, including cancer. Biomarkers of OS can therefore be exploited as important tools in the assessment of disease status in humans. In the present review, we discuss different approaches used for the evaluation of OS in clinical samples. The described methods are limited in their ability to reflect on OS only partially, revealing the need of more integrative approaches examining both pro- and antioxidant reactions with higher sensitivity to physiological/pathological alternations. We also provide an overview of recent findings of OS in patients with different types of cancer. Identification of OS biomarkers in clinical samples of cancer patients and defining their roles in carcinogenesis hold great promise in promoting the development of targeted therapeutic approaches and diagnostic strategies assessing disease status. However, considerable data variability across laboratories makes it difficult to draw general conclusions on the significance of these OS biomarkers. To our knowledge, no adequate comparison has yet been performed between different biomarkers and the methodologies used to measure them, making it difficult to conduct a meta-analysis of findings from different groups. A critical evaluation and adaptation of proposed methodologies available in the literature should therefore be undertaken, to enable the investigators to choose the most suitable procedure for each chosen biomarker.
Collapse
|
22
|
Chinnadhurai M, Al-Otaibi F, Nelson K, Kandasamy G, Shanmugam M, Venkatnarayanan R. Protective Effect of Madhuca longifolia Leaves in 7, 12-Dimethylbenz(a)anthracene Induced Mammary Carcinoma in Sprague Dawley Rat model. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|