1
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
2
|
Potapov S, Krasnopeev A, Tikhonova I, Podlesnaya G, Gorshkova A, Belykh O. The Viral Fraction Metatranscriptomes of Lake Baikal. Microorganisms 2022; 10:1937. [PMID: 36296212 PMCID: PMC9611531 DOI: 10.3390/microorganisms10101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This article characterises viral fraction metatranscriptomes (smaller than 0.2 µm) from the pelagic zone of oligotrophic Lake Baikal (Russia). The study revealed the dominance of transcripts of DNA viruses: bacteriophages and algal viruses. We identified transcripts similar to Pithovirus sibericum, a nucleocytoplasmic large DNA virus (NCLDV) isolated from the permafrost region of Eastern Siberia. Among the families detected were RNA viruses assigned to Retroviridae, Metaviridae, Potyviridae, Astroviridae, and Closteroviridae. Using the PHROG, SEED subsystems databases, and the VOGDB, we indicated that the bulk of transcripts belong to the functional replication of viruses. In a comparative unweighted pair group method with arithmetic mean (UPGMA) analysis, the transcripts from Lake Baikal formed a separate cluster included in the clade with transcripts from other freshwater lakes, as well as marine and oceanic waters, while there was no separation based on the trophic state of the water bodies, the size of the plankton fraction, or salinity.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya, 664033 Irkutsk, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Kolundžija S, Cheng DQ, Lauro FM. RNA Viruses in Aquatic Ecosystems through the Lens of Ecological Genomics and Transcriptomics. Viruses 2022; 14:702. [PMID: 35458432 PMCID: PMC9029791 DOI: 10.3390/v14040702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Massive amounts of data from nucleic acid sequencing have changed our perspective about diversity and dynamics of marine viral communities. Here, we summarize recent metatranscriptomic and metaviromic studies targeting predominantly RNA viral communities. The analysis of RNA viromes reaffirms the abundance of lytic (+) ssRNA viruses of the order Picornavirales, but also reveals other (+) ssRNA viruses, including RNA bacteriophages, as important constituents of extracellular RNA viral communities. Sequencing of dsRNA suggests unknown diversity of dsRNA viruses. Environmental metatranscriptomes capture the dynamics of ssDNA, dsDNA, ssRNA, and dsRNA viruses simultaneously, unravelling the full complexity of viral dynamics in the marine environment. RNA viruses are prevalent in large size fractions of environmental metatranscriptomes, actively infect marine unicellular eukaryotes larger than 3 µm, and can outnumber bacteriophages during phytoplankton blooms. DNA and RNA viruses change abundance on hourly timescales, implying viral control on a daily temporal basis. Metatranscriptomes of cultured protists host a diverse community of ssRNA and dsRNA viruses, often with multipartite genomes and possibly persistent intracellular lifestyles. We posit that RNA viral communities might be more diverse and complex than formerly anticipated and that the influence they exert on community composition and global carbon flows in aquatic ecosystems may be underestimated.
Collapse
Affiliation(s)
- Sandra Kolundžija
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Dong-Qiang Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
5
|
Solomon C, Hewson I. Putative Invertebrate, Plant, and Wastewater Derived ssRNA Viruses in Plankton of the Anthropogenically Impacted Anacostia River, District of Columbia, USA. Microbes Environ 2022; 37:ME21070. [PMID: 35264468 PMCID: PMC9763036 DOI: 10.1264/jsme2.me21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Anacostia River is a highly impacted watershed in the Northeastern United States which experiences combined sewage outfall in downstream waters. We examined the composition of RNA viruses at three sites in the river using viral metagenomics. Viromes had well represented Picornaviruses, Tombusviruses, Wolframviruses, Nodaviruses, with fewer Tobamoviruses, Sobemoviruses, and Densoviruses (ssDNA). Phylogenetic ana-lyses of detected viruses provide evidence for putatively autochthonous and allochthonous invertebrate, plant, and vertebrate host origin. The number of viral genomes matching Ribovaria increased downstream, and assemblages were most disparate between distant sites, suggesting impacts of the combined sewage overflows at these sites. Additionally, we recovered a densovirus genome fragment which was highly similar to the Clinch ambidensovirus 1, which has been attributed to mass mortality of freshwater mussels in Northeastern America. Taken together, these data suggest that RNA viromes of the Anacostia River reflect autochthonous production of virus particles by benthic metazoan and plants, and inputs from terrestrial habitats including sewage.
Collapse
Affiliation(s)
- Caroline Solomon
- School of Science, Technology, Accessibility, Mathematics and Public Health, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002 USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca NY 14853 USA, Corresponding author. E-mail: ; Tel: +1–607–255–0151; Fax: +1–607–255–3904
| |
Collapse
|
6
|
Chase EE, Monteil-Bouchard S, Gobet A, Andrianjakarivony FH, Desnues C, Blanc G. A High Rate Algal Pond Hosting a Dynamic Community of RNA Viruses. Viruses 2021; 13:2163. [PMID: 34834969 PMCID: PMC8619904 DOI: 10.3390/v13112163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.
Collapse
Affiliation(s)
- Emily E. Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sonia Monteil-Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| | - Angélique Gobet
- MARBEC University Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France;
| | - Felana H. Andrianjakarivony
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Guillaume Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| |
Collapse
|
7
|
Role of Phylogenetic Structure in the Dynamics of Coastal Viral Assemblages. Appl Environ Microbiol 2021; 87:AEM.02704-20. [PMID: 33741635 DOI: 10.1128/aem.02704-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Marine microbes, including viruses, are an essential part of the marine ecosystem, forming the base of the food web and driving biogeochemical cycles. Within this system, the composition of viral assemblages changes markedly with time, and some of these changes are repeatable through time; however, the extent to which these dynamics are reflected within versus among evolutionarily related groups of viruses is largely unexplored. To examine these dynamics, changes in the composition of two groups of ecologically important viruses and communities of their potential hosts were sampled every 2 weeks for 13 months at a coastal site in British Columbia, Canada. We sequenced two marker genes for viruses-the gene encoding the major capsid protein of T4-like phages and their relatives (gp23) and the RNA-dependent RNA polymerase (RdRp) gene of marnavirus-like RNA viruses-as well as marker genes for their bacterial and eukaryotic host communities, the genes encoding 16S rRNA and 18S rRNA. There were strong lagged correlations between viral diversity and community similarity of putative hosts, implying that the viruses influenced the composition of the host communities. The results showed that for both viral assemblages, the dominant clusters of phylogenetically related viruses shifted over time, and this was correlated with environmental changes. Viral clusters contained many ephemeral taxa and few persistent taxa, but within a viral assemblage, the ephemeral and persistent taxa were closely related, implying ecological dynamics within these clusters. Furthermore, these dynamics occurred in both the RNA and DNA viral assemblages surveyed, implying that this structure is common in natural viral assemblages.IMPORTANCE Viruses are major agents of microbial mortality in marine systems, yet little is known about changes in the composition of viral assemblages in relation to those of the microbial communities that they infect. Here, we sampled coastal seawater every 2 weeks for 1 year and used high-throughput sequencing of marker genes to follow changes in the composition of two groups of ecologically important viruses, as well as the communities of bacteria and protists that serve as their respective hosts. Different subsets of genetically related viruses dominated at different times. These results demonstrate that although the genetic composition of viral assemblages is highly dynamic temporally, for the most part the shuffling of genotypes occurs within a few clusters of phylogenetically related viruses. Thus, it appears that even in temperate coastal waters with large seasonal changes, the highly dynamic shuffling of viral genotypes occurs largely within a few subsets of related individuals.
Collapse
|
8
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
9
|
Hewson I, Aquino CA, DeRito CM. Virome Variation during Sea Star Wasting Disease Progression in Pisaster ochraceus (Asteroidea, Echinodermata). Viruses 2020; 12:E1332. [PMID: 33233680 PMCID: PMC7699681 DOI: 10.3390/v12111332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Sea star wasting disease (SSWD) is a condition that has affected asteroids for over 120 years, yet mechanistic understanding of this wasting etiology remains elusive. We investigated temporal virome variation in two Pisaster ochraceus specimens that wasted in the absence of external stimuli and two specimens that did not experience SSWD for the duration of our study, and compared viromes of wasting lesion margin tissues to both artificial scar margins and grossly normal tissues over time. Global assembly of all SSWD-affected tissue libraries resulted in 24 viral genome fragments represented in >1 library. Genome fragments mostly matched densoviruses and picornaviruses with fewer matching nodaviruses, and a sobemovirus. Picornavirus-like and densovirus-like genome fragments were most similar to viral genomes recovered in metagenomic study of other marine invertebrates. Read recruitment revealed only two picornavirus-like genome fragments that recruited from only SSWD-affected specimens, but neither was unique to wasting lesions. Wasting lesion margin reads recruited to a greater number of viral genotypes (i.e., richness) than did either scar tissue and grossly normal tissue reads. Taken together, these data suggest that no single viral genome fragment was associated with SSWD. Rather, wasting lesion margins may generally support viral proliferation.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA;
| | - Citlalli A. Aquino
- Department of Biology, Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA 94920, USA;
| | - Christopher M. DeRito
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA;
| |
Collapse
|
10
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|
11
|
Abstract
Interest in coronaviruses because of the 2019 novel coronavirus (SARS-CoV-2) pandemic has generated concern about their occurrence and persistence in aquatic habitats. Coronaviruses are not quantitatively significant constituents of marine virioplankton. Members of the Nidovirales (to which human coronaviruses belong) infect marine mammals, teleosts and possibly invertebrates, and human coronaviruses may persist in marine plankton receiving wastewater effluent. However, virions likely experience significant particle and infectivity decay rates in surface seawater, similar to other enveloped RNA viruses.
Collapse
Affiliation(s)
- Gideon J. Mordecai
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Vlok M, Gibbs AJ, Suttle CA. Metagenomes of a Freshwater Charavirus from British Columbia Provide a Window into Ancient Lineages of Viruses. Viruses 2019; 11:v11030299. [PMID: 30934644 PMCID: PMC6466400 DOI: 10.3390/v11030299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Charophyte algae, not chlorophyte algae, are the ancestors of ‘higher plants’; hence, viruses infecting charophytes may be related to those that first infected higher plants. Streamwaters from British Columbia, Canada, yielded single-stranded RNA metagenomes of Charavirus canadensis (CV-Can), that are similar in genomic architecture, length (9593 nt), nucleotide identity (63.4%), and encoded amino-acid sequence identity (53.0%) to those of Charavirus australis (CV-Aus). The sequences of their RNA-dependent RNA-polymerases (RdRp) resemble those found in benyviruses, their helicases those of hepaciviruses and hepegiviruses, and their coat-proteins (CP) those of tobamoviruses; all from the alphavirus/flavivirus branch of the ‘global RNA virome’. The 5’-terminus of the CV-Can genome, but not that of CV-Aus, is complete and encodes a methyltransferase domain. Comparisons of CP sequences suggests that Canadian and Australian charaviruses diverged 29–46 million years ago (mya); whereas, the CPs of charaviruses and tobamoviruses last shared a common ancestor 212 mya, and the RdRps of charaviruses and benyviruses 396 mya. CV-Can is sporadically abundant in low-nutrient freshwater rivers in British Columbia, where Chara braunii, a close relative of C. australis, occurs, and which may be its natural host. Charaviruses, like their hosts, are ancient and widely distributed, and thus provide a window to the viromes of early eukaryotes and, even, Archaea.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia.
| | - Curtis A Suttle
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|