1
|
Wang G, Wang Q, Zhu H, Li W, Wang Y, Ma X, You S. The insight into the intermolecular interactions between protamine and insulin lispro. Bioorg Chem 2025; 156:108205. [PMID: 39889553 DOI: 10.1016/j.bioorg.2025.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Protamine, a mixture of polypeptides, can form complexes with Insulin Lispro (IL) to prolong its hypoglycemic effect, but the binding mechanism remains unclear. The four protamine components were used to study their binding mechanism with IL through RP-HPLC, ITC, SPR and bioinformatics analysis. The results of RP-HPLC indicated that the binding capacity of protamine and its four peptides with IL are not constant. As the concentration of protamine increases, the binding amount keeps increasing, with peptide 2 (P2) exhibiting the highest binding capacity among the four peptides. After forming complexes, the structure of IL changed. ITC results showed that among the four components, P2 has the lowest KD value, with a ΔH of -149 ± 2.24 kJ/mol and -TΔS of 111 kJ/mol, indicating an enthalpy-driven binding mode. SPR results revealed a trend of rapid association and slow dissociation for all components. Bioinformatics analysis, showed that hydrogen bond and electrostatic interaction played an important role in binding, and there was a significant difference between 6 and 12 residues. MD simulations of P1 and P2 showed significant differences in RMSF values. Overall, P2 binds IL most strongly, while P1 has the weakest affinity. This study provides a novel multi-perspective exploration of protamine-IL interactions, with SPR and RP-HPLC supporting regional binding models and enhancing our understanding of their mechanisms.
Collapse
Affiliation(s)
- Guangqi Wang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China; Tonghua Dongbao Pharmaceutical Co., Ltd, No. 11 Donghuan Beilu BDA, Beijing 100176, People's Republic of China
| | - Qingyu Wang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Hongru Zhu
- Tonghua Dongbao Pharmaceutical Co., Ltd, No. 11 Donghuan Beilu BDA, Beijing 100176, People's Republic of China
| | - Wanchen Li
- Tonghua Dongbao Pharmaceutical Co., Ltd, No. 11 Donghuan Beilu BDA, Beijing 100176, People's Republic of China
| | - Yujuan Wang
- Tonghua Dongbao Pharmaceutical Co., Ltd, No. 11 Donghuan Beilu BDA, Beijing 100176, People's Republic of China
| | - Xiaonan Ma
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| |
Collapse
|
2
|
Horn KJ, Hoffman JA. Insulin Delivery Pumps for Human Spaceflight: Steps Toward an Accessible Space Future. Wilderness Environ Med 2025:10806032241304439. [PMID: 39819173 DOI: 10.1177/10806032241304439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Commercially available insulin pumps for treatment of diabetes mellitus are currently not qualified to operate in the space environment. This work rigorously tested the fluid delivery performance of a Tandem t:slim X2 insulin pump in both micro- and hypergravity during a parabolic microgravity research flight. The parabolic research flight environment serves as an analogue to the types of transient gravitational loadings experienced during human-led missions, which provides a foundation to expand testing to suborbital and orbital flights in addition to other extreme environmental tests for wilderness dependency. The results of the flight data showed no significant difference between fluid delivery performance at 0, 1, and 2g acceleration regimes, nor at the transitions between gravity environments. Recommendations are made for further experimentation and qualification tests before use in future spaceflight missions.
Collapse
Affiliation(s)
- Kyle J Horn
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey A Hoffman
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Pepin XJH, Grant I, Wood JM. SubQ-Sim: A Subcutaneous Physiologically Based Biopharmaceutics Model. Part 1: The Injection and System Parameters. Pharm Res 2023; 40:2195-2214. [PMID: 37634241 PMCID: PMC10547635 DOI: 10.1007/s11095-023-03567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To construct a detailed mechanistic and physiologically based biopharmaceutics model capable of predicting 1) device-formulation-tissue interaction during the injection process and 2) binding, degradation, local distribution, diffusion, and drug absorption, following subcutaneous injection. This paper is part of a series and focusses on the first aspect. METHODS A mathematical model, SubQ-Sim, was developed incorporating the details of the various substructures within the subcutaneous environment together with the calculation of dynamic drug disposition towards the lymph ducts and venous capillaries. Literature was searched to derive key model parameters in healthy and diseased subjects. External factors such as body temperature, exercise, body position, food or stress provide a means to calculate the impact of "life events" on the pharmacokinetics of subcutaneously administered drugs. RESULTS The model predicts the tissue backpressure time profile during the injection as a function of injection rate, volume injected, solution viscosity, and interstitial fluid viscosity. The shape of the depot and the concentrations of the formulation and proteins in the depot are described. The model enables prediction of formulation backflow following premature needle removal and the resulting formulation losses. Finally, the effect of disease (type 2 diabetes) or the presence of recombinant human hyaluronidase in the formulation on the injection pressure, are explored. CONCLUSIONS This novel model can successfully predict tissue back pressure, depot dimensions, drug and protein concentration and formulation losses due to incorrect injection, which are all important starting conditions for predicting drug absorption from a subcutaneous dose. The next article will describe the absorption model and validation against clinical data.
Collapse
Affiliation(s)
| | - Iain Grant
- Innovation Strategy & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK.
| | - J Matthew Wood
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
5
|
Selvaraj A, Kulkarni A, Pearce JM. Open-source 3-D printable autoinjector: Design, testing, and regulatory limitations. PLoS One 2023; 18:e0288696. [PMID: 37450496 PMCID: PMC10348544 DOI: 10.1371/journal.pone.0288696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Autoinjectors have become popular modern injectable medical devices used as drug delivery systems. Due to their ease, capability and reliability compared to other conventional injectable medical devices, the market and manufacturing demand for autoinjector devices are increasing rapidly and expected to reach a market of $37.5 billion globally by 2025. Although autoinjectors can offset healthcare treatment costs through self-administered medication, they can be expensive for consumers, which limit their accessibility. This study describes the design and manufacture of a spring-driven and 3-D printed autoinjector to overcome this economic accessibility challenge. The digitally replicable device is released as open-source hardware to enable low-cost distributed manufacturing. The bill of materials and assembly instructions are detailed, and the effectiveness of the autoinjector is tested against the current standard (ISO 11608-1:2022) for needle-based injection systems. The safety and dosing accuracy was tested by measuring the weight of 100% ethyl alcohol expelled from six BD Insulin syringes with varying capacities or needle lengths. A one-way analysis assessed the variability between the dose delivery efficiency of 1mL, 0.5mL, and 0.3mL syringes. Testing indicated that the entire dose was delivered over 97.5% of the time for 1mL and 0.5mL syringes, but the autoinjector's loaded spring force and size exceeded structural limitations of 0.3mL or smaller syringes. Components can be manufactured in about twelve hours using an open-source desktop RepRap-class fused filament 3-D printer. The construction requires two compression springs and 3-D printed parts. The total material cost of CAD$6.83 is less than a tenth of comparable commercial autoinjectors, which makes this approach promising. The autoinjector, however, is a class two medical device and must be approved by regulators. Future work is needed to make distributed manufacturing of such medical devices feasible and reliable to support individuals burdened by healthcare costs.
Collapse
Affiliation(s)
- Anjutha Selvaraj
- Faculty of Science, Medical Sciences and Environmental Sciences, Western University, London, ON, Canada
| | - Apoorv Kulkarni
- Department of Electrical & Computer Engineering, Western University, London, ON, Canada
| | - J. M. Pearce
- Department of Electrical & Computer Engineering, Western University, London, ON, Canada
- Ivey Business School, Western University, London, ON, Canada
| |
Collapse
|
6
|
Sparre T, Hammershøy L, Steensgaard DB, Sturis J, Vikkelsøe P, Azzarello A. Factors Affecting Performance of Insulin Pen Injector Technology: A Narrative Review. J Diabetes Sci Technol 2023; 17:290-301. [PMID: 36540004 PMCID: PMC10012375 DOI: 10.1177/19322968221145201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Insulin treatment is an essential hormone replacement therapy for the survival of people with type 1 diabetes and is often used for treatment in type 2 diabetes, particularly as the disease progresses. Advances in insulin therapy have been made since its discovery, including production of human insulin and development of insulin analogs with improved efficacy and safety profiles. The different types of available insulin formulations allow health care professionals to personalize treatment to an individual's needs. Generally, insulin requires parenteral administration via subcutaneous injection owing to very low oral bioavailability. METHODS This article reviews the human, technological, economical, and regulatory factors affecting the performance of insulin pens and the relationship between them. Opportunities and challenges that insulin pen injections may encounter in the future are also considered. RESULTS Insulin delivery devices, together with other factors, influence dose accuracy, convenience, and quality of life, contributing to easier medication administration with high efficacy and safety. For patients, ease of use, fast and accurate drug delivery, and painless injection are the most valuable features of an insulin injection device. For manufacturers, technological feasibility and economic viability also need to be considered when developing injection devices. CONCLUSION Insulin pen injectors are generally preferred over vial and syringe, although access may be limited in some health care systems. Insulin pen injectors can adapt to different insulin regimens and formulations and have the potential to acquire dosing data in real time.
Collapse
Affiliation(s)
- Thomas Sparre
- Novo Nordisk A/S, Søborg, Denmark
- Thomas Sparre, MD, PhD, Novo Nordisk A/S,
Vandtårnsvej 112, Søborg 2860, Denmark.
| | | | | | | | | | | |
Collapse
|
7
|
An overview of recent advances in insulin delivery and wearable technology for effective management of diabetes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Das A, Gangarde YM, Pariary R, Bhunia A, Saraogi I. An amphiphilic small molecule drives insulin aggregation inhibition and amyloid disintegration. Int J Biol Macromol 2022; 218:981-991. [PMID: 35907468 DOI: 10.1016/j.ijbiomac.2022.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
The aggregation of proteins into ordered fibrillar structures called amyloids, and their disintegration represent major unsolved problems that limit the therapeutic applications of several proteins. For example, insulin, commonly used for the treatment of diabetes, is susceptible to amyloid formation upon exposure to non-physiological conditions, resulting in a loss of its biological activity. Here, we report a novel amphiphilic molecule called PAD-S, which acts as a chemical chaperone and completely inhibits fibrillation of insulin and its biosimilars. Mechanistic investigations and molecular docking lead to the conclusion that PAD-S binds to key hydrophobic regions of native insulin, thereby preventing its self-assembly. PAD-S treated insulin was biologically active as indicated by its ability to phosphorylate Akt, a protein in the insulin signalling pathway. PAD-S is non-toxic and protects cells from insulin amyloid induced cytotoxicity. The high aqueous solubility and easy synthetic accessibility of PAD-S facilitates its potential use in commercial insulin formulations. Notably, PAD-S successfully disintegrated preformed insulin fibrils to non-toxic smaller fragments. Since the structural and mechanistic features of amyloids are common to several human pathologies, the understanding of the amyloid disaggregation activity of PAD-S will inform the development of small molecule disaggregators for other amyloids.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Yogesh M Gangarde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India; Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
9
|
Zheng Q, Lee B, Kebede MT, Ivancic VA, Kemeh MM, Brito HL, Spratt DE, Lazo ND. Exchange Broadening Underlies the Enhancement of IDE-Dependent Degradation of Insulin by Anionic Membranes. ACS OMEGA 2022; 7:24757-24765. [PMID: 35874268 PMCID: PMC9301717 DOI: 10.1021/acsomega.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin-degrading enzyme (IDE) is an evolutionarily conserved ubiquitous zinc metalloprotease implicated in the efficient degradation of insulin monomer. However, IDE also degrades monomers of amyloidogenic peptides associated with disease, complicating the development of IDE inhibitors. In this work, we investigated the effects of the lipid composition of membranes on the IDE-dependent degradation of insulin. Kinetic analysis based on chromatography and insulin's helical circular dichroic signal showed that the presence of anionic lipids in membranes enhances IDE's activity toward insulin. Using NMR spectroscopy, we discovered that exchange broadening underlies the enhancement of IDE's activity. These findings, together with the adverse effects of anionic membranes in the self-assembly of IDE's amyloidogenic substrates, suggest that the lipid composition of membranes is a key determinant of IDE's ability to balance the levels of its physiologically and pathologically relevant substrates and achieve proteostasis.
Collapse
Affiliation(s)
| | | | | | - Valerie A. Ivancic
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Merc M. Kemeh
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Henrique Lemos Brito
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Donald E. Spratt
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Noel D. Lazo
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| |
Collapse
|
10
|
The Other Face of Insulin—Overdose and Its Effects. TOXICS 2022; 10:toxics10030123. [PMID: 35324747 PMCID: PMC8955302 DOI: 10.3390/toxics10030123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
Insulin is the most effective glycemic-lowering drug, and for people suffering from type 1 diabetes it is a life-saving drug. Its self-dosing by patients may be associated with a higher risk of overdose, both accidental and deliberate. Insulin-induced hypoglycemia causes up to 100,000 emergency department calls per year. Cases of suicide attempts using insulin have been described in the literature since its introduction into therapy, and one of the important factors in their occurrence is the very fact of chronic disease. Up to 90% of patients who go to toxicology wards overdose insulin consciously. Patients with diabetes are burdened with a 2–3 times higher risk of developing depression compared to the general population. For this reason, it is necessary to develop an effective system for detecting a predisposition to overdose, including the assessment of the first symptoms of depression in patients with diabetes. A key role is played by a risk-conscious therapeutic team, as well as education. Further post-mortem testing is also needed for material collection and storage, as well as standardization of analytical methods and interpretation of results, which would allow for more effective detection and analysis of intentional overdose—both by the patient and for criminal purposes.
Collapse
|
11
|
Gillis RB, Solomon HV, Govada L, Oldham NJ, Dinu V, Jiwani SI, Gyasi-Antwi P, Coffey F, Meal A, Morgan PS, Harding SE, Helliwell JR, Chayen NE, Adams GG. Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques. Sci Rep 2021; 11:1737. [PMID: 33462295 PMCID: PMC7814034 DOI: 10.1038/s41598-021-81251-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
This study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.26 Å. Crystals belonged to the H3 space group with hexagonal (centred trigonal) cell dimensions a = b = 82.44 and c = 33.65 Å with two molecules in the asymmetric unit. A unique position of D21Glu, not present in other fast-acting analogues, pointing inwards rather than to the outside surface was observed. This reduces interactions with neighbouring molecules thereby increasing preference of the dimer form. Sedimentation velocity/equilibrium studies revealed a trinary system of dimers and hexamers/dihexamers in dynamic equilibrium. This new information may lead to better understanding of the pharmacokinetic and pharmacodynamic behaviour of glulisine which might aid in improving formulation regarding its fast-acting role and reducing side effects of this drug.
Collapse
Affiliation(s)
- Richard B Gillis
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK.
| | - Hodaya V Solomon
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Lata Govada
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Shahwar Imran Jiwani
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Philemon Gyasi-Antwi
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Frank Coffey
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Andy Meal
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Paul S Morgan
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Universitetet I Oslo, St. Olavs plass, Postboks 6762, 0130, Oslo, Norway
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Naomi E Chayen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| | - Gary G Adams
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK.
| |
Collapse
|
12
|
Beji O, Gillis RB, Dinu V, Jiwani SI, Gyasi-Antwi P, Fisk ID, Meal A, Morgan PS, Harding SE, Huang S, Agugini G, Fedele F, Adams GG. Exploration of temperature and shelf-life dependency of the therapeutically available Insulin Detemir. Eur J Pharm Biopharm 2020; 152:340-347. [PMID: 32446962 DOI: 10.1016/j.ejpb.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Insulin, in typical use, undergoes multiple changes in temperature; from refrigerator, to room temperature, to body temperature. Although long-term storage temperature has been well-studied, the short term changes to insulin are yet to be determined. Insulin detemir (IDet) is a clinically available, slow-acting, synthetic analogue characterised by the conjugation of a C14 fatty acid. The function of this modification is to cause the insulin to form multi-hexameric species, thus retarding the pharmacokinetic rate of action. In this investigation, the temperature dependence properties of this synthetic analogue is probed, as well as expiration. METHODS Dynamic light scattering (DLS) and viscometry were employed to assess the effect of temperature upon IDet. Mass spectrometry was also used to probe the impact of shelf-life and the presence of certain excipients. RESULTS IDet was compared with eight other insulins, including human recombinant, three fast-acting analogues and two other slow-acting analogues. Of all nine insulins, IDet was the only analogue to show temperature dependent behaviour, between 20 °C and 37 °C, when probed with non-invasive backscatter dynamic light scattering. Upon further investigation, IDet observed significant changes in size related to temperature, direction of temperature (heated/cooled) and expiration with cross-correlation observed amongst all 4 parameters. CONCLUSIONS These findings are critical to our understanding of the behaviour of this particular clinically relevant drug, as it will allow the development of future generations of peptide-based therapies with greater clinical efficacy.
Collapse
Affiliation(s)
- Oritsegidenene Beji
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Leicestershire, UK
| | - Richard B Gillis
- University of Nottingham, School of Health Sciences, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK.
| | - Vlad Dinu
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Leicestershire, UK; University of Nottingham, National Centre for Macromolecular Hydrodynamics, Sutton Bonington Campus, Leicestershire, UK
| | - Shahwar I Jiwani
- University of Nottingham, School of Health Sciences, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Philemon Gyasi-Antwi
- University of Nottingham, School of Health Sciences, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Ian D Fisk
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Leicestershire, UK
| | - Andrew Meal
- University of Nottingham, School of Health Sciences, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Paul S Morgan
- University of Nottingham, School of Medicine, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Stephen E Harding
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Leicestershire, UK; University of Nottingham, National Centre for Macromolecular Hydrodynamics, Sutton Bonington Campus, Leicestershire, UK; Universitetet I Oslo, Postboks 6762, St. Olavs plass, 0130 Oslo, Norway
| | - Sha Huang
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Leicestershire, UK
| | - Giulia Agugini
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | - Federica Fedele
- University of Salento, Piazzetta Tancredi 7, 73100 Lecce, Italy
| | - Gary G Adams
- University of Nottingham, School of Health Sciences, Faculty of Medicine and Health Sciences, Queens Medical Centre, Clifton Boulevard, Nottingham, UK.
| |
Collapse
|
13
|
Álvarez-Almazán S, Filisola-Villaseñor JG, Alemán-González-Duhart D, Tamay-Cach F, Mendieta-Wejebe JE. Current molecular aspects in the development and treatment of diabetes. J Physiol Biochem 2020; 76:13-35. [PMID: 31925679 DOI: 10.1007/s13105-019-00717-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) leads to microvascular, macrovascular, and neurological complications. Less is understood about the mechanisms of this disease that give rise to weak bones. The many molecular mechanisms proposed to explain the damage caused by chronic hyperglycemia are organ and tissue dependent. Since all the different treatments for DM involve therapeutic activity combined with side effects and each patient represents a unique condition, there is no generalized therapy. The alterations stemming from hyperglycemia affect metabolism, osmotic pressure, oxidative stress, and inflammation. In part, hemodynamic modifications are linked to the osmotic potential of the excess of carbohydrates implicated in the disease. The change in osmotic balance increases as the disease progresses because hyperglycemia becomes chronic. The aim of the current contribution is to provide an updated overview of the molecular mechanisms that participate in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.,Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Jessica Georgina Filisola-Villaseñor
- Laboratorio 2, Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Diana Alemán-González-Duhart
- Centro Interdisciplinario de Ciencias de la Salud-Unidad Santo Tomás, Instituto Politécnico Nacional, Av. de los Maestros s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Feliciano Tamay-Cach
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| |
Collapse
|
14
|
Maikawa CL, Smith AAA, Zou L, Meis CM, Mann JL, Webber MJ, Appel EA. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. ADVANCED THERAPEUTICS 2020; 3:1900094. [PMID: 32190729 PMCID: PMC7079736 DOI: 10.1002/adtp.201900094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Ryberg LA, Sønderby P, Bukrinski JT, Harris P, Peters GHJ. Investigations of Albumin–Insulin Detemir Complexes Using Molecular Dynamics Simulations and Free Energy Calculations. Mol Pharm 2019; 17:132-144. [DOI: 10.1021/acs.molpharmaceut.9b00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Line A. Ryberg
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Günther H. J. Peters
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
17
|
Nagel N, Graewert MA, Gao M, Heyse W, Jeffries CM, Svergun D, Berchtold H. The quaternary structure of insulin glargine and glulisine under formulation conditions. Biophys Chem 2019; 253:106226. [PMID: 31376619 DOI: 10.1016/j.bpc.2019.106226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
The quaternary structures of insulin glargine and glulisine under formulation conditions and upon dilution using placebo or water were investigated using synchrotron small-angle X-ray scattering. Our results revealed that insulin glulisine in Apidra® is predominantly hexameric in solution with significant fractions of dodecamers and monomers. Upon dilution with placebo, this equilibrium shifts towards monomers. Insulin glargine in Lantus® and Toujeo® is present in a stable hexamer/dimer equilibrium, which is hardly affected by dilution with water down to 1 mg/ml insulin concentration. The results provide exclusive insight into the quaternary structure and thus the association/dissociation properties of the two insulin analogues in marketed formulations.
Collapse
Affiliation(s)
- Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany.
| | - Melissa A Graewert
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany; BioSAXS GmbH c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Mimi Gao
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Winfried Heyse
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestraße 85, 22603 Hamburg, Germany.
| | - Harald Berchtold
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| |
Collapse
|
18
|
Ryberg LA, Sønderby P, Barrientos F, Bukrinski JT, Peters GHJ, Harris P. Solution structures of long-acting insulin analogues and their complexes with albumin. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:272-282. [PMID: 30950398 DOI: 10.1107/s2059798318017552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
The lipidation of peptide drugs is one strategy to obtain extended half-lives, enabling once-daily or even less frequent injections for patients. The half-life extension results from a combination of self-association and association with human serum albumin (albumin). The self-association and association with albumin of two insulin analogues, insulin detemir and insulin degludec, were investigated by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) in phenolic buffers. Detemir shows concentration-dependent self-association, with an equilibrium between hexamer, dihexamer, trihexamer and larger species, while degludec appears as a dihexamer independent of concentration. The solution structure of the detemir trihexamer has a bent shape. The stoichiometry of the association with albumin was studied using DLS. For albumin-detemir the molar stoichiometry was determined to be 1:6 (albumin:detemir ratio) and for albumin-degludec it was between 1:6 and 1:12 (albumin:degludec ratio). Batch SAXS measurements of a 1:6 albumin:detemir concentration series revealed a concentration dependence of complex formation. The data allowed the modelling of a complex between albumin and a detemir hexamer and a complex consisting of two albumins binding to opposite ends of a detemir dihexamer. Measurements of size-exclusion chromatography coupled to SAXS revealed a complex between a degludec dihexamer and albumin. Based on the results, equilibria for the albumin-detemir and albumin-degludec mixtures are proposed.
Collapse
Affiliation(s)
- Line A Ryberg
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| | - Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| | - Fabian Barrientos
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| | | | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|