1
|
Li C, Kou R, Jia Y, Fan X, Shi Y, Chen Q. Dynamics and biodiversity of microbial community among seasons in Shanxi mature vinegar fermentation by semisolid-solid process. Microbiol Spectr 2024; 12:e0023124. [PMID: 39535179 PMCID: PMC11619342 DOI: 10.1128/spectrum.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The dynamic succession and seasonal characteristics of microbiota throughout the Shanxi mature vinegar (SMV) fermentation by the semisolid-solid process were explored using high-throughput sequencing techniques. The results showed that the richness and diversity of fungi were higher than those of bacteria in a complete seasonal SMV fermentation cycle, and the microbial community was dominated by 11 taxa of bacteria and 16 taxa of fungi. In all four seasons, lactic acid bacteria and acetic acid bacteria were the dominant bacteria, while the dominant fungi varied. Saccharomyces and Pichia played an important role in spring. Aspergillus and Issatchenkia were enriched in the summer. Kazachstania was the dominant microorganism in autumn. While Mesenteroides and Meyerozyma were enriched in winter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis demonstrated that seasonality had a more decisive impact on microbiota composition than the fermentation stage within a season, and the microbiota structure in summer was significantly different from that in the other three seasons. Combined with the highest operational taxonomic units (OTUs) percentage (37%) of summer fungi in the Venn diagrams, it is speculated that the specific fungi may be the root cause for the relatively low SMV quality in summer. This work provided critical insights into the dynamic succession of the microbial community in SMV fermentation from a seasonality view, and the results could enrich our understanding of the microbiota involved in SMV fermentation and guide process control. IMPORTANCE Understanding the changes in microbial communities across different seasons is crucial for ensuring the quality of Shanxi mature vinegar (SMV) by the semisolid-solid process. In a complete seasonal cycle, the richness and diversity of fungi were higher than those of bacteria. The microbial community in summer fermentation was significantly different compared to the other three seasons. For example, the dominant microorganisms such as Acetobacter and Lactobacillus decreased in summer. Screening or modifying this group of bacteria to enhance their tolerance to high fermentation temperature is an approach to improve industrial SMV fermentation. Through co-occurrence network analysis, eight highly connected genera were identified, which may play important roles in ecosystem stability. These results also lay a theoretical foundation for the further development of multi-microbial co-fermentation. This work provides an understanding of SMV fermentation from a seasonal perspective and offers new guidance for the process control of grain vinegar brewing.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Rong Kou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
- Shanxi Xinghuacun Fenjiu Group Co., Ltd., Fenyang, China
| | - Yingying Jia
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojun Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Kattel A, Aro V, Lahtvee P, Kazantseva J, Jõers A, Nahku R, Belouah I. Exploring the resilience and stability of a defined human gut microbiota consortium: An isothermal microcalorimetric study. Microbiologyopen 2024; 13:e1430. [PMID: 39115291 PMCID: PMC11307317 DOI: 10.1002/mbo3.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/11/2024] Open
Abstract
The gut microbiota significantly contributes to human health and well-being. The aim of this study was to evaluate the stability and resilience of a consortium composed of three next-generation probiotics (NGPs) candidates originally found in the human gut. The growth patterns of Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Faecalibacterium prausnitzii were studied both individually and consortium. The growth kinetics of Akkermansia muciniphila (A. muciniphila), Bacteroides thetaiotaomicron (B. thetaiotaomicron), and Faecalibacterium prausnitzii (F. prausnitzii) were characterized both individually and in consortium using isothermal microcalorimetry and 16S ribosomal RNA next-generation sequencing. The consortium reached stability after three passages and demonstrated resilience to changes in its initial composition. The concentration of butyrate produced was nearly twice as high in the consortium compared to the monoculture of F. prausnitzii. The experimental conditions and methodologies used in this article are a solid foundation for developing further complex consortia.
Collapse
Affiliation(s)
- Anna Kattel
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
| | - Valter Aro
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| | | | | | - Arvi Jõers
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| | - Ranno Nahku
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
| | - Isma Belouah
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| |
Collapse
|
3
|
Marik A, Biswas S, Banerjee ER. Exploring the relationship between gut microbial ecology and inflammatory disease: An insight into health and immune function. World J Immunol 2024; 14:96209. [DOI: 10.5411/wji.v14.i1.96209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
The immune system, host brain development, and general metabolism are all influenced by the gut bacteria. Bacteria make up the majority of the gut microbiota in mammals. The mouse has been the most often used animal model in preclinical biological research. In mice, Firmicutes and Clostridiales are prominent. On the other hand, Bacteroidaceae, Prevotellaceae, and Firmicutes are commonly found in humans. In this review, we performed a detailed study by focusing on a comparison between human and murine gut microbiomes, role of the microbiome and their secreted metabolites in regulating gut immunity to maintain homeostasis, and changes in the microbial composition in the dysbiotic state.
Collapse
Affiliation(s)
- Akashlina Marik
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
4
|
Gao S, Zhang S, Sun J, He X, Xue S, Zhang W, Li P, Lin L, Qu Y, Ward-Fear G, Chen L, Li H. Nanoplastic pollution changes the intestinal microbiome but not the morphology or behavior of a freshwater turtle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173178. [PMID: 38750733 DOI: 10.1016/j.scitotenv.2024.173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Humans produce 350 million metric tons of plastic waste per year, leading to microplastic pollution and widespread environmental contamination, particularly in aquatic environments. This subsequently impacts aquatic organisms in myriad ways, yet the vast majority of research is conducted in marine, rather than freshwater systems. In this study, we exposed eggs and hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to 80-nm polystyrene nanoplastics (PS-NPs) and monitored the impacts on development, behavior and the gut microbiome. We demonstrate that 80-nm PS-NPs can penetrate the eggshell and move into developing embryos. This led to metabolic impairments, as evidenced by bradycardia (a decreased heart rate), which persisted until hatching. We found no evidence that nanoplastic exposure affected hatchling morphology, growth rates, or levels of boldness and exploration, yet we discuss some potential caveats here. Exposure to nanoplastics reduced the diversity and homogeneity of gut microbiota in P. sinensis, with the level of disruption correlating to the length of environmental exposure (during incubation only or post-hatching also). Thirteen core genera (with an initial abundance >1 %) shifted after nanoplastic treatment: pathogenic bacteria increased, beneficial probiotic bacteria decreased, and there was an increase in the proportion of negative correlations between bacterial genera. These changes could have profound impacts on the viability of turtles throughout their lives. Our study highlights the toxicity of environmental NPs to the embryonic development and survival of freshwater turtles. We provide insights about population trends of P. sinensis in the wild, and future directions for research.
Collapse
Affiliation(s)
- Shuo Gao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shufang Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahui Sun
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xinni He
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaoshuai Xue
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyi Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Longhui Lin
- Herpetological Research Center, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanfu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Georgia Ward-Fear
- School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lian Chen
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Hong Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Saarenpää M, Roslund MI, Nurminen N, Puhakka R, Kummola L, Laitinen OH, Hyöty H, Sinkkonen A. Urban indoor gardening enhances immune regulation and diversifies skin microbiota - A placebo-controlled double-blinded intervention study. ENVIRONMENT INTERNATIONAL 2024; 187:108705. [PMID: 38688234 DOI: 10.1016/j.envint.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.
Collapse
Affiliation(s)
- Mika Saarenpää
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Marja I Roslund
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland.
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| |
Collapse
|
6
|
Joseph C, Zafeiropoulos H, Bernaerts K, Faust K. Predicting microbial interactions with approaches based on flux balance analysis: an evaluation. BMC Bioinformatics 2024; 25:36. [PMID: 38262921 PMCID: PMC10804772 DOI: 10.1186/s12859-024-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Given a genome-scale metabolic model (GEM) of a microorganism and criteria for optimization, flux balance analysis (FBA) predicts the optimal growth rate and its corresponding flux distribution for a specific medium. FBA has been extended to microbial consortia and thus can be used to predict interactions by comparing in-silico growth rates for co- and monocultures. Although FBA-based methods for microbial interaction prediction are becoming popular, a systematic evaluation of their accuracy has not yet been performed. RESULTS Here, we evaluate the accuracy of FBA-based predictions of human and mouse gut bacterial interactions using growth data from the literature. For this, we collected 26 GEMs from the semi-curated AGORA database as well as four previously published curated GEMs. We tested the accuracy of three tools (COMETS, Microbiome Modeling Toolbox and MICOM) by comparing growth rates predicted in mono- and co-culture to growth rates extracted from the literature and also investigated the impact of different tool settings and media. We found that except for curated GEMs, predicted growth rates and their ratios (i.e. interaction strengths) do not correlate with growth rates and interaction strengths obtained from in vitro data. CONCLUSIONS Prediction of growth rates with FBA using semi-curated GEMs is currently not sufficiently accurate to predict interaction strengths reliably.
Collapse
Affiliation(s)
- Clémence Joseph
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium
| | - Haris Zafeiropoulos
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, 3001, Leuven, Belgium
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Zhang G, Liu T, Zhao D, Sun X, Xing W, Zhang S, Yan L. External magnetic field have significant effects on diversity of magnetotactic bacteria in sediments from Yangtze River, Chagan Lake and Zhalong Wetland in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115604. [PMID: 37871562 DOI: 10.1016/j.ecoenv.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.
Collapse
Affiliation(s)
- Guojing Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
8
|
Csader S, Chen X, Leung H, Männistö V, Pentikäinen H, Tauriainen MM, Savonen K, El-Nezami H, Schwab U, Panagiotou G. Gut ecological networks reveal associations between bacteria, exercise, and clinical profile in non-alcoholic fatty liver disease patients. mSystems 2023; 8:e0022423. [PMID: 37606372 PMCID: PMC10654067 DOI: 10.1128/msystems.00224-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023] Open
Abstract
IMPORTANCE Our study is applying a community-based approach to examine the influence of exercise on gut microbiota (GM) and discover GM structures linked with NAFLD improvements during exercise. The majority of microbiome research has focused on finding specific species that may contribute to the development of human diseases. However, we believe that complex diseases, such as NAFLD, would be more efficiently treated using consortia of species, given that bacterial functionality is based not only on its own genetic information but also on the interaction with other microorganisms. Our results revealed that exercise significantly changes the GM interaction and that structural alterations can be linked with improvements in intrahepatic lipid content and metabolic functions. We believe that the identification of these characteristics in the GM enhances the development of exercise treatment for NAFLD and will attract general interest in this field.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Xiuqiang Chen
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- University of Hong Kong School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Chen Q, Li D, Luo N, Yang J. Differences in Juniperus przewalskii Rhizosphere Microbiomes across Age Classes: Community Diversity and Assembly. Microorganisms 2023; 11:2094. [PMID: 37630654 PMCID: PMC10458523 DOI: 10.3390/microorganisms11082094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence shows that biotic and abiotic factors have apparent diversity at different forest ages, leading to changes in rhizosphere microbiomes. However, the difference in diversity, co-occurrence pattern, and assembly of the rhizosphere microbial community among the different forest ages is still unclear. A total of 24 Juniperus przewalskii rhizosphere soil samples were selected from four representative age classes, using diameter at breast height (DBH) as a proxy for tree age (age class I: 5 < DBH ≤ 12.5 cm, age class II: 12.5 < DBH ≤ 22.5 cm, age class III: 22.5 < DBH ≤ 32.5 cm, and age class IV: DBH > 32.5 cm), and analyzed the structural characteristics of the soil microbial community by high-throughput amplicon sequencing. With the increase in age class, the microbial community α-diversity and β-diversity had an increased trend. The bacterial Shannon index in class II and class III were markedly higher than in class I. From class I to class IV, the relative abundances of dominant phyla such as Actinobacteria and Ascomycota decreased, and the relative abundances of Proteobacteria and Basidiomycota increased in contrast. The complexity and association stability of the bacteria and fungi community network structure increase with forest age. Stochastic processes mediated the assembly of soil bacterial communities, while deterministic processes played a more significant role in the assembly of fungal communities. In addition, the relative importance of deterministic components in the microbial community increased significantly with age class. Random forests suggested that soil pH, plant Shannon-Wiener index (H), and Pielou's evenness index (J) were the most important driving factors of bacterial and fungal community assembly. Overall, these results provide information useful for understanding the generation and maintenance mechanisms of rhizosphere microbial communities across age classes.
Collapse
Affiliation(s)
| | - Dengwu Li
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (Q.C.); (N.L.); (J.Y.)
| | | | | |
Collapse
|
10
|
Dahal RH, Kim S, Kim YK, Kim ES, Kim J. Insight into gut dysbiosis of patients with inflammatory bowel disease and ischemic colitis. Front Microbiol 2023; 14:1174832. [PMID: 37250025 PMCID: PMC10211348 DOI: 10.3389/fmicb.2023.1174832] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The collection of whole microbial communities (bacteria, archaea, fungi, and viruses) together constitutes the gut microbiome. Diet, age, stress, host genetics, and diseases cause increases or decreases in the relative abundance and diversity of bacterial species (dysbiosis). We aimed to investigate the gut microbial composition at different taxonomic levels of healthy controls (HCs) with active Crohn's disease (CD), ulcerative colitis (UC), and ischemic colitis (IC) using culture- and non-culture-based approaches and identify biomarkers to discriminate CD, UC, or IC. We determined the specific changes in the gut microbial profile using culture-independent (16S rRNA gene amplicon sequencing) as well as culture-based (culturomic) approaches. Biomarkers were validated using quantitative Real-Time PCR (qPCR). In both methods, bacterial diversity and species richness decreased in disease-associated conditions compared with that in HCs. Highly reduced abundance of Faecalibacterium prausnitzii and Prevotella sp. and an increased abundance of potentially pathogenic bacteria such as Enterococcus faecium, Enterococcus faecalis, and Escherichia coli in all CD, UC, or IC conditions were observed. We noted a high abundance of Latilactobacillus sakei in CD patients; Ligilactobacillus ruminis in UC patients; and Enterococcus faecium, Escherichia coli, and Enterococcus faecalis in IC patients. Highly reduced abundance of Faecalibacterium prausnitzii in all cases, and increased abundance of Latilactobacillus sakei and Enterococcus faecium in CD, Ligilactobacillus ruminis and Enterococcus faecium in UC, and Enterococcus faecium, Escherichia coli, and Enterococcus faecalis in IC could be biomarkers for CD, UC, and IC, respectively. These biomarkers may help in IBD (CD or UC) and IC diagnosis.
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Ladeira R, Tap J, Derrien M. Exploring Bifidobacterium species community and functional variations with human gut microbiome structure and health beyond infancy. MICROBIOME RESEARCH REPORTS 2023; 2:9. [PMID: 38047280 PMCID: PMC10688807 DOI: 10.20517/mrr.2023.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 12/05/2023]
Abstract
Aim: The human gut Bifidobacterium community has been studied in detail in infants and following dietary interventions in adults. However, the variability of the distribution of Bifidobacterium species and intra-species functions have been little studied, particularly beyond infancy. Here, we explore the ecology of Bifidobacterium communities in a large public dataset of human gut metagenomes, mostly corresponding to adults. Methods: We selected 9.515 unique gut metagenomes from curatedMetagenomicData. Samples were partitioned by applying Dirichlet's multinomial mixture to Bifidobacterium species. A functional analysis was performed on > 2.000 human-associated Bifidobacterium metagenome-assembled genomes (MAGs) paired with participant gut microbiome and health features. Results: We identified several Bifidobacterium-based partitions in the human gut microbiome differing in terms of the presence and abundance of Bifidobacterium species. The partitions enriched in both B. longum and B. adolescentis were associated with gut microbiome diversity and a higher abundance of butyrate producers and were more prevalent in healthy individuals. B. bifidum MAGs harboring a set of genes potentially related to phages were more prevalent in partitions associated with a lower gut microbiome diversity and were genetically more closely related. Conclusion: This study expands our knowledge of the ecology and variability of the Bifidobacterium community, particularly in adults, and its specific association with the gut microbiota and health. Its findings may guide the rational selection of Bifidobacterium strains for gut microbiome complementation according to the individual's endogenous Bifidobacterium community. Our results also suggest that gut microbiome stratification for particular genera may be relevant for studies of variations of species and associations with the gut microbiome and health.
Collapse
Affiliation(s)
- Ruben Ladeira
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
| | - Julien Tap
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Muriel Derrien
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
| |
Collapse
|
12
|
Tan CCS, Ko KKK, Chen H, Liu J, Loh M, Chia M, Nagarajan N. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat Microbiol 2023; 8:973-985. [PMID: 36997797 PMCID: PMC10159858 DOI: 10.1038/s41564-023-01350-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
Human blood is conventionally considered sterile but recent studies suggest the presence of a blood microbiome in healthy individuals. Here we characterized the DNA signatures of microbes in the blood of 9,770 healthy individuals using sequencing data from multiple cohorts. After filtering for contaminants, we identified 117 microbial species in blood, some of which had DNA signatures of microbial replication. They were primarily commensals associated with the gut (n = 40), mouth (n = 32) and genitourinary tract (n = 18), and were distinct from pathogens detected in hospital blood cultures. No species were detected in 84% of individuals, while the remainder only had a median of one species. Less than 5% of individuals shared the same species, no co-occurrence patterns between different species were observed and no associations between host phenotypes and microbes were found. Overall, these results do not support the hypothesis of a consistent core microbiome endogenous to human blood. Rather, our findings support the transient and sporadic translocation of commensal microbes from other body sites into the bloodstream.
Collapse
Affiliation(s)
- Cedric C S Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- UCL Genetics Institute, University College London, London, UK.
| | - Karrie K K Ko
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology, Singapore General Hospital, Singapore, Republic of Singapore
- Department of Molecular Pathology, Singapore General Hospital, Singapore, Republic of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Hui Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Marie Loh
- Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, South Kensington, London, UK
- National Skin Centre, Singapore, Republic of Singapore
| | - Minghao Chia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
13
|
Arab M, Woods N, Garlock ES, Winsor GL, Parks JP, Jia B, Doiron D, Takaro TK, Brook JR, Brinkman FSL. GlobeCorr: interactive globe-based visualization for correlation datasets. BIOINFORMATICS ADVANCES 2023; 3:vbac099. [PMID: 36698766 PMCID: PMC9832964 DOI: 10.1093/bioadv/vbac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Motivation Increasingly complex omics datasets are being generated, along with associated diverse categories of metadata (environmental, clinical, etc.). Looking at the correlation between these variables can be critical to identify potential confounding factors and novel relationships. To date, some correlation globe software has been developed to aid investigations; however, they lack secure, dynamic visualization capability. Results GlobeCorr.ca is a web-based application designed to provide user-friendly, interactive visualization and analysis of correlation datasets. Users load tabular data listing pairwise variables and their correlation values, and GlobeCorr creates a dynamic visualization using ribbons to represent positive and negative correlations, optionally grouped by domain/category (such as microbiome taxa against other metadata). GlobeCorr runs securely (locally on a user's computer) and provides a simple method for users to visualize and summarize complex datasets. This tool is applicable to a wide range of disciplines and domains of interest, including the bioinformatics/microbiome and metadata examples provided within. Availability and Implementation See https://GlobeCorr.ca; Code provided under an open source MIT license: https://github.com/brinkmanlab/globecorr.
Collapse
Affiliation(s)
- Mariam Arab
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Nolan Woods
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Emma S Garlock
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Geoffrey L Winsor
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jaclyn P Parks
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada,Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Baofeng Jia
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Dany Doiron
- Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | | |
Collapse
|
14
|
Growth of succinate consumer Dialister hominis is supported by Bacteroides thetaiotaomicron. Anaerobe 2022; 77:102642. [PMID: 36113733 DOI: 10.1016/j.anaerobe.2022.102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
Abstract
This study revealed an interaction between the gut commensal bacterium Bacteroides thetaiotaomicron JCM 5827T and asaccharolytic bacterium Dialister hominis JCM 33369T, which uses succinate instead of carbohydrates for growth. D. hominis usually forms extremely small colonies on Brucella blood agar plates. However, when co-cultured with B. thetaiotaomicron, D. hominis grew noticeably and formed larger colonies than those in the single culture, especially near B. thetaiotaomicron colonies. Although D. hominis barely grew in Gifu anaerobic medium broth, adding 1% succinate improved its growth. In the mixed culture, the succinate produced by B. thetaiotaomicron was mostly converted to propionate. This result was consistent with the single culture of D. hominis in the succinate-containing broth and our previous report on Phascolarctobacterium faecium, a succinate-utilizing gut bacterium. Our series of studies suggests that syntrophy within the human gut microbiota occurs via succinate.
Collapse
|
15
|
Fu S, Wang Q, Wang R, Zhang Y, Lan R, He F, Yang Q. Horizontal transfer of antibiotic resistance genes within the bacterial communities in aquacultural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153286. [PMID: 35074363 DOI: 10.1016/j.scitotenv.2022.153286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Very little is known about how microbiome interactions shape the horizontal transfer of antibiotic resistance genes in aquacultural environment. To this end, we first conducted 16S rRNA gene amplicon sequencing to monitor the dynamics of bacterial community compositions in one shrimp farm from 2019 to 2020. Next, co-occurrence analysis was then conducted to reveal the interactions network between Vibrio spp. and other species. Subsequently, 21 V. parahaemolyticus isolates and 15 related bacterial species were selected for whole-genome sequencing (WGS). The 16S rDNA amplicon sequencing results identified a remarkable increase of Vibrio and Providencia in September-2019 and a significant rise of Enterobacter and Shewanella in Septtember-2020. Co-occurrence analysis revealed that Vibrio spp. positively interacted with the above species, leading to the sequencing of their isolates to further understand the sharing of the resistant genomic islands (GIs). Subsequent pan-genomic analysis of V. parahaemolyticus genomes identified 278 horizontally transferred genes in 10 GIs, most of which were associated with antibiotic resistance, virulence, and fitness of metabolism. Most of the GIs have also been identified in Providencia, and Enterobacter, suggesting that exchange of genetic traits might occur in V. parahaemolyticus and other cooperative species in a specific niche. No genetic exchange was found between the species with negative relationships. The knowledge generated from this study would greatly improve our capacity to predict and mitigate the emergence of new resistant population and provide practical guidance on the microbial management during the aquacultural activities.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 116023 Dalian, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 116023 Dalian, China
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
16
|
van de Velde CC, Joseph C, Biclot A, Huys GRB, Pinheiro VB, Bernaerts K, Raes J, Faust K. Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME COMMUNICATIONS 2022; 2:40. [PMID: 37938658 PMCID: PMC9723706 DOI: 10.1038/s43705-022-00123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 09/07/2023]
Abstract
A bottleneck for microbial community experiments with many samples and/or replicates is the fast quantification of individual taxon abundances, which is commonly achieved through sequencing marker genes such as the 16S rRNA gene. Here, we propose a new approach for high-throughput and high-quality enumeration of human gut bacteria in a defined community, combining flow cytometry and supervised classification to identify and quantify species mixed in silico and in defined communities in vitro. We identified species in a 5-species in silico community with an F1 score of 71%. In addition, we demonstrate in vitro that our method performs equally well or better than 16S rRNA gene sequencing in two-species cocultures and agrees with 16S rRNA gene sequencing data on the most abundant species in a four-species community. We found that shape and size differences alone are insufficient to distinguish species, and that it is thus necessary to exploit the multivariate nature of flow cytometry data. Finally, we observed that variability of flow cytometry data across replicates differs between gut bacterial species. In conclusion, the performance of supervised classification of gut species in flow cytometry data is species-dependent, but is for some combinations accurate enough to serve as a faster alternative to 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- Charlotte C van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Anaïs Biclot
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Geert R B Huys
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Vitor B Pinheiro
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, B-3000, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), B-3001, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium.
| |
Collapse
|
17
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
18
|
Kodera SM, Das P, Gilbert JA, Lutz HL. Conceptual strategies for characterizing interactions in microbial communities. iScience 2022; 25:103775. [PMID: 35146390 PMCID: PMC8819398 DOI: 10.1016/j.isci.2022.103775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding the sets of inter- and intraspecies interactions in microbial communities is a fundamental goal of microbial ecology. However, the study and quantification of microbial interactions pose several challenges owing to their complexity, dynamic nature, and the sheer number of unique interactions within a typical community. To overcome such challenges, microbial ecologists must rely on various approaches to distill the system of study to a functional and conceptualizable level, allowing for a practical understanding of microbial interactions in both simplified and complex systems. This review broadly addresses the role of several conceptual approaches available for the microbial ecologist’s arsenal, examines specific tools used to accomplish such approaches, and describes how the assumptions, expectations, and philosophies underlying these tools change across scales of complexity.
Collapse
Affiliation(s)
- Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Promi Das
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92161, USA
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92161, USA
| | - Holly L Lutz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92161, USA.,Negaunee Integrative Collections Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
19
|
Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms 2022; 10:microorganisms10020213. [PMID: 35208668 PMCID: PMC8879937 DOI: 10.3390/microorganisms10020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Clostridium baratii strains are rare opportunistic pathogens associated with botulism intoxication. They have been isolated from foods, soil and be carried asymptomatically or cause botulism outbreaks. Is not taxonomically related to Clostridium botulinum, but some strains are equipped with BoNT/F7 cluster. Despite their relationship with diseases, our knowledge regarding the genomic features and phylogenetic characteristics is limited. We analyzed the pangenome of C. baratii to understand the diversity and genomic features of this species. We compared existing genomes in public databases, metagenomes, and one newly sequenced strain isolated from an asymptomatic subject. The pangenome was open, indicating it comprises genetically diverse organisms. The core genome contained 28.49% of the total genes of the pangenome. Profiling virulence factors confirmed the presence of phospholipase C in some strains, a toxin capable of disrupting eukaryotic cell membranes. Furthermore, the genomic analysis indicated significant horizontal gene transfer (HGT) events as defined by the presence of prophage genomes. Seven strains were equipped with BoNT/F7 cluster. The active site was conserved in all strains, identifying a missing 7-aa region upstream of the active site in C. baratii genomes. This analysis could be important to advance our knowledge regarding opportunistic clostridia and better understand their contribution to disease.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto J. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Correspondence: (A.J.M.); (D.G.)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.J.M.); (D.G.)
| |
Collapse
|
20
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
21
|
Blanco G, Sanchez B, Ruiz L, Fdez-Riverola F, Margolles A, Lourenco A. Computational Approach to the Systematic Prediction of Glycolytic Abilities: Looking Into Human Microbiota. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2302-2313. [PMID: 32149650 DOI: 10.1109/tcbb.2020.2978461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glycoside hydrolases are responsible for the enzymatic deconstruction of complex carbohydrates. Most of the families are known to conserve the catalytic machinery and molecular mechanisms. This work introduces a new method to predict glycolytic abilities in sequenced genomes and thus, gain a better understanding of how to target specific carbohydrates and identify potentially interesting sources of specialised enzymes. Genome sequences are aligned to those of organisms with expertly curated glycolytic abilities. Clustering of homology scores helps identify organisms that share common abilities and the most promising organisms regarding specific glycolytic abilities. The method has been applied to members of the bacterial families Ruminococcaceae (39 genera), Eubacteriaceae (11 genera) and Lachnospiraceae (59 genera), which hold major representatives of the human gut microbiota. The method predicted the potential presence of glycoside hydrolases in 1701 species of these genera. Here, the validity and practical usefulness of the method is discussed based on the predictions obtained for members of the genus Ruminococcus. Results were consistent with existing literature and offer useful, complementary insights to comparative genomics and physiological testing. The implementation of the Gleukos web portal (http://sing-group.org/gleukos) offers a public service to those interested in targeting microbial carbohydrate metabolism for biotechnological and health applications.
Collapse
|
22
|
Kim K, Choe D, Song Y, Kang M, Lee SG, Lee DH, Cho BK. Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design. Metab Eng 2021; 68:174-186. [PMID: 34655791 DOI: 10.1016/j.ymben.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022]
Abstract
Bacteroides thetaiotaomicron represents a major symbiont of the human gut microbiome that is increasingly viewed as a promising candidate strain for microbial therapeutics. Here, we engineer B. thetaiotaomicron for heterologous production of non-native butyrate as a proof-of-concept biochemical at therapeutically relevant concentrations. Since B. thetaiotaomicron is not a natural producer of butyrate, we heterologously expressed a butyrate biosynthetic pathway in the strain, which led to the production of butyrate at the final concentration of 12 mg/L in a rich medium. Further optimization of butyrate production was achieved by a round of metabolic engineering guided by an expanded genome-scale metabolic model (GEM) of B. thetaiotaomicron. The in silico knock-out simulation of the expanded model showed that pta and ldhD were the potent knock-out targets to enhance butyrate production. The maximum titer and specific productivity of butyrate in the pta-ldhD double knockout mutant increased by nearly 3.4 and 4.8 folds, respectively. To our knowledge, this is the first engineering attempt that enabled butyrate production from a non-butyrate producing commensal B. thetaiotaomicron. The study also highlights that B. thetaiotaomicron can serve as an effective strain for live microbial therapeutics in human.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Zhao X, Illing R, Ruelens P, Bachmann M, Cuniberti G, de Visser JAGM, Baraban L. Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors. LAB ON A CHIP 2021; 21:1492-1502. [PMID: 33881032 DOI: 10.1039/d0lc01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Rico Illing
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Philip Ruelens
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Larysa Baraban
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
24
|
Han P, Gu JQ, Li LS, Wang XY, Wang HT, Wang Y, Chang C, Sun JL. The Association Between Intestinal Bacteria and Allergic Diseases-Cause or Consequence? Front Cell Infect Microbiol 2021; 11:650893. [PMID: 33937097 PMCID: PMC8083053 DOI: 10.3389/fcimb.2021.650893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of allergic disorders has been increasing over the past few decades, especially in industrialized countries. Allergies can affect people of any age. The pathogenesis of allergic diseases is complex and involves genetic, epigenetic, and environmental factors, and the response to medication is very variable. For some patients, avoidance is the sole effective therapy, and only when the triggers are identifiable. In recent years, the intestinal microbiota has emerged as a significant contributor to the development of allergic diseases. However, the precise mechanisms related to the effects of the microbiome on the pathogenesis of allergic diseases are unknown. This review summarizes the recent association between allergic disorders and intestinal bacterial dysbiosis, describes the function of gut microbes in allergic disease development from both preclinical and clinical studies, discusses the factors that influence gut microbial diversity and advanced techniques used in microbial analysis. Ultimately, more studies are required to define the host-microbial relationship relevant to allergic disorders and amenable to new therapeutic interventions.
Collapse
Affiliation(s)
- Pei Han
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian-Qing Gu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Sha Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Tian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc Natl Acad Sci U S A 2021; 118:2019336118. [PMID: 33753486 PMCID: PMC8020746 DOI: 10.1073/pnas.2019336118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitatively understanding and predicting spatiotemporal dynamics of microbiota is imperative for development of tailored microbiome-directed therapeutics treatments. However, the complexity of microbial variations, due to interactions with the host, other microbes, and environmental factors, makes it challenging to identify how microbiota colonize in the human gut. Here, we describe a novel multiscale framework for COmputing the DYnamics of the gut microbiota (CODY), which enables the quantification of spatiotemporal-specific variations of gut microbiome abundance profiles, without a prior knowledge of microbiome interactions. Importantly, the predictive power of CODY is demonstrated using cross-sectional data from two longitudinal metagenomics studies—the microbiota development during early infancy and during short-term diet intervention of obese adults. Microbial variations in the human gut are harbored in temporal and spatial heterogeneity, and quantitative prediction of spatiotemporal dynamic changes in the gut microbiota is imperative for development of tailored microbiome-directed therapeutics treatments, e.g. precision nutrition. Given the high-degree complexity of microbial variations, subject to the dynamic interactions among host, microbial, and environmental factors, identifying how microbiota colonize in the gut represents an important challenge. Here we present COmputing the DYnamics of microbiota (CODY), a multiscale framework that integrates species-level modeling of microbial dynamics and ecosystem-level interactions into a mathematical model that characterizes spatial-specific in vivo microbial residence in the colon as impacted by host physiology. The framework quantifies spatiotemporal resolution of microbial variations on species-level abundance profiles across site-specific colon regions and in feces, independent of a priori knowledge. We demonstrated the effectiveness of CODY using cross-sectional data from two longitudinal metagenomics studies—the microbiota development during early infancy and during short-term diet intervention of obese adults. For each cohort, CODY correctly predicts the microbial variations in response to diet intervention, as validated by available metagenomics and metabolomics data. Model simulations provide insight into the biogeographical heterogeneity among lumen, mucus, and feces, which provides insight into how host physical forces and spatial structure are shaping microbial structure and functionality.
Collapse
|
26
|
Huang C, Li M, Liu B, Zhu H, Dai Q, Fan X, Mehta K, Huang C, Neupane P, Wang F, Sun W, Umar S, Zhong C, Zhang J. Relating Gut Microbiome and Its Modulating Factors to Immunotherapy in Solid Tumors: A Systematic Review. Front Oncol 2021; 11:642110. [PMID: 33816289 PMCID: PMC8012896 DOI: 10.3389/fonc.2021.642110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Gut microbiome is proved to affect the activity of immunotherapy in certain tumors. However, little is known if there is universal impact on both the treatment response and adverse effects (AEs) of immune checkpoint inhibitors (ICIs) across multiple solid tumors, and whether such impact can be modulated by common gut microbiome modifiers, such as antibiotics and diet. Methods: A systematic search in PubMed followed by stringent manual review were performed to identify clinical cohort studies that evaluated the relevance of gut microbiome to ICIs (response and/or AEs, 12 studies), or association of antibiotics with ICIs (17 studies), or impact of diet on gut microbiome (16 studies). Only original studies published in English before April 1st, 2020 were used. Qualified studies identified in the reference were also included. Results: At the phylum level, patients who had enriched abundance in Firmicutes and Verrucomicrobia almost universally had better response from ICIs, whereas those who were enriched in Proteobacteria universally presented with unfavorable outcome. Mixed correlations were observed for Bacteroidetes in relating to treatment response. Regarding the AEs, Firmicutes correlated to higher incidence whereas Bacteroidetes were clearly associated with less occurrence. Interestingly, across various solid tumors, majority of the studies suggested a negative association of antibiotic use with clinical response from ICIs, especially within 1-2 month prior to the initiation of ICIs. Finally, we observed a significant correlation of plant-based diet in relating to the enrichment of “ICI-favoring” gut microbiome (P = 0.0476). Conclusions: Gut microbiome may serve as a novel modifiable biomarker for both the treatment response and AEs of ICIs across various solid tumors. Further study is needed to understand the underlying mechanism, minimize the negative impact of antibiotics on ICIs, and gain insight regarding the role of diet so that this important lifestyle factor can be harnessed to improve the therapeutic outcomes of cancer immunotherapy partly through its impact on gut microbiome.
Collapse
Affiliation(s)
- Chengliang Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Meizhang Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ben Liu
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, United States
| | - Huanbo Zhu
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kathan Mehta
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Chao Huang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Prakash Neupane
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Fen Wang
- Department of Radiation Oncology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Weijing Sun
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, United States
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, Westwood, KS, United States.,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
27
|
Li Y, Shen L, Huang C, Li X, Chen J, Li SC, Shen B. Altered nitric oxide induced by gut microbiota reveals the connection between central precocious puberty and obesity. Clin Transl Med 2021; 11:e299. [PMID: 33634977 PMCID: PMC7842634 DOI: 10.1002/ctm2.299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yinhu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China.,Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Junru Chen
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
28
|
Jansma J, El Aidy S. Understanding the host-microbe interactions using metabolic modeling. MICROBIOME 2021; 9:16. [PMID: 33472685 PMCID: PMC7819158 DOI: 10.1186/s40168-020-00955-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health. Video abstract.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sahar El Aidy
- Host-Microbe metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
29
|
Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021; 11:929. [PMID: 33441710 PMCID: PMC7806737 DOI: 10.1038/s41598-020-79875-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.
Collapse
Affiliation(s)
- M Relvas
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - F Salazar
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - J J Pacheco
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Cabral
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Henriques
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Rodriguez-Castaño GP, Rey FE, Caro-Quintero A, Acosta-González A. Gut-derived Flavonifractor species variants are differentially enriched during in vitro incubation with quercetin. PLoS One 2020; 15:e0227724. [PMID: 33264299 PMCID: PMC7710108 DOI: 10.1371/journal.pone.0227724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Flavonoids are a common component of the human diet with widely reported health-promoting properties. The gut microbiota transforms these compounds affecting the overall metabolic outcome of flavonoid consumption. Flavonoid-degrading bacteria are often studied in pure and mixed cultures but the multiple interactions between quercetin-degraders and the rest of the community have been overlooked. In this study, a comparative metataxonomic analysis of fecal communities supplemented with the flavonoid quercetin led us to identify a potential competitive exclusion interaction between two sequence variants related to the flavonoid-degrading species, Flavonifractor plautii, that belong to the same genus but different species. During incubation of fecal slurries with quercetin, the relative abundance of these two variants was inversely correlated; one variant, ASV_65f4, increased in relative abundance in half of the libraries and the other variant, ASV_a45d, in the other half. This pattern was also observed with 6 additional fecal samples that were transplanted into germ-free mice fed two different diets. Mouse's diet did not change the pattern of dominance of either variant, and initial relative abundances did not predict which one ended up dominating. Potential distinct metabolic capabilities of these two Flavonifractor-related species were evidenced, as only one variant, ASV_65f4, became consistently enriched in complex communities supplemented with acetate but without quercetin. Genomic comparison analysis of the close relatives of each variant revealed that ASV_65f4 may be an efficient utilizer of ethanolamine which is formed from the phospholipid phosphatidylethanolamine that is abundant in the gut and feces. Other discordant features between ASV_65f4- and ASV_a45d-related groups may be the presence of flagellar and galactose-utilization genes, respectively. Overall, we showed that the Flavonifractor genus harbors variants that present a pattern of negative co-occurrence and that may have different metabolic and morphological traits, whether these differences affect the dynamic of quercetin degradation warrants further investigation.
Collapse
Affiliation(s)
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alejandro Caro-Quintero
- AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
- Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
31
|
Zhang Z, Taylor L, Shommu N, Ghosh S, Reimer R, Panaccione R, Kaur S, Hyun JE, Cai C, Deehan EC, Hotte N, Madsen KL, Raman M. A Diversified Dietary Pattern Is Associated With a Balanced Gut Microbial Composition of Faecalibacterium and Escherichia/Shigella in Patients With Crohn's Disease in Remission. J Crohns Colitis 2020; 14:1547-1557. [PMID: 32343765 DOI: 10.1093/ecco-jcc/jjaa084] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is associated with alterations in gut microbial composition and function. The present controlled-intervention study investigated the relationship between patterns of dietary intake and baseline gut microbiota in CD patients in remission and examined the effects of a dietary intervention in patients consuming a non-diversified diet [NDD]. METHODS Forty outpatients with quiescent CD were recruited in Calgary, Alberta, Canada. Based on 3-day food records, patients consuming a lower plant-based and higher red and processed meat-based diet were assigned to the NDD group [n = 15] and received a 12-week structured dietary intervention; all other patients were assigned to the diversified diet [DD] control group [n = 25] and received conventional management. Faecal microbiota composition, short chain fatty acids [SCFAs] and calprotectin were measured. RESULTS At baseline the NDD and DD groups had a different faecal microbial beta-diversity [p = 0.003, permutational multivariate analysis of variance]. The NDD group had lower Faecalibacterium and higher Escherichia/Shigella relative abundances compared to the DD group [3.3 ± 5.4% vs. 8.5 ± 10.6%; 6.9 ± 12.2% vs. 1.6 ± 4.4%; p ≤ 0.03, analysis of covariance]. These two genera showed a strong negative correlation [rs = -0.60, q = 0.0002]. Faecal butyrate showed a positive correlation with Faecalibacterium [rs = 0.52, q = 0.002], and an inhibitory relationship with Escherichia/Shigella abundance [four-parameter sigmoidal model, R = -0.83; rs = -0.44, q = 0.01], respectively. After the 12 weeks of dietary intervention, no difference in microbial beta-diversity between the two groups was observed [p = 0.43]. The NDD group demonstrated an increase in Faecalibacterium [p < 0.05, generalized estimated equation model], and resembled the DD group at the end of the intervention [p = 0.84, t-test with permutation]. We did not find an association of diet with faecal SCFAs or calprotectin. CONCLUSIONS Dietary patterns are associated with specific gut microbial compositions in CD patients in remission. A diet intervention in patients consuming a NDD modifies gut microbial composition to resemble that seen in patients consuming a DD. These results show that diet is important in shaping the microbial dysbiosis signature in CD towards a balanced community.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lorian Taylor
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nusrat Shommu
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Subrata Ghosh
- Institute of Translational Medicine, NIHR Biomedical Research Centre, University of Birmingham and Birmingham University Hospitals, Birmingham, UK
| | - Raylene Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Remo Panaccione
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sandeep Kaur
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jae Eun Hyun
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Chenxi Cai
- Program for Pregnancy and Postpartum Health, Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME JOURNAL 2020; 15:228-244. [PMID: 32963345 PMCID: PMC7852563 DOI: 10.1038/s41396-020-00777-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
Microbes compose most of the biomass on the planet, yet the majority of taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter,” represent a major challenge for biology. To understand the ecological contributions of these Unknown taxa, it is essential to first understand the relationship between unknown species, neighboring microbes, and their respective environment. Here, we establish a method to study the ecological significance of “microbial dark matter” by building microbial co-occurrence networks from publicly available 16S rRNA gene sequencing data of four extreme aquatic habitats. For each environment, we constructed networks including and excluding unknown organisms at multiple taxonomic levels and used network centrality measures to quantitatively compare networks. When the Unknown taxa were excluded from the networks, a significant reduction in degree and betweenness was observed for all environments. Strikingly, Unknown taxa occurred as top hubs in all environments, suggesting that “microbial dark matter” play necessary ecological roles within their respective communities. In addition, novel adaptation-related genes were detected after using 16S rRNA gene sequences from top-scoring hub taxa as probes to blast metagenome databases. This work demonstrates the broad applicability of network metrics to identify and prioritize key Unknown taxa and improve understanding of ecosystem structure across diverse habitats.
Collapse
|
33
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Ikeyama N, Murakami T, Toyoda A, Mori H, Iino T, Ohkuma M, Sakamoto M. Microbial interaction between the succinate-utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides thetaiotaomicron. Microbiologyopen 2020; 9:e1111. [PMID: 32856395 PMCID: PMC7568257 DOI: 10.1002/mbo3.1111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
A large variety of microbes are present in the human gut, some of which are considered to interact with each other. Most of these interactions involve bacterial metabolites. Phascolarctobacterium faecium hardly uses carbohydrates for growth and instead uses succinate as a substrate. This study investigated the growth behavior of the co‐culture of the succinate‐specific utilizer P. faecium and the succinogenic gut commensal Bacteroides thetaiotaomicron. Succinate production by B. thetaiotaomicron supported the growth of P. faecium and concomitant propionate production via the succinate pathway. The succinate produced was completely converted to propionate. This result was comparable with the monoculture of P. faecium in the medium supplemented with 1% (w/v) succinate. We analyzed the transcriptional response (RNA‐Seq) between the mono‐ and co‐culture of P. faecium and B. thetaiotaomicron. Comparison of the expression levels of genes of P. faecium between the mono‐ and co‐cultured conditions highlighted that the genes putatively involved in the transportation of succinate were notably expressed under the co‐cultured conditions. Differential expression analysis showed that the presence of P. faecium induced changes in the B. thetaiotaomicron transcriptional pattern, for example, expression changes in the genes for vitamin B12 transporters and reduced expression of glutamate‐dependent acid resistance system‐related genes. Also, transcriptome analysis of P. faecium suggested that glutamate and succinate might be used as sources of succinyl‐CoA, an intermediate in the succinate pathway. This study revealed some survival strategies of asaccharolytic bacteria, such as Phascolarctobacterium spp., in the human gut.
Collapse
Affiliation(s)
- Nao Ikeyama
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takumi Murakami
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takao Iino
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,PRIME, Japan Agency for Medical Research and Development (AMED), Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Garcia J, Kao‐Kniffin J. Can dynamic network modelling be used to identify adaptive microbiomes? Funct Ecol 2019. [DOI: 10.1111/1365-2435.13491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joshua Garcia
- School of Integrative Plant Science Cornell University Ithaca NY USA
| | - Jenny Kao‐Kniffin
- School of Integrative Plant Science Cornell University Ithaca NY USA
| |
Collapse
|
36
|
Vrancken G, Gregory AC, Huys GRB, Faust K, Raes J. Synthetic ecology of the human gut microbiota. Nat Rev Microbiol 2019; 17:754-763. [DOI: 10.1038/s41579-019-0264-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
37
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
38
|
Mainali K, Bewick S, Vecchio-Pagan B, Karig D, Fagan WF. Detecting interaction networks in the human microbiome with conditional Granger causality. PLoS Comput Biol 2019; 15:e1007037. [PMID: 31107866 PMCID: PMC6544333 DOI: 10.1371/journal.pcbi.1007037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 05/31/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022] Open
Abstract
Human microbiome research is rife with studies attempting to deduce microbial correlation networks from sequencing data. Standard correlation and/or network analyses may be misleading when taken as an indication of taxon interactions because "correlation is neither necessary nor sufficient to establish causation"; environmental filtering can lead to correlation between non-interacting taxa. Unfortunately, microbial ecologists have generally used correlation as a proxy for causality although there is a general consensus about what constitutes a causal relationship: causes both precede and predict effects. We apply one of the first causal models for detecting interactions in human microbiome samples. Specifically, we analyze a long duration, high resolution time series of the human microbiome to decipher the networks of correlation and causation of human-associated microbial genera. We show that correlation is not a good proxy for biological interaction; we observed a weak negative relationship between correlation and causality. Strong interspecific interactions are disproportionately positive, whereas almost all strong intraspecific interactions are negative. Interestingly, intraspecific interactions also appear to act at a short timescale causing vast majority of the effects within 1-3 days. We report how different taxa are involved in causal relationships with others, and show that strong interspecific interactions are rarely conserved across two body sites whereas strong intraspecific interactions are much more conserved, ranging from 33% between the gut and right-hand to 70% between the two hands. Therefore, in the absence of guiding assumptions about ecological interactions, Granger causality and related techniques may be particularly helpful for understanding the driving factors governing microbiome composition and structure.
Collapse
Affiliation(s)
- Kumar Mainali
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Sharon Bewick
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Briana Vecchio-Pagan
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - David Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - William F. Fagan
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
39
|
Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics 2019; 20:208. [PMID: 30866812 PMCID: PMC6417177 DOI: 10.1186/s12864-019-5591-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human gut microbial communities have been known to produce vitamins, which are subsequently absorbed by the host in the large intestine. However, the relationship between species with vitamin pathway associated functional features or their gene abundance in different states of health and disease is lacking. Here, we analyzed shotgun fecal metagenomes of individuals from four different countries for genes that are involved in vitamin biosynthetic pathways and transport mechanisms and corresponding species' abundance. RESULTS We found that the prevalence of these genes were found to be distributed across the dominant phyla of gut species. The number of positive correlations were high between species harboring genes related to vitamin biosynthetic pathways and transporter mechanisms than that with either alone. Although, the range of total gene abundances remained constant across healthy populations at the global level, species composition and their presence for metabolic pathway related genes determine the abundance and functional genetic content of vitamin metabolism. Based on metatranscriptomics data, the equation between abundance of vitamin-biosynthetic enzymes and vitamin-dependent enzymes suggests that the production and utilization potential of these enzymes seems way more complex usage allocations than just mere direct linear associations. CONCLUSIONS Our findings provide a rationale to examine and disentangle the interrelationship between B-vitamin dosage (dietary or microbe-mediated) on gut microbial members and the host, in the gut microbiota of individuals with under- or overnutrition.
Collapse
Affiliation(s)
- Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Parizad Babaei
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
40
|
Sen P, Orešič M. Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview. Metabolites 2019; 9:E22. [PMID: 30695998 PMCID: PMC6410263 DOI: 10.3390/metabo9020022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing interest in the metabolic interplay between the gut microbiome and host metabolism. Taxonomic and functional profiling of the gut microbiome by next-generation sequencing (NGS) has unveiled substantial richness and diversity. However, the mechanisms underlying interactions between diet, gut microbiome and host metabolism are still poorly understood. Genome-scale metabolic modeling (GSMM) is an emerging approach that has been increasingly applied to infer diet⁻microbiome, microbe⁻microbe and host⁻microbe interactions under physiological conditions. GSMM can, for example, be applied to estimate the metabolic capabilities of microbes in the gut. Here, we discuss how meta-omics datasets such as shotgun metagenomics, can be processed and integrated to develop large-scale, condition-specific, personalized microbiota models in healthy and disease states. Furthermore, we summarize various tools and resources available for metagenomic data processing and GSMM, highlighting the experimental approaches needed to validate the model predictions.
Collapse
Affiliation(s)
- Partho Sen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
41
|
Frankel AE, Deshmukh S, Reddy A, Lightcap J, Hayes M, McClellan S, Singh S, Rabideau B, Glover TG, Roberts B, Koh AY. Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integr Cancer Ther 2019; 18:1534735419846379. [PMID: 31014119 PMCID: PMC6482659 DOI: 10.1177/1534735419846379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
The past decade has seen tremendous advances in both our understanding of cancer immunosuppressive microenvironments and colonic bacteria facilitated by immune checkpoint inhibitor antibodies and next generation sequencing, respectively. Because an important role of the host immune system is to communicate with and regulate the gut microbial community, it should not come as a surprise that the behavior of one is coupled to the other. In this review, we will attempt to dissect some of the studies demonstrating cancer immunotherapy modulation by specific gut microbes and discuss possible molecular mechanisms for this effect.
Collapse
Affiliation(s)
- Arthur E. Frankel
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Sachin Deshmukh
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Amit Reddy
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - John Lightcap
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Maureen Hayes
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Seema Singh
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | | | | | - Andrew Y. Koh
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|