1
|
Wang H, Zhu S, Yang C, Zeng D, Luo C, Dai C, Cheng D, Lv X. Expression and Functional Identification of SPL6/7/9 Genes under Drought Stress in Sugarbeet Seedlings. Int J Mol Sci 2024; 25:8989. [PMID: 39201675 PMCID: PMC11354545 DOI: 10.3390/ijms25168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Sugar beet is a significant sugar crop in China, primarily cultivated in arid regions of the north. However, drought often affects sugar beet cultivation, leading to reduced yield and quality. Therefore, understanding the impact of drought on sugar beets and studying their drought tolerance is crucial. Previous research has examined the role of SPL (SQUAMOSA promoter-binding protein-like) transcription factors in plant stress response; however, the precise contribution of SPLs to the drought stress response in sugar beets has yet to be elucidated. In this study, we identified and examined the BvSPL6, BvSPL7, and BvSPL9 genes in sugar beets, investigating their performance during the seedling stage under drought stress. We explored their drought resistance characteristics using bioinformatics, quantitative analysis, physiological experiments, and molecular biology experiments. Drought stress and rehydration treatments were applied to sugar beet seedlings, and the expression levels of BvSPL6, BvSPL7, and BvSPL9 genes in leaves were quantitatively analyzed at 11 different time points to evaluate sugar beets' response and tolerance to drought stress. Results indicated that the expression level of the BvSPL6/9 genes in leaves was upregulated during the mid-stage of drought stress and downregulated during the early and late stages. Additionally, the expression level of the BvSPL7 gene gradually increased with the duration of drought stress. Through analyzing changes in physiological indicators during different time periods of drought stress and rehydration treatment, we speculated that the regulation of BvSPL6/7/9 genes is associated with sugar beet drought resistance and their participation in drought stress response. Furthermore, we cloned the CDS sequences of BvSPL6, BvSPL7, and BvSPL9 genes from sugar beets and conducted sequence alignment with the database to validate the results. Subsequently, we constructed overexpression vectors, named 35S::BvSPL6, 35S::BvSPL7, and 35S::BvSPL9, and introduced them into sugar beets using Agrobacterium-mediated methods. Real-time fluorescence quantitative analysis revealed that the expression levels of BvSPL6/7/9 genes in transgenic sugar beets increased by 40% to 80%. The drought resistance of transgenic sugar beets was significantly enhanced compared with the control group.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Shengyi Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Chao Yang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Cuihong Dai
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Xiaohong Lv
- Heilongjiang Academy of Forestry, Harbin 150001, China;
| |
Collapse
|
2
|
Geilfus CM, Zörb C, Jones JJ, Wimmer MA, Schmöckel SM. Water for agriculture: more crop per drop. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:499-507. [PMID: 38773740 DOI: 10.1111/plb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024]
Abstract
Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.
Collapse
Affiliation(s)
- C-M Geilfus
- Department of Plant Nutrition and Soil Science, Hochschule Geisenheim University, Geisenheim, Germany
| | - C Zörb
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - J J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - M A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - S M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
4
|
Ding Y, Zhang X, Li J, Wang R, Chen J, Kong L, Li X, Yang Z, Zhuang L. Transcriptome-Based Weighted Gene Co-Expression Network Analysis Reveals the Photosynthesis Pathway and Hub Genes Involved in Promoting Tiller Growth under Repeated Drought-Rewatering Cycles in Perennial Ryegrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:854. [PMID: 38592951 PMCID: PMC10976046 DOI: 10.3390/plants13060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Drought stress, which often occurs repeatedly across the world, can cause multiple and long-term effects on plant growth. However, the repeated drought-rewatering effects on plant growth remain uncertain. This study was conducted to determine the effects of drought-rewatering cycles on aboveground growth and explore the underlying mechanisms. Perennial ryegrass plants were subjected to three watering regimes: well-watered control (W), two cycles of drought-rewatering (D2R), and one cycle of drought-rewatering (D1R). The results indicated that the D2R treatment increased the tiller number by 40.9% and accumulated 28.3% more aboveground biomass compared with W; whereas the D1R treatment reduced the tiller number by 23.9% and biomass by 42.2% compared to the W treatment. A time-course transcriptome analysis was performed using crown tissues obtained from plants under D2R and W treatments at 14, 17, 30, and 33 days (d). A total number of 2272 differentially expressed genes (DEGs) were identified. In addition, an in-depth weighted gene co-expression network analysis (WGCNA) was carried out to investigate the relationship between RNA-seq data and tiller number. The results indicated that DEGs were enriched in photosynthesis-related pathways and were further supported by chlorophyll content measurements. Moreover, tiller-development-related hub genes were identified in the D2R treatment, including F-box/LRR-repeat MAX2 homolog (D3), homeobox-leucine zipper protein HOX12-like (HOX12), and putative laccase-17 (LAC17). The consistency of RNA-seq and qRT-PCR data were validated by high Pearson's correlation coefficients ranging from 0.899 to 0.998. This study can provide a new irrigation management strategy that might increase plant biomass with less water consumption. In addition, candidate photosynthesis and hub genes in regulating tiller growth may provide new insights for drought-resistant breeding.
Collapse
Affiliation(s)
- Yunjia Ding
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Xiaxiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Jialei Li
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Jie Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingna Kong
- National Experimental Teaching Center for Plant Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Lili Zhuang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| |
Collapse
|
5
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
6
|
Fuentes CA, Öztop MH, Rojas-Rioseco M, Bravo M, Göksu AÖ, Manley M, Castillo RDP. Application of segmented analysis via multivariate curve resolution with alternating least squares to 1H-nuclear magnetic resonance spectroscopy to identify different sugar sources. Food Chem 2023; 428:136817. [PMID: 37459678 DOI: 10.1016/j.foodchem.2023.136817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023]
Abstract
The different types of sugar employed in the food industry exhibit chemical similarity and are mostly dominated by sucrose. Owing to the sugar origin of and differences in production, the presence of certain minor organic compounds differs. To differentiate between sugars based on their botanical source, geographical origin, or storage conditions, commercial brown sugars and sugar beet extracts were analyzed by 1H NMR spectroscopy applying a segmented analysis by means of multivariate curve resolution-alternating least squares (MCR-ALS). Principal component analysis and partial least squares-discriminant analysis yielded excellent differentiation between sugars from different sources after the application of this preprocessing strategy; without loss of chemical information and with direct interpretation of the results. By applying a segmented analysis via MCR-ALS to 1H NMR sugar data, similar spectroscopic profiles could be differentiated. This improved the selectivity of 1H NMR spectroscopy for sugar source differentiation which can be useful for industrial sugar authentication purposes.
Collapse
Affiliation(s)
- Cristian A Fuentes
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; Laboratorio de Bioespectroscopia y Quimiometría (BioSpeQ), Centro de Biotecnología, Universidad de Concepción, Concepción 4070386, Chile
| | - Mecit Halil Öztop
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Macarena Rojas-Rioseco
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; Laboratorio de Bioespectroscopia y Quimiometría (BioSpeQ), Centro de Biotecnología, Universidad de Concepción, Concepción 4070386, Chile
| | - Martín Bravo
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; Laboratorio de Bioespectroscopia y Quimiometría (BioSpeQ), Centro de Biotecnología, Universidad de Concepción, Concepción 4070386, Chile
| | - Aylin Özgür Göksu
- Kayseri Sugar R&D Center, Kayseri Sugar Factory, Kayseri 38070, Turkey
| | - Marena Manley
- Deparment of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Rosario Del P Castillo
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; Laboratorio de Bioespectroscopia y Quimiometría (BioSpeQ), Centro de Biotecnología, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
7
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
8
|
Kränzlein M, Schmöckel SM, Geilfus CM, Schulze WX, Altenbuchinger M, Hrenn H, Roessner U, Zörb C. Lipid remodeling of contrasting maize ( Zea mays L.) hybrids under repeated drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1050079. [PMID: 37235021 PMCID: PMC10206266 DOI: 10.3389/fpls.2023.1050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
The role of recovery after drought has been proposed to play a more prominent role during the whole drought-adaption process than previously thought. Two maize hybrids with comparable growth but contrasting physiological responses were investigated using physiological, metabolic, and lipidomic tools to understand the plants' strategies of lipid remodeling in response to repeated drought stimuli. Profound differences in adaptation between hybrids were discovered during the recovery phase, which likely gave rise to different degrees of lipid adaptability to the subsequent drought event. These differences in adaptability are visible in galactolipid metabolism and fatty acid saturation patterns during recovery and may lead to a membrane dysregulation in the sensitive maize hybrid. Moreover, the more drought-tolerant hybrid displays more changes of metabolite and lipid abundance with a higher number of differences within individual lipids, despite a lower physiological response, while the responses in the sensitive hybrid are higher in magnitude but lower in significance on the level of individual lipids and metabolites. This study suggests that lipid remodeling during recovery plays a key role in the drought response of plants.
Collapse
Affiliation(s)
- Markus Kränzlein
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | | | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Michael Altenbuchinger
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Holger Hrenn
- Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Christian Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Ingallina C, Di Matteo G, Spano M, Acciaro E, Campiglia E, Mannina L, Sobolev AP. Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study. Molecules 2023; 28:molecules28031363. [PMID: 36771031 PMCID: PMC9919138 DOI: 10.3390/molecules28031363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Erica Acciaro
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Anatoly Petrovich Sobolev
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
- Correspondence:
| |
Collapse
|
10
|
Mdlalose SP, Raletsena M, Ntushelo K, Bodede O, Modise DM. 1H-NMR-Based Metabolomic Study of Potato Cultivars, Markies and Fianna, Exposed to Different Water Regimes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of varying soil moisture conditions (through either flooding, drought, or provision of a moderate water supply) on the metabolomic profile of two potato cultivars, namely, Markies and Fianna. Representative tubers of the treated plants were collected 91 days after planting. The samples were freeze-dried, and ground to a fine powder in liquid nitrogen. The fine powder of the tuber samples was analyzed by nuclear magnetic resonance spectroscopy (NMR) to identify their metabolomic profiles. The NMR data was analyzed using principal component analysis and orthogonal partial least square-discriminant analysis to identify any variations between the treatments. In both models, plants exposed to drought clearly separated from the plants that received either excess or moderate water (control). The potato tubers that experienced drought and flood treatments had the highest quantities of aspartic acid, asparagine, and isoleucine. Furthermore, the potatoes exposed to either drought or flood had higher levels of valine and leucine (which are essential for plant defense and resistance against plant pathogens). Potato plants can respond metabolically to varying soil moisture stress.
Collapse
|
11
|
Vincent C, Rowland D, Schaffer B, Bassil E, Racette K, Zurweller B. Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110240. [PMID: 32534621 DOI: 10.1016/j.plantsci.2019.110240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Optimizing plant physiological function is essential to maintaining crop yields under water scarcity and in developing more water-efficient production practices. However, the most common strategies in addressing water conservation in agricultural production have focused on water-efficient technologies aimed at managing water application or on improving crop water-use efficiency through breeding. Few management strategies explicitly consider the management or manipulation of plant physiological processes, but one which does is termed primed acclimation (PA). The PA strategy uses the physiological processes involved in priming to pre-acclimate plants to water deficits while reducing irrigation. It has been shown to evoke multi-mechanistic responses across numerous crop species. A combination of existing literature and emerging studies find that mechanisms for pre-acclimating plants to water deficit stress include changes in root:shoot partitioning, root architecture, water use, photosynthetic characteristics, osmotic adjustment and anti-oxidant production. In many cases, PA reduces agricultural water use by improving plant access to existing soil water. Implementing PA in seasonally water-limited environments can mitigate yield losses to drought. Genotypic variation in PA responses offers the potential to screen for crop varieties with the greatest potential for beneficial priming responses and to identify specific priming and acclimation mechanisms. In this review we: 1) summarize the concept of priming within the context of plant stress physiology; 2) review the development of a PA management system that utilizes priming for water conservation in agroecosystems; and 3) address the future of PA, how it should be evaluated across crop species, and its utility in managing crop stress tolerance.
Collapse
Affiliation(s)
- Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, 700 Old Lee Jackson Road, Lake Alfred, FL, USA.
| | - Diane Rowland
- Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL, 32611, USA.
| | - Bruce Schaffer
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL, 33031, USA
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL, 33031, USA.
| | - Kelly Racette
- Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL, 32611, USA
| | - Brendan Zurweller
- Department of Plant and Soil Sciences, Mississippi State University, P.O. Box 9555, Mississippi State, MS, 39762, USA.
| |
Collapse
|
12
|
Rangani J, Panda A, Parida AK. Metabolomic study reveals key metabolic adjustments in the xerohalophyte Salvadora persica L. during adaptation to water deficit and subsequent recovery conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:180-195. [PMID: 32146282 DOI: 10.1016/j.plaphy.2020.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Water deficit severely limits productivity of plants, and pose a major threat to modern agriculture system. Therefore, understanding drought adaptive mechanisms in drought-tolerant plants is imperative to formulate strategies for development of desiccation tolerance in crop plants. In present investigation, metabolic profiling employing GC-QTOF-MS/MS and HPLC-DAD was carried out to evaluate metabolic adjustments under drought stress in the xero-halophyte Salvadora persica. The metabolite profiling identified a total of 68 metabolites in S. persica leaf, including organic acids, amino acids, sugars, sugar alcohols, hormones, and polyphenols. The results showed that higher cellular osmolality under drought stress was accompanied by accumulations of several osmoprotectants like sugars and polyols (sucrose, glucose, mannose, galactose, erythrose, sorbose, glycerol, and myoinositol), organic acids (galactaric acid, tartaric acid, malic acid, oxalic acid, and citric acid), and amino acids (alanine, phenylalanine, tyrosine). Upregulation of ABA and JA support to achieve early drought tolerance in S. persica. Moreover, accumulation of coumarin, gallic acid, and chlorogenic acid provide antioxidative defense to S. persica. KEGG pathway enrichment analysis showed that altered metabolites were associated with starch and sucrose metabolism, galactose metabolism, inositol phosphate metabolism, and phenylalanine metabolism. While during recovery, metabolites associated with lysine biosynthesis and alanine, aspartate and glutamate metabolism were significantly altered. The results of the present study imply that coordinated regulations between various metabolites, metabolic processes, and pathways empower the xerohalophyte S. persica to adapt under drought environment. The knowledge from this study will enable the development of drought tolerance in crops using genetic engineering and breeding approaches.
Collapse
Affiliation(s)
- Jaykumar Rangani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India
| | - Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India.
| |
Collapse
|
13
|
Schneider S, Turetschek R, Wedeking R, Wimmer MA, Wienkoop S. A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed Beta vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:381. [PMID: 30984226 PMCID: PMC6449722 DOI: 10.3389/fpls.2019.00381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet (Beta vulgaris) in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Reinhard Turetschek
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Rita Wedeking
- Institute of Crop Science and Resource Conservation – Plant Nutrition, University of Bonn, Bonn, Germany
- Environmental Safety/Ecotoxicology, Bayer AG, Crop Science Division, Monheim am Rhein, Germany
| | - Monika A. Wimmer
- Institute of Crop Science – Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Schwachtje J, Whitcomb SJ, Firmino AAP, Zuther E, Hincha DK, Kopka J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? FRONTIERS IN PLANT SCIENCE 2019; 10:106. [PMID: 30815006 PMCID: PMC6381073 DOI: 10.3389/fpls.2019.00106] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
Metabolism is the system layer that determines growth by the rate of matter uptake and conversion into biomass. The scaffold of enzymatic reaction rates drives the metabolic network in a given physico-chemical environment. In response to the diverse environmental stresses, plants have evolved the capability of integrating macro- and micro-environmental events to be prepared, i.e., to be primed for upcoming environmental challenges. The hierarchical view on stress signaling, where metabolites are seen as final downstream products, has recently been complemented by findings that metabolites themselves function as stress signals. We present a systematic concept of metabolic responses that are induced by environmental stresses and persist in the plant system. Such metabolic imprints may prime metabolic responses of plants for subsequent environmental stresses. We describe response types with examples of biotic and abiotic environmental stresses and suggest that plants use metabolic imprints, the metabolic changes that last beyond recovery from stress events, and priming, the imprints that function to prepare for upcoming stresses, to integrate diverse environmental stress histories. As a consequence, even genetically identical plants should be studied and understood as phenotypically plastic organisms that continuously adjust their metabolic state in response to their individually experienced local environment. To explore the occurrence and to unravel functions of metabolic imprints, we encourage researchers to extend stress studies by including detailed metabolic and stress response monitoring into extended recovery phases.
Collapse
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|