1
|
D’Angelo D, Sorrentino R, Nkomo T, Zhou X, Vaghefi N, Sonnekus B, Bose T, Cerrato D, Cozzolino L, Creux N, D’Agostino N, Fourie G, Fusco G, Hammerbacher A, Idnurm A, Kiss L, Hu Y, Hu H, Lahoz E, Risteski J, Steenkamp ET, Viscardi M, van der Nest MA, Wu Y, Yu H, Zhou J, Karandeni Dewage CS, Kotta-Loizou LI, Stotz HU, Fitt BDL, Huang Y, Wingfield BD. IMA GENOME - F20 A draft genome assembly of Agroatheliarolfsii, Ceratobasidiumpapillatum, Pyrenopezizabrassicae, Neopestalotiopsismacadamiae, Sphaerellopsisfilum and genomic resources for Colletotrichumspaethianum and Colletotrichumfructicola. IMA Fungus 2025; 16:e141732. [PMID: 40052082 PMCID: PMC11882029 DOI: 10.3897/imafungus.16.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 03/09/2025] Open
Abstract
This is a genome announacment there is no abstract
Collapse
Affiliation(s)
- Davide D’Angelo
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Naples, Italy
| | - Roberto Sorrentino
- Research Centre for Cereal and Industrial Crops (CREA-CI), via Torrino 3, 81100, Caserta, Italy
| | - Tiphany Nkomo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Xianzhi Zhou
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, China
| | - Niloofar Vaghefi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tanay Bose
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Domenico Cerrato
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Loredana Cozzolino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Naples, Italy
| | - Nicky Creux
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Naples, Italy
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Giovanna Fusco
- Department of Plant and Soil Science, Forestry and Agricultural Biotechnology (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alexander Idnurm
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Levente Kiss
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
- Eszterházy Károly Catholic University, Eger, Hungary
| | - Yanping Hu
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary
| | - Hongli Hu
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary
| | - Ernesto Lahoz
- Research Centre for Cereal and Industrial Crops (CREA-CI), via Torrino 3, 81100, Caserta, Italy
| | - Jason Risteski
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Naples, Italy
| | - Magriet A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Yuan Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Yu
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Jianjin Zhou
- Technology Center, Xiamen Customs, Xiamen 361026, China
| | - Chinthani S. Karandeni Dewage
- Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming, Fujian 365051, China
| | - Loly I. Kotta-Loizou
- Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming, Fujian 365051, China
| | - Henrik U. Stotz
- Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming, Fujian 365051, China
| | - Bruce D. L. Fitt
- Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming, Fujian 365051, China
| | - Yongju Huang
- Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming, Fujian 365051, China
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
2
|
Ozbudak E, Carrillo-Tarazona Y, Diaz EA, Zambon FT, Rossi L, Peres NA, Raffaele S, Cano LM. Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. FRONTIERS IN PLANT SCIENCE 2025; 15:1390926. [PMID: 39925370 PMCID: PMC11803528 DOI: 10.3389/fpls.2024.1390926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025]
Abstract
Colletotrichum nymphaeae, the causal agent of anthracnose fruit rot, is globally recognized as a major pathogen of strawberries due to its economic impact. Fungal pathogens utilize secreted proteins to facilitate infection by acquiring host nutrients and suppressing plant immunity. Understanding the transcriptomic responses of C. nymphaeae during infection can provide critical insights into its pathogenic mechanisms. In this study, RNA sequencing (RNA-seq) was performed to profile the transcriptome of C. nymphaeae strain 02-179 during infection of leaf and fruit tissues of the susceptible strawberry (Fragaria x ananassa) cultivar Florida Beauty. Differential gene expression analysis identified fungal genes upregulated during these interactions. Transcriptomic profiling revealed a set of genes encoding secreted effector proteins, including NUDIX hydrolase and LysM domain-containing proteins. Additionally, genes associated with Carbohydrate-Active enzymes (CAZymes), such as multicopper oxidase, pectinesterase, pectate lyase, glycosyl hydrolase family 7, and endochitinase, were significantly upregulated. Notably, two novel tannase genes were identified among the top upregulated genes in strawberry-infected leaves and fruits. Tannase enzymes are hypothesized to degrade tannins, a group of plant secondary metabolites abundant in strawberries, known for their defensive roles against pests and pathogens. The identification of tannase genes and the other genes associated with virulence underscores the complex molecular strategies employed by C. nymphaeae to infect and colonize strawberry tissues. Genes involved in degrading plant cell walls, suppressing host defenses, and potentially overcoming chemical barriers such as tannins play critical roles in the pathogenesis of anthracnose. Further functional characterization of these genes will enhance our understanding of the disease mechanisms and could inform the development of improved management strategies for C. nymphaeae infections in strawberries.
Collapse
Affiliation(s)
- Egem Ozbudak
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Yisel Carrillo-Tarazona
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Edinson A. Diaz
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Flavia T. Zambon
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Lorenzo Rossi
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Natalia A. Peres
- Gulf Coast Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Wimauma, FL, United States
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Toulouse, Castanet-Tolosan, France
| | - Liliana M. Cano
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| |
Collapse
|
3
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
4
|
Zhang N, Li X, Ming L, Sun W, Xie X, Zhi C, Zhou X, Wen Y, Liang Z, Deng Y. Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast. J Fungi (Basel) 2024; 10:868. [PMID: 39728364 DOI: 10.3390/jof10120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents. Based on morphology characterization and genome sequence analyses, we confirmed that these three strains were Epicoccum sorghinum (SCAU-1), Pyricularia grisea (SCAU-2), and Exserohilum rostratum (SCAU-6). The established Avirulence (Avr) genes Avr-Pia, Avr-Pita2, and ACE1 were detected by PCR amplification in SCAU-2, but not in SCAU-1 or SCAU-6. Furthermore, the whole-genome sequence analysis helped to reveal the genetic variations and potential virulence factors relating to the host specificity of these three fungal pathogens. Based on the evolutionary analysis of single-copy orthologous proteins, we found that the genes encoding glycoside hydrolases, carbohydrate esterases, oxidoreductase, and multidrug transporters in SCAU-1 and SCAU-6 were expanded, while expansion in SCAU-2 was mainly related to carbohydrate esterases. In summary, our study provides clues to understand the pathogenic mechanisms of fungal isolates from barnyard grass with the potential to cause rice blast.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liangping Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Cailing Zhi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Chavan AR, Khardenavis AA. Annotating Multiple Prebiotic Synthesizing Capabilities Through Whole Genome Sequencing of Fusarium Strain HFK-74. Appl Biochem Biotechnol 2024; 196:4993-5012. [PMID: 37994978 DOI: 10.1007/s12010-023-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
In the present study, seven fungal isolates from effluent treatment plants were screened for the production of prebiotic fructooligosaccharide synthesizing enzymes with the highest activity of fructofuranosidase (17.52 U/mL) and fructosyl transferase (18.92 U/mL) in strain HKF-74. Mining of genome sequence of strain revealed the annotation of genes providing multiple carbohydrate metabolizing capacities, such as amylases (AMY1), beta-galactosidase (BGAL), beta-xylosidase (Xyl), β-fructofuranosidase (ScrB), fructosyltransferase (FTF), and maltose hydrolases (malH). The annotated genes were further supported by β-galactosidase (15.90 U/mL), xylanase (17.91 U/mL), and α-amylase (14.05 U/mL) activities for synthesis of galactooligosaccharides, xylooligosaccarides, and maltooligosaccharides, respectively. In addition to genes encoding prebiotic synthesizing enzymes, four biosynthetic gene clusters (BGCs) including Type I polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), NRPS-like, and terpene were also predicted in strain HKF-74. This was significant considering their potential role in pharmaceutical and therapeutic applications as well as in virulence. Accurate taxonomic assignment of strain HKF-74 by in silico genomic comparison indicated its closest identity to type strains Fusarium verticillioides NRRL 20984, and 7600. The average nucleotide identity (ANI) of strain HKF-74 with these strains was 92.5% which was close to the species threshold cut-off value (95-96%) while the DNA-DNA hybridization (DDH) value was 83-84% which was greater than both, species delineating (79-80%), and also sub-species delineating (70%) boundaries. Our findings provide a foundation for further research into the use of Fusarium strains and their prebiotic synthesizing enzymes for the development of novel prebiotic supplements.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Khodadadi F, Luciano-Rosario D, Gottschalk C, Jurick WM, Aćimović SG. Unveiling the Arsenal of Apple Bitter Rot Fungi: Comparative Genomics Identifies Candidate Effectors, CAZymes, and Biosynthetic Gene Clusters in Colletotrichum Species. J Fungi (Basel) 2024; 10:493. [PMID: 39057378 PMCID: PMC11278308 DOI: 10.3390/jof10070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The bitter rot of apple is caused by Colletotrichum spp. and is a serious pre-harvest disease that can manifest in postharvest losses on harvested fruit. In this study, we obtained genome sequences from four different species, C. chrysophilum, C. noveboracense, C. nupharicola, and C. fioriniae, that infect apple and cause diseases on other fruits, vegetables, and flowers. Our genomic data were obtained from isolates/species that have not yet been sequenced and represent geographic-specific regions. Genome sequencing allowed for the construction of phylogenetic trees, which corroborated the overall concordance observed in prior MLST studies. Bioinformatic pipelines were used to discover CAZyme, effector, and secondary metabolic (SM) gene clusters in all nine Colletotrichum isolates. We found redundancy and a high level of similarity across species regarding CAZyme classes and predicted cytoplastic and apoplastic effectors. SM gene clusters displayed the most diversity in type and the most common cluster was one that encodes genes involved in the production of alternapyrone. Our study provides a solid platform to identify targets for functional studies that underpin pathogenicity, virulence, and/or quiescence that can be targeted for the development of new control strategies. With these new genomics resources, exploration via omics-based technologies using these isolates will help ascertain the biological underpinnings of their widespread success and observed geographic dominance in specific areas throughout the country.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA;
| | - Dianiris Luciano-Rosario
- Food Quality Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA; (D.L.-R.)
| | - Christopher Gottschalk
- Appalachian Fruit Research Station, U.S. Department of Agriculture, Agriculture Research Service, Kearneysville, WV 25430, USA;
| | - Wayne M. Jurick
- Food Quality Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA; (D.L.-R.)
| | - Srđan G. Aćimović
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA 22602, USA
| |
Collapse
|
7
|
Romero G, González S, Royero W, González A. Morphological and transcriptional analysis of Colletotrichum lindemuthianum race 7 during early stages of infection in common bean. Genet Mol Biol 2024; 47:e20220263. [PMID: 38593425 PMCID: PMC11003654 DOI: 10.1590/1678-4685-gmb-2022-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024] Open
Abstract
The infection process of the hemibiotrophic fungus Colletotrichum lindemuthianum has been independently studied at the microscopic and genomic levels. However, the relationship between the morphological changes and the pathogenicity mechanisms of the fungus at the early stages of the infection remains uncharacterized. Therefore, this study attempts to bridge this gap by integrating microscopic and transcriptional approaches to understand the infection process of C. lindemuthianum. Fungal structures were followed by fluorescence microscopy for 120 hours. Simultaneously, the transcriptomic profile was made using RNAseq. Morphological characterization shows that appressoria, infective vesicles, and secondary hypha formation occur before 72 hours. Additionally, we assembled 38,206 transcripts with lengths between 201 and 3,548 bp. The secretome annotation revealed the expression of 1,204 CAZymes, of which 17 exhibited secretion domains and were identified as chitinases and β-1,3-glucanases, 27 were effector candidates, and 30 were transport proteins mostly associated with ABC-type. Finally, we confirmed the presence and expression of CAC1 role during the appressoria formation of Clr7. This result represents the first report of adenylate cyclase expression evaluated under three different approaches. In conclusion, C. lindemuthianum colonizes the host through different infection structures complemented with the expression of multiple enzymes, where CAC1 favors disease development.
Collapse
Affiliation(s)
- German Romero
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| | - Sandra González
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Wendy Royero
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Adriana González
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| |
Collapse
|
8
|
Liang X, Yu W, Meng Y, Shang S, Tian H, Zhang Z, Rollins JA, Zhang R, Sun G. Genome comparisons reveal accessory genes crucial for the evolution of apple Glomerella leaf spot pathogenicity in Colletotrichum fungi. MOLECULAR PLANT PATHOLOGY 2024; 25:e13454. [PMID: 38619507 PMCID: PMC11018114 DOI: 10.1111/mpp.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Wei Yu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Yanan Meng
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Shengping Shang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Huanhuan Tian
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Zhaohui Zhang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | | | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingChina
| |
Collapse
|
9
|
Ortiz-Álvarez J, Becerra S, Baroncelli R, Hernández-Rodríguez C, Sukno SA, Thon MR. Evolutionary history of the cytochrome P450s from Colletotrichum species and prediction of their putative functional roles during host-pathogen interactions. BMC Genomics 2024; 25:56. [PMID: 38216891 PMCID: PMC10785452 DOI: 10.1186/s12864-023-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024] Open
Abstract
The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Present Address: Programa "Investigadoras e Investigadores por México" Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Mexico City, México
| | - Sioly Becerra
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
| | - Riccardo Baroncelli
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Serenella A Sukno
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| | - Michael R Thon
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| |
Collapse
|
10
|
Dvorianinova EM, Sigova EA, Mollaev TD, Rozhmina TA, Kudryavtseva LP, Novakovskiy RO, Turba AA, Zhernova DA, Borkhert EV, Pushkova EN, Melnikova NV, Dmitriev AA. Comparative Genomic Analysis of Colletotrichum lini Strains with Different Virulence on Flax. J Fungi (Basel) 2023; 10:32. [PMID: 38248942 PMCID: PMC10817032 DOI: 10.3390/jof10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.
Collapse
Affiliation(s)
- Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Timur D. Mollaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia; (T.A.R.); (L.P.K.)
| | | | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| |
Collapse
|
11
|
Geistodt-Kiener A, Totozafy JC, Le Goff G, Vergne J, Sakai K, Ouazzani J, Mouille G, Viaud M, O'Connell RJ, Dallery JF. Yeast-based heterologous production of the Colletochlorin family of fungal secondary metabolites. Metab Eng 2023; 80:216-231. [PMID: 37863177 DOI: 10.1016/j.ymben.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.
Collapse
Affiliation(s)
| | - Jean Chrisologue Totozafy
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, 78000, Versailles, France
| | - Géraldine Le Goff
- Centre National de La Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, 91190, Gif-sur-Yvette, France
| | - Justine Vergne
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Kaori Sakai
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Jamal Ouazzani
- Centre National de La Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, 91190, Gif-sur-Yvette, France
| | - Grégory Mouille
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, 78000, Versailles, France
| | - Muriel Viaud
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | | |
Collapse
|
12
|
Liu J, Wen D, Song X, Su P, Lou J, Yao D, Zhang C. Evolution and natural selection of ribosome-inactivating proteins in bacteria, fungi, and plants. Int J Biol Macromol 2023; 248:125929. [PMID: 37481176 DOI: 10.1016/j.ijbiomac.2023.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are found in bacteria, fungi, and plants, with a wide range of biological resistances such as anti-fungal, anti-viral, anti-insect, and anti-tumor. They can be roughly divided into proactive defense bacterial or fungal types and passive defense plant types. We identified 1592 RIP genes in bacteria, fungi, and plants. Approximately 88 % of the 764 bacterial RIPs were Shiga or Shiga-like toxins which were exotoxins and could rapidly enter cells to possess strong biotoxicity, and about 98 % of fungal RIPs were predicted as secreted proteins. RIPs were not detected in non-seed plants such as algae, bryophytes, and ferns. However, we found RIPs in some flowering and non-flowering seed plants. The existence of plant RIPs might be related to the structure of seeds or fruits, which might be associated with whether seeds are easy to survive and spread. The evolutionary characteristics of RIPs were different between dicotyledons and monocotyledons. In addition, we also found that RIP2 genes might emerge very early and be plant-specific. Some plant RIP1 genes might evolve from RIP2 genes. This study provides new insights into the evolution of RIPs.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China; ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Jianfeng Lou
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Danqing Yao
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| |
Collapse
|
13
|
Liu X, Li B, Cai J, Shi T, Yang Y, Feng Y, Huang G. Whole genome resequencing reveal patterns of genetic variation within Colletotrichum acutatum species complex from rubber trees in China. Fungal Genet Biol 2023; 167:103801. [PMID: 37196569 DOI: 10.1016/j.fgb.2023.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
The Colletotrichum acutatum species complex possesses a diverse number of important traits, such as a wide host range and host preference, different modes of reproduction, and different strategies of host infection. Research using comparative genomics has attempted to find correlations between these traits. Here, we used multi-locus techniques and gene genealogical concordance analysis to investigate the phylogenetic relationships and taxonomic status of the Colletotrichum acutatum species complex using field isolates obtained from rubber trees. The results revealed that the dominant species was C. australisinense, followed by C. bannaense, while strain YNJH17109 was identified as C. laticiphilum. The taxonomic status of strains YNLC510 and YNLC511 was undetermined. Using whole-genome single nucleotide polymorphism data to analyze population structure, 18 strains of C. australisinense were subsequently divided into four populations, one of which was derived from an admixture of two populations. In addition, the strains LD1687, GD1628, and YNLC516, did not belong to any populations, and were considered to be admixtures of two or more populations. A split decomposition network analysis also provided evidence for genetic recombination within Colletotrichum acutatum species complex from rubber trees in China. Overall, a weak phylogeographic sub-structure was observed. Analysis also revealed significant differences in morphological characters and levels of virulence between populations.
Collapse
Affiliation(s)
- Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Yanli Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, Hainan 571101, PR China.
| |
Collapse
|
14
|
Bissaro B, Kodama S, Nishiuchi T, Díaz-Rovira AM, Hage H, Ribeaucourt D, Haon M, Grisel S, Simaan AJ, Beisson F, Forget SM, Brumer H, Rosso MN, Guallar V, O’Connell R, Lafond M, Kubo Y, Berrin JG. Tandem metalloenzymes gate plant cell entry by pathogenic fungi. SCIENCE ADVANCES 2022; 8:eade9982. [PMID: 36542709 PMCID: PMC9770985 DOI: 10.1126/sciadv.ade9982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.
Collapse
Affiliation(s)
- Bastien Bissaro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 920-0934 Kanazawa, Japan
| | | | - Hayat Hage
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - David Ribeaucourt
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - A. Jalila Simaan
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Institut de Biosciences et Biotechnologies d’Aix-Marseille (UMR7265), CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stephanie M. Forget
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, E-08034 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Richard O’Connell
- INRAE, UMR BIOGER, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Mickaël Lafond
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
- Corresponding author. (Y.K.); (J.-G.B.)
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Corresponding author. (Y.K.); (J.-G.B.)
| |
Collapse
|
15
|
Comparative genomic analysis reveals contraction of gene families with putative roles in pathogenesis in the fungal boxwood pathogens Calonectria henricotiae and C. pseudonaviculata. BMC Ecol Evol 2022; 22:79. [PMID: 35725368 PMCID: PMC9210730 DOI: 10.1186/s12862-022-02035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Boxwood blight disease caused by Calonectria henricotiae and C. pseudonaviculata is of ecological and economic significance in cultivated and native ecosystems worldwide. Prior research has focused on understanding the population genetic and genomic diversity of C. henricotiae and C. pseudonaviculata, but gene family evolution in the context of host adaptation, plant pathogenesis, and trophic lifestyle is poorly understood. This study applied bioinformatic and phylogenetic methods to examine gene family evolution in C. henricotiae, C. pseudonaviculata and 22 related fungi in the Nectriaceae that vary in pathogenic and saprobic (apathogenic) lifestyles. Results A total of 19,750 gene families were identified in the 24 genomes, of which 422 were rapidly evolving. Among the six Calonectria species, C. henricotiae and C. pseudonaviculata were the only species to experience high levels of rapid contraction of pathogenesis-related gene families (89% and 78%, respectively). In contrast, saprobic species Calonectria multiphialidica and C. naviculata, two of the closest known relatives of C. henricotiae and C. pseudonaviculata, showed rapid expansion of pathogenesis-related gene families. Conclusions Our results provide novel insight into gene family evolution within C. henricotiae and C. pseudonaviculata and suggest gene family contraction may have contributed to limited host-range expansion of these pathogens within the plant family Buxaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02035-4.
Collapse
|
16
|
Tian Y, Li Y, Wang S, Ren Y, He Y, Chen G, Che Z. Whole-Genome Sequence Resource and Annotation of Cladosporium paeoniae, the Causal Pathogen of Tree Peony Leaf Mold. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1048-1051. [PMID: 36306439 DOI: 10.1094/mpmi-04-22-0079-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Yuee Tian
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Yan Li
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Shuhe Wang
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Yingge Ren
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Yilin He
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Genqiang Chen
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| | - Zhiping Che
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P.R. China
| |
Collapse
|
17
|
Xia H, Noushahi HA, Khan AH, Liu Y, Cosoveanu A, Cui L, Tang J, Iqbal S, Shu S. Genome sequencing of Colletotrichum gloeosporioides ESO026 reveals plausible pathway of HupA. Mol Biol Rep 2022; 49:11611-11622. [PMID: 36161578 DOI: 10.1007/s11033-022-07850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.
Collapse
Affiliation(s)
- Haiyang Xia
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Bio-Pharmaceuticals Institute , Taizhou University, 317000, Taizhou, China
| | - Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Liu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Andreea Cosoveanu
- Department of Botany, Ecology & Plant Physiology, CIPEV Group, Faculty of Science, Biology Section, Universidad de La Laguna, 38206, San Cristobal de La Laguna, Tenerife, Spain
| | - Lingli Cui
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Tang
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shehzad Iqbal
- Faculty of Agricultural Sciences, University of Talca, 3460000, Talca, Chile
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
18
|
Salotti I, Ji T, Rossi V. Temperature requirements of Colletotrichum spp. belonging to different clades. FRONTIERS IN PLANT SCIENCE 2022; 13:953760. [PMID: 35937340 PMCID: PMC9354546 DOI: 10.3389/fpls.2022.953760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The fungal genus Colletotrichum includes plant pathogens that cause substantial economic damage to horticultural, ornamental, and fruit tree crops worldwide. Here, we conducted a systematic literature review to retrieve and analyze the metadata on the influence of temperature on four biological processes: (i) mycelial growth, (ii) conidial germination, (iii) infection by conidia, and (iv) sporulation. The literature review considered 118 papers (selected from a total of 1,641 papers found with the literature search), 19 Colletotrichum species belonging to eight clades (acutatum, graminicola, destructivum, coccodes, dematium, gloeosporioides, and orbiculare), and 27 host plants (alfalfa, almond, apple, azalea, banana, barley, bathurst burr, blueberry, celery, chilli, coffee, corn, cotton, cowpea, grape, guava, jointvetch, lentil, lupin, olive, onion, snap bean, spinach, strawberry, tomato, watermelon, and white bean). We used the metadata to develop temperature-dependent equations representing the effect of temperature on the biological processes for the different clades and species. Inter- and intra-clades similarities and differences are analyzed and discussed. A multi-factor cluster analysis identified four groups of clades with similar temperature dependencies. The results should facilitate further research on the biology and epidemiology of Colletotrichum species and should also contribute to the development of models for the management of anthracnose diseases.
Collapse
|
19
|
Tian Y, Li Y, Wang S, He J, Sun D, Liu S, Chen G, Che Z. Genome Sequence Resource and Annotation of Calonectria montana, an Economically Important Pathogen with a Broad Host Range. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:492-495. [PMID: 35226813 DOI: 10.1094/mpmi-01-22-0031-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Yuee Tian
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Yan Li
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Shuhe Wang
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Jiaxuan He
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Di Sun
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Shengming Liu
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Genqiang Chen
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| | - Zhiping Che
- Department of Plant Protection, Henan University of Science and Technology, Luoyang, 471000, Henan Province, P. R. China
| |
Collapse
|
20
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
21
|
Han Y, Zeng X, Guo C, Zhang Q, Chen F, Ren L, Chen W, Qin L. Reproduction response of Colletotrichum fungi under the fungicide stress reveals new aspects of chemical control of fungal diseases. Microb Biotechnol 2022; 15:431-441. [PMID: 33470538 PMCID: PMC8867994 DOI: 10.1111/1751-7915.13754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic fungicides and antifungals are used as frontline treatments for fungal diseases in plants and humans. It is generally accepted that fungicides will bring significant negative side-effects to the environment and result in fungicide resistance in the pathogenic fungi. Although previous research has focused on fungicide application rates and fungal resistance for a long time, little attention has been paid to fungicide residues after treatment, especially their potential role in fungal growth and sporulation. Here we investigated the effect of fungicides at sublethal concentrations on fungal sporulation. The results showed that two kinds of 14α-demethylase inhibitors (DMIs) fungicides increased the number of isolates of Colletotrichum spp. to sporulate on PDA. Both on PDA medium and plant tissue, low concentration of DMI fungicides could promote spore production of Colletotrichum spp., whereas pyraclostrobin, a quinone outside inhibitor (QoIs), had no significant effects on sporulation of Colletotrichum spp. Transcriptomic analysis suggested that the DMIs fungicide stress signal may be transmitted to the central regulatory pathway through the FluG-mediated signalling pathway, and further confirmed the morphological effect of DMI fungicide on promoting sporulation of Colletotrichum. To our knowledge, this is the first study to provide insights into the reproductive response of fungi in response to fungicide stress. Our findings indicate that fungicides have two-way effects on the growth and reproduction of pathogenic fungi and provide a new basis for the scientific and rational use of fungicides.
Collapse
Affiliation(s)
- Yong‐chao Han
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Xiang‐guo Zeng
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Cong Guo
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Qing‐hua Zhang
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Feng‐ying Chen
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Li Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan430062China
| | - Wei‐dong Chen
- United States Department of AgricultureAgricultural Research ServiceWashington State UniversityPullmanWAUSA
| | - Li Qin
- Department of BiologyCollege of Arts and ScienceUniversity of Saskatchewan, SaskatoonSKS7N 5E2Canada
| |
Collapse
|
22
|
Gcorn fungi: A Web Tool for Detecting Biases between Gene Evolution and Speciation in Fungi. J Fungi (Basel) 2021; 7:jof7110959. [PMID: 34829248 PMCID: PMC8624827 DOI: 10.3390/jof7110959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Fungi contain several millions of species, and the diversification of fungal genes has been achieved by speciation, gene duplication, and horizontal gene transfer. Although several databases provide information on orthologous and paralogous events, these databases show no information on biases between gene mutation and speciation. Here, we designed the Gcorn fungi database to better understand such biases. (2) Methods: Amino acid sequences of fungal genes in 249 species, which contain 2,345,743 sequences, were used for this database. Homologous genes were grouped at various thresholds of the homology index, which was based on the percentages of gene mutations. By grouping genes that showed highly similar homology indices to each other, we showed functional and evolutionary traits in the phylogenetic tree depicted for the gene of interest. (3) Results: Gcorn fungi provides well-summarized information on the evolution of a gene lineage and on the biases between gene evolution and speciation, which are quantitatively identified by the Robinson–Foulds metric. The database helps users visualize these traits using various depictions. (4) Conclusions: Gcorn fungi is an open access database that provides a variety of information with which to understand gene function and evolution.
Collapse
|
23
|
Oggenfuss U, Badet T, Wicker T, Hartmann FE, Singh NK, Abraham L, Karisto P, Vonlanthen T, Mundt C, McDonald BA, Croll D. A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen. eLife 2021; 10:e69249. [PMID: 34528512 PMCID: PMC8445621 DOI: 10.7554/elife.69249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022] Open
Abstract
Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen's center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Thomas Wicker
- Institute for Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-SaclayOrsayFrance
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Petteri Karisto
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Tiziana Vonlanthen
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Christopher Mundt
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallisUnited States
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| |
Collapse
|
24
|
Fu T, Han JH, Shin JH, Song H, Ko J, Lee YH, Kim KT, Kim KS. Homeobox Transcription Factors Are Required for Fungal Development and the Suppression of Host Defense Mechanisms in the Colletotrichum scovillei-Pepper Pathosystem. mBio 2021; 12:e0162021. [PMID: 34425710 PMCID: PMC8406175 DOI: 10.1128/mbio.01620-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
Colletotrichum scovillei, an ascomycete phytopathogenic fungus, is the main causal agent of serious yield losses of economic crops worldwide. The fungus causes anthracnose disease on several fruits, including peppers. However, little is known regarding the underlying molecular mechanisms involved in the development of anthracnose caused by this fungus. In an initial step toward understanding the development of anthracnose on pepper fruits, we retrieved 624 transcription factors (TFs) from the whole genome of C. scovillei and comparatively analyzed the entire repertoire of TFs among phytopathogenic fungi. Evolution and proliferation of members of the homeobox-like superfamily, including homeobox (HOX) TFs that regulate the development of eukaryotic organisms, were demonstrated in the genus Colletotrichum. C. scovillei was found to contain 10 HOX TF genes (CsHOX1 to CsHOX10), which were functionally characterized using deletion mutants of each CsHOX gene. Notably, CsHOX1 was identified as a pathogenicity factor required for the suppression of host defense mechanisms, which represents a new role for HOX TFs in pathogenic fungi. CsHOX2 and CsHOX7 were found to play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study provides a molecular basis for understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid in the development of novel approaches for disease management. IMPORTANCE The ascomycete phytopathogenic fungus, Colletotrichum scovillei, causes serious yield loss on peppers. However, little is known about molecular mechanisms involved in the development of anthracnose caused by this fungus. We analyzed whole-genome sequences of C. scovillei and isolated 624 putative TFs, revealing the existence of 10 homeobox (HOX) transcription factor (TF) genes. We found that CsHOX1 is a pathogenicity factor required for the suppression of host defense mechanism, which represents a new role for HOX TFs in pathogenic fungi. We also found that CsHOX2 and CsHOX7 play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study contributes to understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid for initiating novel approaches for disease management.
Collapse
Affiliation(s)
- Teng Fu
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Joon-Hee Han
- Department of Research and Development, Chuncheon Bioindustry Foundation, Chuncheon, South Korea
| | - Jong-Hwan Shin
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Hyeunjeong Song
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, South Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
25
|
Liang X, Yao L, Hao X, Li B, Kong Y, Lin Y, Cao M, Dong Q, Zhang R, Rollins JA, Sun G. Molecular Dissection of Perithecial Mating Line Development in Colletotrichum fructicola, a Species with a Nontypical Mating System Featuring Plus-to-Minus Switch and Plus-Minus-Mediated Sexual Enhancement. Appl Environ Microbiol 2021; 87:e0047421. [PMID: 33863706 PMCID: PMC8284469 DOI: 10.1128/aem.00474-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
The genetic regulation of Colletotrichum (Glomerella) sexual reproduction does not strictly adhere to the Ascomycota paradigm and remains poorly understood. Morphologically different but sexually compatible strain types, termed plus and minus, have been recognized, but the biological and molecular distinctions between these strain types remain elusive. In this study, we characterized the sexual behaviors of a pair of plus and minus strains of C. fructicola with the aid of live-cell nucleus-localized fluorescent protein labeling, gene expression, and gene mutation analyses. We confirmed a genetically stable plus-to-minus switching phenomenon and demonstrated the presence of both cross-fertilized and self-fertilized perithecia within the mating line (perithecia cluster at the line of colony contact) between plus and minus strains. We demonstrated that pheromone signaling genes (a-factor-like and α-factor-like pheromones and their corresponding GPCR receptors) were differently expressed between vegetative hyphae of the two strains. Moreover, deletion of pmk1 (a FUS/KSS1 mitogen-activate protein kinase) in the minus strain severely limited mating line formation, whereas deletion of a GPCR (FGSG_05239 homolog) and two histone modification factors (hos2, snt2) in the minus strain did not affect mating line development but altered the ratio between cross-fertilization and self-fertilization within the mating line. We propose a model in which mating line formation in C. fructicola involves enhanced protoperithecium differentiation and enhanced perithecium maturation of the minus strain mediated by both cross-fertilization and diffusive effectors. This study provides insights into mechanisms underlying the mysterious phenomenon of plus-minus-mediated sexual enhancement being unique to Colletotrichum fungi. IMPORTANCE Plus-minus regulation of Colletotrichum sexual differentiation was reported in the early 1900s. Both plus and minus strains produce fertile perithecia in a homothallic but inefficient manner. However, when the two strain types encounter each other, efficient differentiation of fertile perithecia is triggered. The plus strain, by itself, can also generate minus ascospore progeny at high frequency. This nontypical mating system facilitates sexual reproduction and is Colletotrichum specific; the underlying molecular mechanisms, however, remain elusive. The current study revisits this longstanding mystery using C. fructicola as an experimental system. The presence of both cross-fertilized and self-fertilized perithecia within the mating line was directly evidenced by live-cell imaging with fluorescent markers. Based on further gene expression and gene mutation analysis, a model explaining mating line development (plus-minus-mediated sexual enhancement) is proposed. Data reported here have the potential to allow us to better understand Colletotrichum mating and filamentous ascomycete sexual regulation.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiaojuan Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bingxuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuyi Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengyu Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qiuyue Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
26
|
Eaton MJ, Edwards S, Inocencio HA, Machado FJ, Nuckles EM, Farman M, Gauthier NA, Vaillancourt LJ. Diversity and Cross-Infection Potential of Colletotrichum Causing Fruit Rots in Mixed-Fruit Orchards in Kentucky. PLANT DISEASE 2021; 105:1115-1128. [PMID: 32870109 DOI: 10.1094/pdis-06-20-1273-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi in the genus Colletotrichum cause apple, blueberry, and strawberry fruit rots, which can result in significant losses. Accurate identification is important because species differ in aggressiveness, fungicide sensitivity, and other factors affecting management. Multiple Colletotrichum species can cause similar symptoms on the same host, and more than one fruit type can be infected by a single Colletotrichum species. Mixed-fruit orchards may facilitate cross-infection, with significant management implications. Colletotrichum isolates from small fruits in Kentucky orchards were characterized and compared with apple isolates via a combination of morphotyping, sequencing of voucher loci and whole genomes, and cross-inoculation assays. Seven morphotypes representing two species complexes (C. acutatum and C. gloeosporioides) were identified. Morphotypes corresponded with phylogenetic species C. fioriniae, C. fructicola, C. nymphaeae, and C. siamense, identified by TUB2 or GAPDH barcodes. Phylogenetic trees built from nine single-gene sequences matched barcoding results with one exception, later determined to belong to an undescribed species. Comparison of single-gene trees with representative whole genome sequences revealed that CHS and ApMat were the most informative for diagnosis of fruit rot species and individual morphotypes within the C. acutatum or C. gloeosporioides complexes, respectively. All blueberry isolates belonged to C. fioriniae, and most strawberry isolates were C. nymphaeae, with a few C. siamense and C. fioriniae also recovered. All three species cause fruit rot on apples in Kentucky. Cross-inoculation assays on detached apple, blueberry, and strawberry fruits showed that all species were pathogenic on all three hosts but with species-specific differences in aggressiveness.
Collapse
Affiliation(s)
- Madison J Eaton
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Shanice Edwards
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Harrison A Inocencio
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Franklin J Machado
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
- Fundo de Defesa de Citricultura-Fundecitrus, Departamento de Pesquisa e Desenvolvimento, Araraquara, São Paulo 147807-040, Brazil
| | - Etta M Nuckles
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Nicole A Gauthier
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| |
Collapse
|
27
|
|
28
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
29
|
Liu X, Li B, Yang Y, Cai J, Shi T, Zheng X, Huang G. Pathogenic Adaptations Revealed by Comparative Genome Analyses of Two Colletotrichum spp., the Causal Agent of Anthracnose in Rubber Tree. Front Microbiol 2020; 11:1484. [PMID: 32793128 PMCID: PMC7385191 DOI: 10.3389/fmicb.2020.01484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum siamense and Colletotrichum australisinense cause Colletotrichum leaf disease that differ in their symptoms in rubber tree (Hevea brasiliensis), and pathogenicity of these two fungal species is also not identical on different cultivars of rubber tree. This divergence is often attributed to pathogen virulence factors, namely carbohydrate-active enzymes (CAZymes), secondary metabolites (SM), and small-secreted protein (SSP) effectors. The draft genome assembly and functional annotation of potential pathogenicity genes of both species obtained here provide an important and timely genomic resource for better understanding the biology and lifestyle of Colletotrichum spp. This should pave the way for designing more efficient disease control strategies in plantations of rubber tree. In this study, the genes associated with these categories were manually annotated in the genomes of C. australisinense GX1655 and C. siamense HBCG01. Comparative genomic analyses were performed to address the evolutionary relationships among these gene families in the two species. First, the size of genome assembly, number of predicted genes, and some of the functional categories differed significantly between the two congeners. Second, from the comparative genomic analyses, we identified some specific genes, certain higher abundance of gene families associated with CAZymes, CYP450, and SM in the genome of C. siamense, and Nep1-like proteins (NLP) in the genome of C. australisinense.
Collapse
Affiliation(s)
- Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Xiaolan Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| |
Collapse
|
30
|
Meng Y, Ren Y, Wang W, Gleason ML, Zhang R, Sun G. A Genome Sequence Resource for the Geographically Widespread Anthracnose Pathogen Colletotrichum asianum. PLANT DISEASE 2020; 104:2044-2047. [PMID: 32452717 DOI: 10.1094/pdis-01-20-0034-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colletotrichum asianum is a worldwide plant pathogen causing serious fruit or leaf anthracnose diseases on a variety of plant hosts such as mango, coffee berry, chili, and other potential hosts, and it is distributed widely in Asia, America, Africa, and Oceania. This is the first genome resource available for C. asianum. The draft genome assembly will allow further analysis of species diversity and evolutionary mechanisms, and may serve as a foundation for genetic analysis that leads to greater understanding of interactions between plants and fungal pathogens.
Collapse
Affiliation(s)
- Yanan Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yihua Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wenjing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
31
|
Liang X, Cao M, Li S, Kong Y, Rollins JA, Zhang R, Sun G. Highly Contiguous Genome Resource of Colletotrichum fructicola Generated Using Long-Read Sequencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:790-793. [PMID: 32163336 DOI: 10.1094/mpmi-11-19-0316-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colletotrichum fructicola is a plant-pathogenic fungus with a broad host range. It causes significant losses to important crops, including apple, pear, strawberry, and other Rosaceae and non-Rosaceae species. To date, two short read-based C. fructicola genomes are publicly available, but both are fragmented. In this study, we re-sequenced the genome of C. fructicola using nanopore long-read technology and refined the assembly with Hi-C map data. The resulting high-quality assembly is an important resource for further comparative and experimental studies with C. fructicola.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mengyu Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Sen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| |
Collapse
|
32
|
Cacciola SO, Gilardi G, Faedda R, Schena L, Pane A, Garibaldi A, Gullino ML. Characterization of Colletotrichum ocimi Population Associated with Black Spot of Sweet Basil ( Ocimum basilicum) in Northern Italy. PLANTS 2020; 9:plants9050654. [PMID: 32455920 PMCID: PMC7285085 DOI: 10.3390/plants9050654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Black spot is a major foliar disease of sweet basil (Ocimum basilicum) present in a typical cultivation area of northern Italy, including the Liguria and southern Piedmont regions, where this aromatic herb is an economically important crop. In this study, 15 Colletotrichum isolates obtained from sweet basil plants with symptoms of black spot sampled in this area were characterized morphologically and by nuclear DNA analysis using internal transcribed spacers (ITS) and intervening 5.8S nrDNA as well as part of the β-tubulin gene (TUB2) regions as barcode markers. Analysis revealed all but one isolate belonged to the recently described species C. ocimi of the C. destructivum species complex. Only one isolate was identified as C. destructivum sensu stricto (s.s.). In pathogenicity tests on sweet basil, both C. ocimi and C. destructivum s.s. isolates incited typical symptoms of black spot, showing that although C. ocimi prevails in this basil production area, it is not the sole causal agent of black spot in northern Italy. While no other hosts of C. ocimi are known worldwide, the close related species C. destructivum has a broad host range, suggesting a speciation process of C. ocimi within this species complex driven by adaptation to the host.
Collapse
Affiliation(s)
- Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
- Correspondence:
| | - Giovanna Gilardi
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| | - Roberto Faedda
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
| | - Leonardo Schena
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
| | - Angelo Garibaldi
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| | - Maria Lodovica Gullino
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| |
Collapse
|
33
|
Pszczółkowska A, Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A. rps3 as a Candidate Mitochondrial Gene for the Molecular Identification of Species from the Colletotrichum acutatum Species Complex. Genes (Basel) 2020; 11:E552. [PMID: 32422999 PMCID: PMC7290925 DOI: 10.3390/genes11050552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum species form one of the most economically significant groups of pathogenic fungi and lead to significant losses in the production of major crops-in particular, fruits, vegetables, ornamental plants, shrubs, and trees. Members of the genus Colletotrichum cause anthracnose disease in many plants. Due to their considerable variation, these fungi have been widely investigated in genetic studies as model organisms. Here, we report the complete mitochondrial genome sequences of four Colletotrichum species (C. fioriniae, C. lupini, C. salicis, and C. tamarilloi). The reported circular mitogenomes range from 30,020 (C. fioriniae) to 36,554 bp (C. lupini) in size and have identical sets of genes, including 15 protein-coding genes, two ribosomal RNA genes, and 29 tRNA genes. All four mitogenomes are characterized by a rather poor repetitive sequence content with only forward repeat representatives and a low number of microsatellites. The topology of the phylogenetic tree reflects the systematic positions of the studied species, with representatives of each Colletotrichum species complex gathered in one clade. A comparative analysis reveals consistency in the gene composition and order of Colletotrichum mitogenomes, although some highly divergent regions are also identified, like the rps3 gene which appears as a source of potential diagnostic markers for all studied Colletotrichum species.
Collapse
Affiliation(s)
- Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| |
Collapse
|
34
|
Genome Sequencing and Analysis of the Fungal Symbiont of Sirex noctilio, Amylostereum areolatum: Revealing the Biology of Fungus-Insect Mutualism. mSphere 2020; 5:5/3/e00301-20. [PMID: 32404513 PMCID: PMC7227769 DOI: 10.1128/msphere.00301-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. Amylostereum areolatum is the symbiotic fungus of the Eurasian woodwasp, Sirex noctilio, a globally invasive species. The mutualistic symbiont is associated with the woodwasp, assisting the damage process and providing nutrition for its insect partners. Colonization and growth of A. areolatum have essential impacts on the development and spread of S. noctilio, though the mechanism of interaction between the two has been poorly described. In this study, the first genome of this symbiotic fungus was sequenced, assembled, and annotated. The assembled A. areolatum genome was 57.5 Mb (54.51% GC content) with 15,611 protein-coding genes. We identified 580 carbohydrate-active enzymes (CAZymes), 661 genes associated with pathogen-host interactions, and 318 genes encoding transport proteins in total. The genome annotation revealed 10 terpene/phytoene synthases responsible for terpenoid biosynthesis, which could be classified into three clades. Terpene synthase gene clusters in clade II were conserved well across Russulales. In this cluster, genes encoding mevalonate kinase (MK), EGR12 (COG1557), and nonplant terpene cyclases (cd00687) were the known biosynthesis and regulatory genes. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus. The wasps might protect the fungus before it was introduced into a suitable host substrate by oviposition, while the fungus would provide S. noctilio with a suitable environment and nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. IMPORTANCESirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.
Collapse
|
35
|
Cabral A, Azinheira HG, Talhinhas P, Batista D, Ramos AP, Silva MDC, Oliveira H, Várzea V. Pathological, Morphological, Cytogenomic, Biochemical and Molecular Data Support the Distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E502. [PMID: 32295225 PMCID: PMC7238176 DOI: 10.3390/plants9040502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
Abstract
The genus Colletotrichum has witnessed tremendous variations over the years in the number of species recognized, ranging from 11 to several hundreds. Host-specific fungal species, once the rule, are now the exception, with polyphagous behavior regarded as normal in this genus. The species Colletotrichum kahawae was created to accommodate the pathogens that have the unique ability to infect green developing coffee berries causing the devastating Coffee Berry Disease in Africa, but its close phylogenetic relationship to a polyphagous group of fungi in the C. gloeosporioides species complex led some researchers to regard these pathogens as members of a wider species. In this work we combine pathological, morphological, cytogenomic, biochemical, and molecular data of a comprehensive set of phylogenetically-related isolates to show that the Coffee Berry Disease pathogen forms a separate species, C. kahawae, and also to assign the closely related fungi, previously in C. kahawae subsp. cigarro, to a new species, C. cigarro comb. et stat. nov. This taxonomic clarification provides an opportunity to link phylogeny and functional biology, and additionally enables a much-needed tool for plant pathology and agronomy, associating exclusively C. kahawae to the Coffee Berry Disease pathogen.
Collapse
Affiliation(s)
- Ana Cabral
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
| | - Helena G. Azinheira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
| | - Dora Batista
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Paula Ramos
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Laboratório de Patologia Vegetal “Veríssimo de Almeida”, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Maria do Céu Silva
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
| | - Helena Oliveira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
| | - Vítor Várzea
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.C.); (H.G.A.); (D.B.); (A.P.R.); (M.d.C.S.); (H.O.); (V.V.)
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 2780-505 Oeiras, Portugal
| |
Collapse
|
36
|
Villafana RT, Rampersad SN. Diversity, structure, and synteny of the cutinase gene of Colletotrichum species. Ecol Evol 2020; 10:1425-1443. [PMID: 32076525 PMCID: PMC7029052 DOI: 10.1002/ece3.5998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022] Open
Abstract
Colletotrichum species complexes are among the top 10 economically important fungal plant pathogens worldwide because they can infect climacteric and nonclimacteric fruit at the pre and/or postharvest stages. C. truncatum is the major pathogen responsible for anthracnose of green and red bell pepper fruit worldwide. C. brevisporum was recently reported to be a minor pathogen of red bell pepper fruit in Trinidad, but has recently been reported as pathogenic to other host species in other countries. The ability of these phytopathogens to produce and secrete cutinase is required for dismantling the cuticle of the host plant and, therefore, crucial to the necrotrophic phase of their infection strategy. In vitro bioassays using different lipid substrates confirmed the ability of C. truncatum and C. brevisporum isolates from green and red bell peppers to secrete cutinase. The diversity, structure and organization and synteny of the cutinase gene were determined among different Colletotrichum species. Cluster analysis indicated a low level of nucleotide variation among C. truncatum sequences. Nucleotide sequences of C. brevisporum were more related to C. truncatum cutinase nucleotide sequences than to C. gloeosporioides. Cluster patterns coincided with haplotype and there was evidence of significant positive selection with no recombination signatures. The structure of the cutinase gene included two exons with one intervening intron and, therefore, one splice variant. Although amino acid sequences were highly conserved among C. truncatum isolates, diversity "hot spots" were revealed when the 66-amino acid coding region of 200 fungal species was compared. Twenty cutinase orthologues were detected among different fungal species, whose common ancestor is Pezizomycotina and it is purported that these orthologues arose through a single gene duplication event prior to speciation. The cutinase domain was retained both in structure and arrangement among 34 different Colletotrichum species. The order of aligned genomic blocks between species and the arrangement of flanking protein domains were also conserved and shared for those domains immediately located at the N- and C-terminus of the cutinase domain. Among these were an RNA recognition motif, translation elongation factor, signal peptide, pentatricopeptide repeat, and Hsp70 family of chaperone proteins, all of which support the expression of the cutinase gene. The findings of this study are important to understanding the evolution of the cutinase gene in C. truncatum as a key component of the biotrophic-necrotrophic switch which may be useful in developing gene-targeting strategies to decrease the pathogenic potential of Colletotrichum species.
Collapse
Affiliation(s)
- Ria T. Villafana
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| | - Sephra N. Rampersad
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| |
Collapse
|
37
|
Meng Y, Gleason ML, Zhang R, Sun G. Genome Sequence Resource of the Wide-Host-Range Anthracnose Pathogen Colletotrichum siamense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:931-934. [PMID: 30893002 DOI: 10.1094/mpmi-01-19-0010-a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colletotrichum siamense causes fruit or foliar disease called anthracnose on a variety of plant hosts such as vegetables, fruits, ornamental plants, and others, including chili pepper, apple, American cranberry, mango, orange, papaya, guava, rubber plant, jasmine, coffee berry, and tea plants. Here, we report the first Illumina-sequenced draft genome assembly of C. siamense strain ICMP 18578 and its annotation. This genome sequence provides a unique resource that will be useful for future research on the evolution of Colletotrichum spp. and improvement of anthracnose management strategies.
Collapse
Affiliation(s)
- Yanan Meng
- 1State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mark L Gleason
- 2Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- 1State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Guangyu Sun
- 1State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
38
|
Lelwala RV, Korhonen PK, Young ND, Scott JB, Ades PK, Gasser RB, Taylor PWJ. Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS One 2019; 14:e0212248. [PMID: 31150449 PMCID: PMC6544218 DOI: 10.1371/journal.pone.0212248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/02/2019] [Indexed: 01/30/2023] Open
Abstract
Colletotrichum tanaceti is an emerging foliar fungal pathogen of commercially grown pyrethrum (Tanacetum cinerariifolium). Despite being reported consistently from field surveys in Australia, the molecular basis of pathogenicity of C. tanaceti on pyrethrum is unknown. Herein, the genome of C. tanaceti (isolate BRIP57314) was assembled de novo and annotated using transcriptomic evidence. The inferred putative pathogenicity gene suite of C. tanaceti comprised a large array of genes encoding secreted effectors, proteases, CAZymes and secondary metabolites. Comparative analysis of its putative pathogenicity gene profiles with those of closely related species suggested that C. tanaceti likely has additional hosts to pyrethrum. The genome of C. tanaceti had a high repeat content and repetitive elements were located significantly closer to genes inferred to influence pathogenicity than other genes. These repeats are likely to have accelerated mutational and transposition rates in the genome, resulting in a rapid evolution of certain CAZyme families in this species. The C. tanaceti genome showed strong signals of Repeat Induced Point (RIP) mutation which likely caused its bipartite nature consisting of distinct gene-sparse, repeat and A-T rich regions. Pathogenicity genes within these RIP affected regions were likely to have a higher evolutionary rate than the rest of the genome. This "two-speed" genome phenomenon in certain Colletotrichum spp. was hypothesized to have caused the clustering of species based on the pathogenicity genes, to deviate from taxonomic relationships. The large repertoire of pathogenicity factors that potentially evolve rapidly due to the plasticity of the genome, indicated that C. tanaceti has a high evolutionary potential. Therefore, C. tanaceti poses a high-risk to the pyrethrum industry. Knowledge of the evolution and diversity of the putative pathogenicity genes will facilitate future research in disease management of C. tanaceti and other Colletotrichum spp.
Collapse
Affiliation(s)
- Ruvini V. Lelwala
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason B. Scott
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania, Australia
| | - Peter K. Ades
- Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Huang L, Kim KT, Yang JY, Song H, Choi G, Jeon J, Cheong K, Ko J, Xu H, Lee YH. A High-Quality Draft Genome Sequence of Colletotrichum gloeosporioides sensu stricto SMCG1#C, a Causal Agent of Anthracnose on Cunninghamia lanceolata in China. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:139-141. [PMID: 30019989 DOI: 10.1094/mpmi-05-18-0144-a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colletotrichum has a broad host range and causes major yield losses of crops. The fungus Colletotrichum gloeosporioides is associated with anthracnose on Chinese fir. In this study, we present a high-quality draft genome sequence of C. gloeosporioides sensu stricto SMCG1#C, providing a reference genomic data for further research on anthracnose of Chinese fir and other hosts.
Collapse
Affiliation(s)
- Lin Huang
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ki-Tae Kim
- 2 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ji-Yun Yang
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hyeunjeong Song
- 3 Interdisciplinary Program in Agricultural Genomics, Seoul National University
| | - Gobong Choi
- 3 Interdisciplinary Program in Agricultural Genomics, Seoul National University
| | - Jongbum Jeon
- 3 Interdisciplinary Program in Agricultural Genomics, Seoul National University
| | - Kyeongchae Cheong
- 3 Interdisciplinary Program in Agricultural Genomics, Seoul National University
| | - Jaeho Ko
- 2 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Haibin Xu
- 4 College of Biology and the Environment, Nanjing Forestry University; and
| | - Yong-Hwan Lee
- 2 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- 3 Interdisciplinary Program in Agricultural Genomics, Seoul National University
- 5 Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University
| |
Collapse
|
40
|
Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola. BMC Genomics 2018; 19:557. [PMID: 30055574 PMCID: PMC6064131 DOI: 10.1186/s12864-018-4934-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Colletotrichum is a fungal genus in Ascomycota that contain many plant pathogens. Among all Colletotrichum genomes that have been sequenced, C. fructicola contains the largest number of candidate virulence factors, such as plant cell wall degrading enzymes, secondary metabolite (SM) biosynthetic enzymes, secreted proteinases, and small secreted proteins. Systematic analysis of the expressional patterns of these factors would be an important step toward identifying key virulence determinants. Results In this study, we obtained and compared the global transcriptome profiles of four types of infection-related structures: conidia, appressoria, infected apple leaves, and cellophane infectious hyphae (bulbous hyphae spreading inside cellophane) of C. fructicola. We also compared the expression changes of candidate virulence factors among these structures in a systematic manner. A total of 3189 genes were differentially expressed in at least one pairwise comparison. Genes showing in planta-specific expressional upregulations were enriched with small secreted proteins (SSPs), cytochrome P450s, carbohydrate-active enzymes (CAZYs) and secondary metabolite (SM) synthetases, and included homologs of several known candidate effectors and one SM gene cluster specific to the Colletotrichum genus. In conidia, tens of genes functioning in triacylglycerol biosynthesis showed coordinately expressional upregulation, supporting the viewpoint that C. fructicola builds up lipid droplets as energy reserves. Several phosphate starvation responsive genes were coordinately up-regulated during early plant colonization, indicating a phosphate-limited in planta environment immediately faced by biotrophic infectious hyphae. Conclusion This study systematically analyzes the expression patterns of candidate virulence genes, and reveals biological activities related to the development of several infection-related structures of C. fructicola. Our findings lay a foundation for further dissecting infection mechanisms in Colletotrichum and identifying disease control targets. Electronic supplementary material The online version of this article (10.1186/s12864-018-4934-0) contains supplementary material, which is available to authorized users.
Collapse
|