1
|
Khan A, Ammar Zahid M, Farrukh F, Salah Abdelsalam S, Mohammad A, Al-Zoubi RM, Shkoor M, Ait Hssain A, Wei DQ, Agouni A. Integrated structural proteomics and machine learning-guided mapping of a highly protective precision vaccine against mycoplasma pulmonis. Int Immunopharmacol 2024; 141:112833. [PMID: 39153303 DOI: 10.1016/j.intimp.2024.112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024]
Abstract
Mycoplasma pulmonis (M. pulmonis) is an emerging respiratory infection commonly linked to prostate cancer, and it is classified under the group of mycoplasmas. Improved management of mycoplasma infections is essential due to the frequent ineffectiveness of current antibiotic treatments in completely eliminating these pathogens from the host. The objective of this study is to design and construct effective and protective vaccines guided by structural proteomics and machine learning algorithms to provide protection against the M. pulmonis infection. Through a thorough examination of the entire proteome of M. pulmonis, four specific targets Membrane protein P80, Lipoprotein, Uncharacterized protein and GGDEF domain-containing protein have been identified as appropriate for designing a vaccine. The proteins underwent mapping of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) (IFN)-γ ±, and B-cell epitopes using artificial and recurrent neural networks. The design involved the creation of mRNA and peptide-based vaccine, which consisted of 8 CTL epitopes associated by GGS linkers, 7 HTL (IFN-positive) epitopes, and 8 B-cell epitopes joined by GPGPG linkers. The vaccine designed exhibit antigenic behavior, non-allergenic qualities, and exceptional physicochemical attributes. Structural modeling revealed that correct folding is crucial for optimal functioning. The coupling of the MEVC and Toll-like Receptors (TLR)1, TLR2, and TLR6 was examined through molecular docking experiments. This was followed by molecular simulation investigations, which included binding free energy estimations. The results indicated that the dynamics of the interaction were stable, and the binding was strong. In silico cloning and optimization analysis revealed an optimized sequence with a GC content of 49.776 % and a CAI of 0.982. The immunological simulation results showed strong immune responses, with elevated levels of active and plasma B-cells, regulatory T-cells, HTL, and CTL in both IgM+IgG and secondary immune responses. The antigen was completely cleared by the 50th day. This study lays the foundation for creating a potent and secure vaccine candidate to combat the newly identified M. pulmonis infection in people.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Farheen Farrukh
- Gujranwala Medical College, 5 KM Alipur Chatha Rd, Gondlanwala Rd, Gujranwala, Pakistan
| | - Shahenda Salah Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Mohanad Shkoor
- Department of Chemistry, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Anandhan G, Narkhede YB, Mohan M, Paramasivam P. Immunoinformatics aided approach for predicting potent cytotoxic T cell epitopes of respiratory syncytial virus. J Biomol Struct Dyn 2023; 41:12093-12105. [PMID: 36935101 DOI: 10.1080/07391102.2023.2191136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/27/2022] [Indexed: 03/21/2023]
Abstract
Respiratory syncytial virus (RSV) is an infectious viral pathogen that causing serious respiratory infection in adults and neonates. The only approved therapies for RSV are the monoclonal antibodies palivizumab and its derivative motavizumab. Both treatments are expensive and require a hospital setting for administration. A vaccine represents a safe, effective and cheaper alternative for preventing RSV infection. In silico prediction methods have proven to be valuable in speeding up the process of vaccine design. In this study, reverse vaccinology methods were used to predict the cytotoxic T lymphocytes (CTL) epitopes from the entire proteome of RSV strain A. From amongst 3402 predicted binders to 12 high frequency alleles from the Immune Epitope Database (IEDB), 567 had positive processing scores while 327 epitopes were predicted to be immunogenic. A thorough examination of the 327 epitopes for possible antigenicity, allergenicity and toxicity resulted in 95 epitopes with desirable properties. A BLASTp analysis revealed 94 unique and non-homologous epitopes that were subjected to molecular docking across the 12 high frequency alleles. The final dataset of 70 epitopes contained 13 experimentally proven and 57 unique epitopes from a total of 11 RSV proteins. From our findings on selected T-cell-specific RSV antigen epitopes, notably the four epitopes confirmed to exhibit stable binding by molecular dynamics. The prediction pipeline used in this study represents an effective way to screen the immunogenic epitopes from other pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gayathri Anandhan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, USA
- Vaxigen International Research Center, Coimbatore, Tamil Nadu, India
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Mahapatra SR, Dey J, Raj TK, Misra N, Suar M. Designing a Next-Generation Multiepitope-Based Vaccine against Staphylococcus aureus Using Reverse Vaccinology Approaches. Pathogens 2023; 12:376. [PMID: 36986298 PMCID: PMC10058999 DOI: 10.3390/pathogens12030376] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is a human bacterial pathogen that can cause a wide range of symptoms. As virulent and multi-drug-resistant strains of S. aureus have evolved, invasive S. aureus infections in hospitals and the community have become one of the leading causes of mortality and morbidity. The development of novel techniques is therefore necessary to overcome this bacterial infection. Vaccines are an appropriate alternative in this context to control infections. In this study, the collagen-binding protein (CnBP) from S. aureus was chosen as the target antigen, and a series of computational methods were used to find epitopes that may be used in vaccine development in a systematic way. The epitopes were passed through a filtering pipeline that included antigenicity, toxicity, allergenicity, and cytokine inducibility testing, with the objective of identifying epitopes capable of eliciting both T and B cell-mediated immune responses. To improve vaccine immunogenicity, the final epitopes and phenol-soluble modulin α4 adjuvant were fused together using appropriate linkers; as a consequence, a multiepitope vaccine was developed. The chosen T cell epitope ensemble is expected to cover 99.14% of the global human population. Furthermore, docking and dynamics simulations were used to examine the vaccine's interaction with the Toll-like receptor 2 (TLR2), revealing great affinity, consistency, and stability between the two. Overall, the data indicate that the vaccine candidate may be extremely successful, and it will need to be evaluated in experimental systems to confirm its efficiency.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - T. Kiran Raj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
4
|
Rahman S, Sarkar K, Das AK. Exploring staphylococcal superantigens to design a potential multi-epitope vaccine against Staphylococcus aureus: an in-silico reverse vaccinology approach. J Biomol Struct Dyn 2023; 41:13098-13112. [PMID: 36729064 DOI: 10.1080/07391102.2023.2171138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
Staphylococcus aureus is a horrifying bacteria capable of causing millions of deaths yearly across the globe. A major contribution to the success of S. aureus as an ESKAPE pathogen is the abundance of virulence factors that can manipulate the innate and adaptive immune system of the individual. Currently, no vaccine is available to treat S. aureus-mediated infections. In this study, we present in-silico approaches to design a stable, safe and immunogenic vaccine that could help to control the infections associated with the bacteria. Three vital pathogenic secreted toxins of S. aureus, such as staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin B (SEB), Toxic-shock syndrome toxin (TSST-1), were selected using the reverse vaccinology approach to design the multi-epitope vaccine (MEV). Linear B-lymphocyte, cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes were predicted from these selected proteins. For designing the multi-epitope vaccine (MEV), B-cell epitopes were joined with the KK linker, CTL epitopes were joined with the AAY linker, and HTL epitopes were joined with the GPGPG linker. Finally, to increase the immune response to the vaccine, a human β-defensin-3 (hBD-3) adjuvant was added to the N-terminus of the MEV construct. The final MEV was found to be antigenic and non-allergen in nature. In-silico immune simulation and cloning analysis predicted the immune-stimulating potential of the designed MEV construct along with the cloning feasibility in the pET28a(+) vector with the E. coli expression system. This immunoinformatics study provides a platform for designing a suitable, safe and effective vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kasturi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
5
|
Hanifa M, Salman M, Fatima M, Mukhtar N, Almajhdi FN, Zaman N, Suleman M, Ali SS, Waheed Y, Khan A. Mutational analysis of the spike protein of SARS-COV-2 isolates revealed atomistic features responsible for higher binding and infectivity. Front Cell Dev Biol 2023; 10:940863. [PMID: 36733340 PMCID: PMC9888553 DOI: 10.3389/fcell.2022.940863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction: The perpetual appearance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), and its new variants devastated the public health and social fabric around the world. Understanding the genomic patterns and connecting them to phenotypic attributes is of great interest to devise a treatment strategy to control this pandemic. Materials and Methods: In this regard, computational methods to understand the evolution, dynamics and mutational spectrum of SARS-CoV-2 and its new variants are significantly important. Thus, herein, we used computational methods to screen the genomes of SARS-CoV-2 isolated from Pakistan and connect them to the phenotypic attributes of spike protein; we used stability-function correlation methods, protein-protein docking, and molecular dynamics simulation. Results: Using the Global initiative on sharing all influenza data (GISAID) a total of 21 unique mutations were identified, among which five were reported as stabilizing while 16 were destabilizing revealed through mCSM, DynaMut 2.0, and I-Mutant servers. Protein-protein docking with Angiotensin-converting enzyme 2 (ACE2) and monoclonal antibody (4A8) revealed that mutation G446V in the receptor-binding domain; R102S and G181V in the N-terminal domain (NTD) significantly affected the binding and thus increased the infectivity. The interaction pattern also revealed significant variations in the hydrogen bonding, salt bridges and non-bonded contact networks. The structural-dynamic features of these mutations revealed the global dynamic trend and the finding energy calculation further established that the G446V mutation increases the binding affinity towards ACE2 while R102S and G181V help in evading the host immune response. The other mutations reported supplement these processes indirectly. The binding free energy results revealed that wild type-RBD has a TBE of -60.55 kcal/mol while G446V-RBD reported a TBE of -73.49 kcal/mol. On the other hand, wild type-NTD reported -67.77 kcal/mol of TBE, R102S-NTD reported -51.25 kcal/mol of TBE while G181V-NTD reported a TBE of -63.68 kcal/mol. Conclusions: In conclusion, the current findings revealed basis for higher infectivity and immune evasion associated with the aforementioned mutations and structure-based drug discovery against such variants.
Collapse
Affiliation(s)
- Muhammad Hanifa
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Naila Mukhtar
- Department of Botany, University of Okara, Punjab, Pakistan
| | - Fahad N. Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasib Zaman
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon,*Correspondence: Yasir Waheed, ; Abbas Khan,
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Yasir Waheed, ; Abbas Khan,
| |
Collapse
|
6
|
Rafi MO, Al-Khafaji K, Mandal SM, Meghla NS, Biswas PK, Rahman MS. A subunit vaccine against pneumonia: targeting S treptococcus pneumoniae and Klebsiella pneumoniae. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:21. [PMID: 37096010 PMCID: PMC10115389 DOI: 10.1007/s13721-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Community-acquired pneumonia is primarily caused by Streptococcus pneumoniae and Klebsiella pneumoniae, two pathogens that have high morbidity and mortality rates. This is largely due to bacterial resistance development against current antibiotics and the lack of effective vaccines. The objective of this work was to develop an immunogenic multi-epitope subunit vaccine capable of eliciting a robust immune response against S. pneumoniae and K. pneumoniae. The targeted proteins were the pneumococcal surface proteins (PspA and PspC) and choline-binding protein (CbpA) of S. pneumoniae and the outer membrane proteins (OmpA and OmpW) of K. pneumoniae. Different computational approaches and various immune filters were employed for designing a vaccine. The immunogenicity and safety of the vaccine were evaluated by utilizing many physicochemical and antigenic profiles. To improve structural stability, disulfide engineering was applied to a portion of the vaccine structure with high mobility. Molecular docking was performed to examine the binding affinities and biological interactions at the atomic level between the vaccine and Toll-like receptors (TLR2 and 4). Further, the dynamic stabilities of the vaccine and TLRs complexes were investigated by molecular dynamics simulations. While the immune response induction capability of the vaccine was assessed by the immune simulation study. Vaccine translation and expression efficiency was determined through an in silico cloning experiment utilizing the pET28a(+) plasmid vector. The obtained results revealed that the designed vaccine is structurally stable and able to generate an effective immune response to combat pneumococcal infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13721-023-00416-3.
Collapse
Affiliation(s)
- Md. Oliullah Rafi
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | | | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Nigar Sultana Meghla
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Md. Shahedur Rahman
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
7
|
Albaqami FF, Altharawi A, Althurwi HN, Alharthy KM, Qasim M, Muhseen ZT, Tahir ul Qamar M. Computational Modeling and Evaluation of Potential mRNA and Peptide-Based Vaccine against Marburg Virus (MARV) to Provide Immune Protection against Hemorrhagic Fever. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5560605. [PMID: 37101690 PMCID: PMC10125739 DOI: 10.1155/2023/5560605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
A hemorrhagic fever caused by the Marburg virus (MARV) belongs to the Filoviridae family and has been classified as a risk group 4 pathogen. To this day, there are no approved effective vaccinations or medications available to prevent or treat MARV infections. Reverse vaccinology-based approach was formulated to prioritize B and T cell epitopes utilizing a numerous immunoinformatics tools. Potential epitopes were systematically screened based on various parameters needed for an ideal vaccine such as allergenicity, solubility, and toxicity. The most suitable epitopes capable of inducing immune response were shortlisted. Epitopes with population coverage of 100% and fulfilling set parameters were selected for docking with human leukocyte antigen molecules, and binding affinity of each peptide was analyzed. Finally, 4 CTL and HTL each while 6 B cell 16-mers were used for designing multiepitope subunit (MSV) and mRNA vaccine joined via suitable linkers. Immune simulations were used to validate the constructed vaccine's capacity to induce a robust immune response whereas molecular dynamics simulations were used to confirm epitope-HLA complex stability. Based on these parameter's studies, both the vaccines constructed in this study offer a promising choice against MARV but require further experimental verification. This study provides a rationale point to begin with the development of an efficient vaccine against Marburg virus; however, the findings need further experimental validation to confirm the computational finding of this study.
Collapse
Affiliation(s)
- Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Jamil F, Aslam L, Ali H, Shoukat K, Rasheed MA, Raza S, Ibrahim M. An In silico study of derivative of Newcastle disease virus epitopes based vaccine against Hemagglutunin neuraminidase protein. J Anim Sci 2022; 101:skac375. [PMID: 36371806 PMCID: PMC9883717 DOI: 10.1093/jas/skac375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
The causative agent of Newcastle disease (ND) is Newcastle disease virus. It belongs to avian species of Orthoavulavirus, Avulavirinae subfamily and if left untreated it may cause epidemic in poultry. Many vaccines have been made against Newcastle disease based on inactivated and attenuated viruses but become useless due to the genetic changes in the virus. We have recently reported epitope based vaccine by using immunoinformatics approaches. The vaccine was previously constructed against Hemagglutunin neuraminidase protein of Newcastle disease virus. Here we extended our work to develop several chimera of the proposed vaccine to design a new multi-epitope vaccine by shuffling the cytotoxic T lymphocytes (CTL) segments of the vaccine. Total 5040 constructs have been analyzed by shuffling 7 CTL epitopes. Highest antigenic multi-epitope construct was selected for the further study. Our new multi-epitope vaccine (MEV) construct contains 259 amino acids and is immunogenic, more antigenic and non-allergen. The refinement of the structure of MEV construct was performed. Molecular docking analyses showed its maximum binding with avian Toll-like 4 receptor. Subsequently, immune simulations showed its predicted ability to induce the host primary and secondary responses. Study suggests that our new multi-epitope vaccine chimera is more effective and stable protein against Newcastle disease virus strains in Pakistan. However, further studies are required to validate the vaccine through In vitro and In vivo studies.
Collapse
Affiliation(s)
- Farrukh Jamil
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Laiba Aslam
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Hira Ali
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Kainaat Shoukat
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| |
Collapse
|
9
|
Althurwi HN, Alharthy KM, Albaqami FF, Altharawi A, Javed MR, Muhseen ZT, Tahir ul Qamar M. mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13054. [PMID: 36293632 PMCID: PMC9602923 DOI: 10.3390/ijerph192013054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.
Collapse
Affiliation(s)
- Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Naveed M, Hassan JU, Ahmad M, Naeem N, Mughal MS, Rabaan AA, Aljeldah M, Shammari BRA, Alissa M, Sabour AA, Alaeq RA, Alshiekheid MA, Turkistani SA, Elmi AH, Ahmed N. Designing mRNA- and Peptide-Based Vaccine Construct against Emerging Multidrug-Resistant Citrobacter freundii: A Computational-Based Subtractive Proteomics Approach. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1356. [PMID: 36295517 PMCID: PMC9610710 DOI: 10.3390/medicina58101356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Jawad-ul Hassan
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muneeb Ahmad
- Department of Medical Education, Rawalpindi Medical University, Rawalpindi 46000, Pakistan
| | - Nida Naeem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 42353, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Safaa A. Turkistani
- Department of Medical Laboratory, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Abdirahman Hussein Elmi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Naveed Ahmed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
11
|
Rahman S, Das AK. A subtractive proteomics and immunoinformatics approach towards designing a potential multi-epitope vaccine against pathogenic Listeriamonocytogenes. Microb Pathog 2022; 172:105782. [PMID: 36150556 DOI: 10.1016/j.micpath.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is the causative agent of listeriosis, which is dangerous for pregnant women, the elderly or individuals with a weakened immune system. Individuals with leukaemia, cancer, HIV/AIDS, kidney transplant and steroid therapy suffer from immunological damage are menaced. World Health Organization (WHO) reports that human listeriosis has a high mortality rate of 20-30% every year. To date, no vaccine is available to treat listeriosis. Thereby, it is high time to design novel vaccines against L. monocytogenes. Here, we present computational approaches to design an antigenic, stable and safe vaccine against the L. monocytogenes that could help to control the infections associated with the pathogen. Three vital pathogenic proteins of L. monocytogenes, such as Listeriolysin O (LLO), Phosphatidylinositol-specific phospholipase C (PI-PLC), and Actin polymerization protein (ActA), were selected using a subtractive proteomics approach to design the multi-epitope vaccine (MEV). A total of 5 Cytotoxic T-lymphocyte (CTL) and 9 Helper T-lymphocyte (HTL) epitopes were predicted from these selected proteins. To design the multi-epitope vaccine (MEV) from the selected proteins, CTL epitopes were joined with the AAY linker, and HTL epitopes were joined with the GPGPG linker. Additionally, a human β-defensin-3 (hBD-3) adjuvant was added to the N-terminal side of the final MEV construct to increase the immune response to the vaccine. The final MEV was predicted to be antigenic, non-allergen and non-toxic in nature. Physicochemical property analysis suggested that the MEV construct is stable and could be easily purified through the E. coli expression system. This in-silico study showed that MEV has a robust binding interaction with Toll-like receptor 2 (TLR2), a key player in the innate immune system. Current subtractive proteomics and immunoinformatics study provides a background for designing a suitable, safe and effective vaccine against pathogenic L. monocytogenes.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
12
|
Hasan M, Mia M. Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. Int J Pept Res Ther 2022; 28:134. [PMID: 35911179 PMCID: PMC9315849 DOI: 10.1007/s10989-022-10438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Cryptosporidiosis is the leading protozoan-induced cause of diarrheal illness in children, and it has been linked to childhood mortality, malnutrition, cognitive development, with retardation of growth. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in numerous nations, as well as its emergence in the last decade is largely due to detections obtained through noteworthy epidemiologic research. Nevertheless, there is no vaccine available, and the only licensed medication, nitazoxanide, has been demonstrated to have efficacy limitations in a number of patient groups recognized to be at high risk of complications. Therefore, current study delineates the computational vaccine design for Cryptosporidium hominis, the notable pathogen for enteric diarrhea. Firstly, a comprehensive literature search was conducted to identify six proteins based on their toxigenicity, allergenicity, antigenicity, and prediction of transmembrane helices to make up a multi-epitope-based subunit vaccine. Following that, antigenic non-toxic HTL epitope, CTL epitope with B cell epitope were predicted from the selected proteins and construct a vaccine candidate with adding an adjuvant and some linkers with immunologically superior epitopes. Afterwards, the constructed vaccine candidates and TLR2 receptor were put into the ClusPro server for molecular dynamic simulation to know the binding stability of the vaccine-TLR2 complex. Following that, Escherichia coli strain K12 was used as a cloning host for the chosen vaccine construct via the JCat server. As a result of the findings, it was resolute that the proposed chimeric peptide vaccine could improve the immune response to Cryptosporidium hominis.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| |
Collapse
|
13
|
Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105290. [PMID: 35568333 DOI: 10.1016/j.meegid.2022.105290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Recent studies have established the role of bacteria including Streptococcus pneumoniae, Helicobacter pylori, Chlamydia pneumonia, Mycobacterium tuberculosis, and Porphyromonas gingivalis in the development of atherosclerosis. These bacteria contribute to plaque formation via promoting Th1 immune responses and speeding up ox-LDL formation. Hence, we employed computational reverse vaccinology (RV) approaches to deviate immune response toward Th2 via engineering a novel immunogenic chimera protein. Prominent atherogenic antigens from related bacteria were identified. Then, machine learning-based servers were employed for predicting CTL and HTL epitopes. We selected epitopes from a wide variety of HLAs. Then, a chimeric protein sequence containing TAT peptide, adjuvant, IL-10 inducer, and linker-separated epitopes was designed. The conformational structure of the vaccine was built via multiple-template homology modelling using MODELLER. The initial structure was refined and validated by Ramachandran plot. The vaccine was also docked with TLR4. After that, molecular dynamics (MD) simulation of the docked vaccine-TLR4 was conducted. Finally, the immune simulation of the vaccine was conducted via the C-ImmSim server. A chimera protein with 629 amino acids was built and, classified as a non-allergenic probable antigen. An improved ERRAT score of 80.95 for the refined structure verified its stability. Additionally, validation via the Ramachandran plot showed 98.09% of the residues were located in the most favorable and permitted regions. MD simulations showed the vaccine-TLR4 complex reached a stable conformation. Also, RMS fluctuations analysis revealed no sign of protein denaturation or unfolding. Finally, immune response simulations indicated a promising response by innate and adaptive immunity. In summary, we built an immunogenic vaccine against atherosclerosis and demonstrated its favorable properties via advanced Immunoinformatics analyses. This study may pave the path for combat against atherosclerosis.
Collapse
|
14
|
Repositioning of experimentally validated anti-breast cancer peptides to target FAK-PAX complex to halt the breast cancer progression: a biomolecular simulation approach. Mol Divers 2022; 27:603-618. [PMID: 35635599 DOI: 10.1007/s11030-022-10438-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
FAK (focal adhesin kinase), a tyrosine kinase, plays an imperative role in cell-cell communication, particularly in cell signaling systems. It is a multi-functional signaling protein, which integrates and transduces signals into cancer cells through growth factor receptors or integrin and its interaction with Paxillin (PAX). The molecular processes by which FAK promotes the development and progression of cancer have progressively established the possible relationship between FAK-PAX complex in many types of cancer. The interaction of FAX and PAX is very important in breast cancer and thus acts as an essential biomarker for drugs, vaccines or peptide inhibitor designing. In this regard, computational approaches, particularly peptide designing to target the binding interface of the interacting partners, would greatly assist the design of peptide inhibitors against various cancer. Accordingly, in this present study, we screened 236 experimentally validated anti-breast cancer peptides using computational drugs repositioning approach to design peptides targeting the FAK-PAX complex. Using protein-peptide docking the binding site for the HP1 was confirmed and a total of 236 anti-breast cancer peptides were screened. Among the 236, only 12 peptides reported a docking score better than the control. From these 12, Magainin with the docking score - 103.8 ± 10.3 kcal/mol, NRC-07 with the docking score - 100.8 ± 16.5 kcal/mol, and Indolicidin with the docking score - 101.7 ± 3.9 kcal/mol, peptides potentially inhibit the FAX-PAX binding. Calculation of protein's motion and FEL revealed the binding and inhibitory behavior. Moreover, binding free energy (MM/GBSA) confirmed that Magainin exhibited the total binding energy - 53.28 kcal/mol, NRC-07 possessed the TBE - 44.16 kcal/mol, and Indolicidin reported the TBE of - 40.48 kcal/mol, thus explaining the inhibitory potential of these peptides. In conclusion, these peptides exhibit strong inhibitory potential and could abrogate the FAK-PAX complex in in vitro models and thus may relieve the burden of breast cancer.
Collapse
|
15
|
Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virol 2022. [DOI: 10.2217/fvl-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Lujo is a modern zoonotic virus that is potentially fatal and spreads by bodily fluids. In this research, immunoinformatic tools are used to build a vaccine. Methodology: The epitopes of cytotoxic T-lymphocytes, helper T-lymphocytes and linear B-lymphocytes were predicted from the most antigenic protein. The designed vaccine's physiochemical properties and 3D structure have been forecasted. Low free energy and strong binding affinity estimated in molecular docking against toll-like receptor 4 (TLR4) and dynamic simulation. Furthermore, in silico cloning in the Escherichia coli K12 host system was performed for high level of expression. Conclusion: Finally, immune simulation was used to determine immune responses to the vaccine that was formulated confirming the developed vaccine as a good candidate against Lujo virus.
Collapse
Affiliation(s)
- Enayetul Islam
- Department of Genetic Engineering & Biotechnology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
16
|
Khan A, Nawaz M, Ullah S, Rehman IU, Khan A, Saleem S, Zaman N, Shinwari ZK, Ali M, Wei DQ. Core amino acid substitutions in HCV-3a isolates from Pakistan and opportunities for multi-epitopic vaccines. J Biomol Struct Dyn 2022; 40:3753-3768. [PMID: 33246391 DOI: 10.1080/07391102.2020.1850353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV), which infected 71 million worldwide and about 5%-6% are from Pakistan, is an ssRNA virus, responsible for end-stage liver disease. To date, no effective therapy is available to cure this disease. Hence, it is important to study the most prevalent genotypes infecting human population and design novel vaccine or small molecule inhibitors to control the infections associated with HCV. Therefore, in this study clinical samples (n = 35; HCV-3a) from HCV patients were subjected to Sanger sequencing method. The sequencing of the core gene, which is generally considered as conserved, involved in the detection, quantitation and genotyping of HCV was performed. Multiple mutations, that is, R46C, R70Q, L91C, G60E, N/S105A, P108A, N110I, S116V, G90S, A77G and G145R that could be linked with response to antiviral therapies were detected. Phylogenetic analysis suggests emerging viral isolates are circulating in Pakistan. Using ab initio modelling technique, we predicted the 3D structure of core protein and subjected to molecular dynamics simulation to extract the most stable conformation of the structure for further analysis. Immunoinformatic approaches were used to propose a multi-epitopes vaccine against HCV by using core protein. The vaccine constructs consist of nine CTL and three HTL epitopes joined by different linkers were docked against the two reported Toll-like receptors (TLR-3 and TLR-8). Docking of vaccine construct with TLR-3 and TLR-8 shows proper binding and in silico expression of the vaccine resulted in a CAI value of 0.93. These analyses suggest that specific immune responses may be produced by the proposed vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Mehboob Nawaz
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saeed Ullah
- Saidu Group of Teaching Hospital, Swat, Pakistan
| | - Irshad Ur Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Nasib Zaman
- Center of Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China
| |
Collapse
|
17
|
Shah I, Jamil S, Rehmat S, Butt HA, Ali SS, Idrees M, Zhan Y, Hussain Z, Ali S, Waseem M, Iqbal A, Ahmad S, Khan A, Wang Y, Wei DQ. Evaluation and identification of essential therapeutic proteins and vaccinomics approach towards multi-epitopes vaccine designing against Legionella pneumophila for immune response instigation. Comput Biol Med 2022; 143:105291. [PMID: 35180498 DOI: 10.1016/j.compbiomed.2022.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The Legionellaceae group comprises the Legionella, containing 58 species with 70 serotypes. For instance, Legionella pneumophila is the deadliest serotype to cause Legionnaires infectious and is responsible for 90% of the infections in humans. The bacterial pathogen is associated with a severe lung infection, known as legionaries' disease. It is resistant to multiple drugs, thus warranting novel vaccine candidates identification to immune the host against infections caused by the said pathogen. For this, we applied the subtractive proteomics and reverse vaccinology approaches to annotate the most essential genes suitable for vaccine designing. From the whole proteome, only five proteins (Q5ZVG4, Q5ZRZ1, Q5ZWE6, Q5ZT09, and Q5ZUZ8) as the best targets for further processing as they fulfill all the standard parameters set for in silico vaccine design. Immuno-informatics approaches were further applied to the selected protein sequences to prioritized antigenic epitopes for design a multi-epitope subunit vaccine. A multi-epitopes vaccine was designed by using suitable linkers to link the CTL (cytotoxic T lymphocytes), HTL (Helper T lymphocytes), B cell epitopes, and adjuvant to strengthen the vaccine's immunogenicity. The MEVC(multi-epitopes vaccine construct) was reported to interact with human immune receptor TLR-2 (toll-like receptor) robustly (docking score = -357.18 kcal/mol), and a higher expression was achieved in the Escherichia coli system (CAI = 0.88, and GC contents = 54.34%). Moreover, immune simulation revealed that on the 3rd day, the neutralization of the antigen started, while on the 5th day, the antigen was completely neutralized by the secreted immune factors. In conclusion, the designed vaccine candidate effectively triggered the immune response against eh pathogen; however, wet lab-based experimentations are highly recommended to prove the protective immunological proficiency of the vaccine against L. pneumophila.
Collapse
Affiliation(s)
- Ismail Shah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | | | - Saira Rehmat
- Sharif Medical and Dental College, Lahore, Punjab, Pakistan
| | | | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | | | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Arshad Iqbal
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Khyber Pakhtunkhwa, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanjing Wang
- Engineering Research Center of Cell and Therapeutics Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
18
|
Mehmood A, Nawab S, Wang Y, Chandra Kaushik A, Wei DQ. Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Comput Biol Med 2022; 143:105235. [PMID: 35123137 PMCID: PMC8789387 DOI: 10.1016/j.compbiomed.2022.105235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The global pandemic caused by a single-stranded RNA (ssRNA) virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still at its peak, with new cases being reported daily. Although the vaccines have been administered on a massive scale, the frequent mutations in the viral gene and resilience of the future strains could be more problematic. Therefore, new compounds are always needed to be available for therapeutic approaches. We carried out the present study to discover potential drug compounds against the SARS-CoV-2 main protease (Mpro). A total of 16,000 drug-like small molecules from the ChemBridge database were virtually screened to obtain the top hits. As a result, 1032 hits were selected based on their docking scores. Next, these structures were prepared for molecular docking, and each small molecule was docked into the active site of the Mpro. Only compounds with solid interactions with the active site residues and the highest docking score were subjected to molecular dynamics (MD) simulation. The post-simulation analyses were carried out using the in-built GROMACS tools to gauge the stability, flexibility, and compactness. Principal component analysis (PCA) and hydrogen bonding were also calculated to observe trends and affinity of the drugs towards the target. Among the five top compounds, C1, C3, and C6 revealed strong interaction with the target's active site and remained highly stable throughout the simulation. We believe the predicted compounds in this study could be potential inhibitors in the natural system and can be utilized in designing therapeutic strategies against the SARS-CoV-2.
Collapse
Affiliation(s)
- Aamir Mehmood
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, China
| | - Sadia Nawab
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody , School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Aman Chandra Kaushik
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
19
|
Khan T, Abdullah M, Toor TF, Almajhdi FN, Suleman M, Iqbal A, Ali L, Khan A, Waheed Y, Wei DQ. Evaluation of the Whole Proteome of Achromobacter xylosoxidans to Identify Vaccine Targets for mRNA and Peptides-Based Vaccine Designing Against the Emerging Respiratory and Lung Cancer-Causing Bacteria. Front Med (Lausanne) 2022; 8:825876. [PMID: 35186980 PMCID: PMC8854494 DOI: 10.3389/fmed.2021.825876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Achromobacter xylosoxidans is a rod-shaped Gram-negative bacterium linked with causing several infections which mostly includes hematological malignancies. It has been recently reported to be associated with the development and progression of lung cancer and is an emerging respiratory disease-causing bacterium. The treatment of individuals infected with A. xylosoxidans bacteremia is difficult due to the fact that this pathogen has both intrinsic and acquired resistance mechanisms, typically resulting in a phenotype of multidrug resistance (MDR). Efforts are needed to design effective therapeutic strategies to curtail the emergence of this bacterium. Computational vaccine designing has proven its effectiveness, specificity, safety, and stability compared to conventional approaches of vaccine development. Therefore, the whole proteome of A. xylosoxidans was screened for the characterization of potential vaccine targets through subtractive proteomics pipeline for therapeutics design. Annotation of the whole proteome confirmed the three immunogenic vaccine targets, such as (E3HHR6), (E3HH04), and (E3HWA2), which were used to map the putative immune epitopes. The shortlisted epitopes, specific against Cytotoxic T Lymphocytes, Helper T-cell Lymphocytes, and linear B-Cell, were used to design the mRNA and multi-epitopes vaccine (MEVC). Initial validations confirmed the antigenic and non-allergenic properties of these constructs, followed by docking with the immune receptor, TLR-5, which resulted in robust interactions. The interaction pattern that followed in the docking complex included formation of 5 hydrogen bonds, 2 salt bridges, and 165 non-bonded contacts. This stronger binding affinity was also assessed through using the mmGBSA approach, showing a total of free binding energy of -34.64 kcal/mol. Further validations based on in silico cloning revealed a CAI score of 0.98 and an optimal percentage of GC contents (54.4%) indicated a putatively higher expression of the vaccine construct in Escherichia coli. Moreover, immune simulation revealed strong antibodies production upon the injection of the designed MEVC that resulted in the highest peaks of IgM+ IgG production (>3,500) between 10 and 15 days. In conclusion the current study provide basis for vaccine designing against the emerging A. xylosoxidans, which demands further experimental studies for in vitro and in vivo validations.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Kanju, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Kanju, Pakistan
| | - Liaqat Ali
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
20
|
Alatawi EA, Alshabrmi FM. Structural and Dynamic Insights into the W68L, L85P, and T87A Mutations of Mycobacterium tuberculosis Inducing Resistance to Pyrazinamide. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1615. [PMID: 35162636 PMCID: PMC8835092 DOI: 10.3390/ijerph19031615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
Tuberculosis (TB), the most frequent bacterium-mediated infectious disease caused by Mycobacterium tuberculosis, has been known to infect humans since ancient times. Although TB is common worldwide, the most recent report by the WHO (World Health Organization) listed the three countries of India, China, and Russia with 27%, 14%, and 8% of the global burden of TB, respectively. It has been reported that resistance to TB drugs, particularly by the pncA gene to the pyrazinamide drug due to mutations, significantly affects the effective treatment of TB. Understanding the mechanism of drug resistance using computational methods is of great interest to design effective TB treatment, exploring the structural features with these tools. Thus, keeping in view the importance of these methods, we employed state-of-the-art computational methods to study the mechanism of resistance caused by the W68L, L85P, and T87A mutations recently reported in 2021. We employed a molecular docking approach to predict the binding conformation and studied the dynamic properties of each complex using molecular dynamics simulation approaches. Our analysis revealed that compared to the wildtype, these three mutations altered the binding pattern and reduced the binding affinity. Moreover, the structural dynamic features also showed that these mutations significantly reduced the structural stability and packing, particularly by the W68L and L85P mutations. Moreover, principal component analysis, free energy landscape, and the binding free energy results revealed variation in the protein's motion and the binding energy. The total binding free energy was for the wildtype -9.61 kcal/mol, W68L -7.57 kcal/mol, L85P -6.99 kcal/mol, and T87A -7.77 kcal/mol. Our findings can help to design a structure-based drug against the MDR (multiple drug-resistant) TB.
Collapse
Affiliation(s)
- Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
21
|
Shahbazi S, Sabzi S, Noori Goodarzi N, Fereshteh S, Bolourchi N, Mirzaie B, Badmasti F. Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microb Pathog 2022; 164:105425. [DOI: 10.1016/j.micpath.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
22
|
Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HF, Suleman M, Waseem M, Shah A, Ali S, Ali SS. Drug similarity and structure-based screening of medicinal compounds to target macrodomain-I from SARS-CoV-2 to rescue the host immune system: a molecular dynamics study. J Biomol Struct Dyn 2022; 40:523-537. [PMID: 32897173 PMCID: PMC7544951 DOI: 10.1080/07391102.2020.1815583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we also used ADPr as a positive control to compare our results. Our results suggest that our identified hits by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the macrodomain-1. We strongly recommend the experimental testing of these compounds, which could rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zainib Babar
- Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Mubeen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Munazza Anwar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kashif Noor
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Huma Farooque Hashmi
- School of Life Sciences, Shandong University, Shandong, People's Republic of China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
23
|
Rashid F, Suleman M, Shah A, Dzakah EE, Chen S, Wang H, Tang S. Structural Analysis on the Severe Acute Respiratory Syndrome Coronavirus 2 Non-structural Protein 13 Mutants Revealed Altered Bonding Network With TANK Binding Kinase 1 to Evade Host Immune System. Front Microbiol 2021; 12:789062. [PMID: 34925297 PMCID: PMC8671833 DOI: 10.3389/fmicb.2021.789062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made this virus more infectious. Previous studies have confirmed that non-structural protein 13 (NSP13) plays an important role in immune evasion by physically interacting with TANK binding kinase 1 (TBK1) to inhibit IFNβ production. Mutations have been reported in NSP13; hence, in the current study, biophysical and structural modeling methodologies were adapted to dissect the influence of major mutations in NSP13, i.e., P77L, Q88H, D260Y, E341D, and M429I, on its binding to the TBK1 and to escape the human immune system. The results revealed that these mutations significantly affected the binding of NSP13 and TBK1 by altering the hydrogen bonding network and dynamic structural features. The stability, flexibility, and compactness of these mutants displayed different dynamic features, which are the basis for immune evasion. Moreover, the binding was further validated using the MM/GBSA approach, revealing that these mutations have higher binding energies than the wild-type (WT) NSP13 protein. These findings thus justify the basis of stronger interactions and evasion for these NSP13 mutants. In conclusion, the current findings explored the key features of the NSP13 WT and its mutant complexes, which can be used to design structure-based inhibitors against the SARS-CoV-2 new variants to rescue the host immune system.
Collapse
Affiliation(s)
- Farooq Rashid
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir, Pakistan
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Shuyi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
24
|
Haq AU, Khan A, Khan J, Irum S, Waheed Y, Ahmad S, Nizam-Uddin N, Albutti A, Zaman N, Hussain Z, Ali SS, Waseem M, Kanwal F, Wei DQ, Wang Q. Annotation of Potential Vaccine Targets and Design of a Multi-Epitope Subunit Vaccine against Yersinia pestis through Reverse Vaccinology and Validation through an Agent-Based Modeling Approach. Vaccines (Basel) 2021; 9:vaccines9111327. [PMID: 34835260 PMCID: PMC8625334 DOI: 10.3390/vaccines9111327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Yersinia pestis is responsible for plague and major pandemics in Asia and Europe. This bacterium has shown resistance to an array of drugs commonly used for the treatment of plague. Therefore, effective therapeutics measurements, such as designing a vaccine that can effectively and safely prevent Y. pestis infection, are of high interest. To fast-track vaccine development against Yersinia pestis, herein, proteome-wide vaccine target annotation was performed, and structural vaccinology-assisted epitopes were predicted. Among the total 3909 proteins, only 5 (rstB, YPO2385, hmuR, flaA1a, and psaB) were shortlisted as essential vaccine targets. These targets were then subjected to multi-epitope vaccine design using different linkers. EAAK, AAY, and GPGPG as linkers were used to link CTL, HTL, and B-cell epitopes, and an adjuvant (beta defensin) was also added at the N-terminal of the MEVC. Physiochemical characterization, such as determination of the instability index, theoretical pI, half-life, aliphatic index, stability profiling, antigenicity, allergenicity, and hydropathy of the ensemble, showed that the vaccine is highly stable, antigenic, and non-allergenic and produces multiple interactions with immune receptors upon docking. In addition, molecular dynamics simulation confirmed the stable binding and good dynamic properties of the vaccine-TLR complex. Furthermore, in silico and immune simulation of the developed MEVC for Y. pestis showed that the vaccine triggered strong immune response after several doses at different intervals. Neutralization of the antigen was observed at the third day of injection. Conclusively, the vaccine designed here for Y. pestis produces an immune response; however, further immunological testing is needed to unveil its real efficacy.
Collapse
Affiliation(s)
- Azaz Ul Haq
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jafar Khan
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Shamaila Irum
- Department of Zoology, University of Gujrat, Punjab 50700, Pakistan;
| | - Yasir Waheed
- Multidisciplinary Department, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - N. Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila 47080, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad 46000, Pakistan;
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (D.-Q.W.); (Q.W.)
| | - Qian Wang
- Department of Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing 210029, China
- Correspondence: (D.-Q.W.); (Q.W.)
| |
Collapse
|
25
|
Deb D, Basak S, Kar T, Narsaria U, Castiglione F, Paul A, Pandey A, Srivastava AP. Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus. J Cell Biochem 2021; 123:322-346. [PMID: 34729821 DOI: 10.1002/jcb.30170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.
Collapse
Affiliation(s)
- Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - Abhirup Paul
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Ashutosh Pandey
- Plant Metabolic Engineering, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| |
Collapse
|
26
|
Suleman M, ul Qamar MT, Kiran, Rasool S, Rasool A, Albutti A, Alsowayeh N, Alwashmi ASS, Aljasir MA, Ahmad S, Hussain Z, Rizwan M, Ali SS, Khan A, Wei DQ. Immunoinformatics and Immunogenetics-Based Design of Immunogenic Peptides Vaccine against the Emerging Tick-Borne Encephalitis Virus (TBEV) and Its Validation through In Silico Cloning and Immune Simulation. Vaccines (Basel) 2021; 9:1210. [PMID: 34835141 PMCID: PMC8624571 DOI: 10.3390/vaccines9111210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), belonging to the Flaviviridae family, is transmitted to humans via infected tick bites, leading to serious neurological complications and, in some cases, death. The available vaccines against the TBEV are reported to have low immunogenicity and are associated with adverse effects like swelling, redness and fever. Moreover, these vaccines are whole-organism-based, carry a risk of reactivation and potential for significant mortality. Consequently, to design a potential antigenic and non-allergenic multi-epitope subunit vaccine against the TBEV, we used an immunoinformatic approach to screen the Tick-borne virus proteome for highly antigenic CTL, HTL and B cell epitopes. The proper folding of the constructed vaccine was validated by a molecular dynamic simulation. Additionally, the molecular docking and binding free energy (−87.50 kcal/mol) further confirmed the strong binding affinity of the constructed vaccine with TLR-4. The vaccine exhibited a CAI value of 0.93 and a GC content of 49%, showing a high expression capability in E coli. Moreover, the analysis of immune simulation demonstrated robust immune responses against the injected vaccine and clearance of the antigen with time. In conclusion, our vaccine candidate shows promise for both in vitro and in vivo analyses due to its high immunogenicity, non-allergenicity and stable interaction with the human TLR-4 receptor.
Collapse
Affiliation(s)
- Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | | | - Kiran
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Samreen Rasool
- Department of Biochemistry, Government College University, Lahore 54000, Pakistan;
| | - Aneela Rasool
- Department of Botany, University of Okara, Okara 56300, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Noorah Alsowayeh
- Department of Biology, College of Education, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25120, Pakistan;
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Muhammad Rizwan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
27
|
Fadaka AO, Sibuyi NRS, Martin DR, Goboza M, Klein A, Madiehe AM, Meyer M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci Rep 2021; 11:19707. [PMID: 34611250 PMCID: PMC8492693 DOI: 10.1038/s41598-021-99227-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023] Open
Abstract
Dengue poses a global health threat, which will persist without therapeutic intervention. Immunity induced by exposure to one serotype does not confer long-term protection against secondary infection with other serotypes and is potentially capable of enhancing this infection. Although vaccination is believed to induce durable and protective responses against all the dengue virus (DENV) serotypes in order to reduce the burden posed by this virus, the development of a safe and efficacious vaccine remains a challenge. Immunoinformatics and computational vaccinology have been utilized in studies of infectious diseases to provide insight into the host-pathogen interactions thus justifying their use in vaccine development. Since vaccination is the best bet to reduce the burden posed by DENV, this study is aimed at developing a multi-epitope based vaccines for dengue control. Combined approaches of reverse vaccinology and immunoinformatics were utilized to design multi-epitope based vaccine from the sequence of DENV. Specifically, BCPreds and IEDB servers were used to predict the B-cell and T-cell epitopes, respectively. Molecular docking was carried out using Schrödinger, PATCHDOCK and FIREDOCK. Codon optimization and in silico cloning were done using JCAT and SnapGene respectively. Finally, the efficiency and stability of the designed vaccines were assessed by an in silico immune simulation and molecular dynamic simulation, respectively. The predicted epitopes were prioritized using in-house criteria. Four candidate vaccines (DV-1-4) were designed using suitable adjuvant and linkers in addition to the shortlisted epitopes. The binding interactions of these vaccines against the receptors TLR-2, TLR-4, MHC-1 and MHC-2 show that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, DV-1 has a better binding energies of - 60.07, - 63.40, - 69.89 kcal/mol against MHC-1, TLR-2, and TLR-4, with respect to the other vaccines. All the designed vaccines were highly antigenic, soluble, non-allergenic, non-toxic, flexible, and topologically assessable. The immune simulation analysis showed that DV-1 may elicit specific immune response against dengue virus. Moreover, codon optimization and in silico cloning validated the expressions of all the designed vaccines in E. coli. Finally, the molecular dynamic study shows that DV-1 is stable with minimum RMSF against TLR4. Immunoinformatics tools are now applied to screen genomes of interest for possible vaccine target. The designed vaccine candidates may be further experimentally investigated as potential vaccines capable of providing definitive preventive measure against dengue virus infection.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Darius Riziki Martin
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mediline Goboza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
28
|
Khan A, Zia T, Suleman M, Khan T, Ali SS, Abbasi AA, Mohammad A, Wei D. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J Cell Physiol 2021; 236:7045-7057. [PMID: 33755190 PMCID: PMC8251074 DOI: 10.1002/jcp.30367] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological StatisticsShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Tauqir Zia
- Department of MicrobiologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Muhammad Suleman
- Center for Biotechnology and MicrobiologyUniversity of SwatSwatKhyber‐PakhtunkhwaPakistan
| | - Taimoor Khan
- Department of Bioinformatics and Biological StatisticsShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Syed Shujait Ali
- Center for Biotechnology and MicrobiologyUniversity of SwatSwatKhyber‐PakhtunkhwaPakistan
| | - Aamir Ali Abbasi
- National Center for BioinformaticsQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Anwar Mohammad
- Department of Biochemistry and Molecular BiologyDasman Diabetes InstituteKuwait
| | - Dong‐Qing Wei
- Department of Bioinformatics and Biological StatisticsShanghai Jiao Tong UniversityShanghaiP.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai‐Islamabad‐Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP.R. China
- Peng Cheng LaboratoryVanke Cloud City Phase I Building 8, Xili Street, Nashan DistrictGuangdongShenzhenP.R. China
| |
Collapse
|
29
|
Khan A, Khan S, Ahmad S, Anwar Z, Hussain Z, Safdar M, Rizwan M, Waseem M, Hussain A, Akhlaq M, Khan T, Ali SS, Wei DQ. HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microb Pathog 2021; 160:105161. [PMID: 34461244 DOI: 10.1016/j.micpath.2021.105161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Hantaviruses are etiological agents of several severe respiratory illnesses in humans and their human-to-human transmission has been reported. To cope with any potential pandemic, this group of viruses needs further research and a data platform. Therefore, herein we developed a database "HantavirusesDB (HVdb)", where genomics, proteomics, immune resource, RNAi based therapeutics and information on the 3D structures of druggable targets of the Orthohantaviruses are provided on a single platform. The database allows the researchers to effectively map the therapeutic strategies by designing multi-epitopes subunit vaccine and RNA based therapeutics. Moreover, the ease of the web interface allow the users to retrieve specific information from the database. Because of the high quality and excellent functionality of the HVdb, therapeutic research of Hantaviruses can be accelerated, and data analysis might be a foundation to design better treatment strategies targeting the hantaviruses. The database is accessible at http://hvdb.dqweilab-sjtu.com/index.php.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Shahzeb Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Safdar
- Faculty of Pharmacy, Gomal University, DI Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Abid Hussain
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, DI Khan, Khyber Pakhtunkhwa, Pakistan
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
30
|
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep 2021; 11:15431. [PMID: 34326355 PMCID: PMC8322212 DOI: 10.1038/s41598-021-92176-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Faculty of Medicine, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh.
| |
Collapse
|
31
|
Towards an Ensemble Vaccine against the Pegivirus Using Computational Modelling Approaches and Its Validation through In Silico Cloning and Immune Simulation. Vaccines (Basel) 2021; 9:vaccines9080818. [PMID: 34451943 PMCID: PMC8402528 DOI: 10.3390/vaccines9080818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Pegivirus, HPgV, which was earlier known as Gb virus and hepatitis G virus, is an enveloped, positive-stranded RNA and lymphotropic virus classified into the Flaviviridae family. The transmission routes primarily involve blood products, and infections are worldwide, leading up to 25% of persistent infections. To date, no effective therapeutic means are available to clear Pegivirus infections. Effective vaccine therapeutics is the best alternative to manage this disease and any associated potential pandemic. Thus, whole proteome-based mining of immunogenic peptides, i.e., CTL (cytotoxic T lymphocytes), HTL (helper T lymphocytes), and B cell epitopes, was mapped to design a vaccine ensemble. Our investigation revealed that 29 different epitopes impart a critical role in immune response induction, which was also validated by exploring its physiochemical properties and experimental feasibility. In silico expression and host immune simulation were examined using an agent-based modeling approach and confirmed the induction of both primary and secondary immune factors such as IL, cytokines, and antibodies. The current study warrants further lab experiments to demonstrate its efficacy and safety.
Collapse
|
32
|
Rashid F, Suleman M, Shah A, Dzakah EE, Wang H, Chen S, Tang S. Mutations in SARS-CoV-2 ORF8 Altered the Bonding Network With Interferon Regulatory Factor 3 to Evade Host Immune System. Front Microbiol 2021; 12:703145. [PMID: 34335535 PMCID: PMC8322779 DOI: 10.3389/fmicb.2021.703145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously mutating since its first emergence in early 2020. These alterations have led this virus to gain significant difference in infectivity, pathogenicity, and host immune evasion. We previously found that the open-reading frame 8 (ORF8) of SARS-CoV-2 can inhibit interferon production by decreasing the nuclear translocation of interferon regulatory factor 3 (IRF3). Since several mutations in ORF8 have been observed, therefore, in the present study, we adapted structural and biophysical analysis approaches to explore the impact of various mutations of ORF8, such as S24L, L84S, V62L, and W45L, the recently circulating mutant in Pakistan, on its ability to bind IRF3 and to evade the host immune system. We found that mutations in ORF8 could affect the binding efficiency with IRF3 based on molecular docking analysis, which was further supported by molecular dynamics simulations. Among all the reported mutations, W45L was found to bind most stringently to IRF3. Our analysis revealed that mutations in ORF8 may help the virus evade the immune system by changing its binding affinity with IRF3.
Collapse
Affiliation(s)
- Farooq Rashid
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Emmanuel Enoch Dzakah
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuyi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
33
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
34
|
Hashmi HF, Waseem M, Ali SS, Hussain Z, Chen K. Structural and Biophysical Investigation of the Key Hotspots on the Surface of Epstein-Barr Nuclear Antigen 1 Essential for DNA Recognition and Pathogenesis. Front Mol Biosci 2021; 8:664436. [PMID: 34268333 PMCID: PMC8275655 DOI: 10.3389/fmolb.2021.664436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Epstein-Barr Virus (EBV) is considered the most important human pathogen due to its role in infections and cellular malignancies. It has been reported that this Oncolytic virus infects 90% world’s population. EBNA1 is required for DNA binding and survival of the virus and is considered an essential drug target. The biochemical and structural properties of this protein are known, but it is still unclear which residues impart a critical role in the recognition of dsDNA. Intending to disclose only the essential residues in recognition of dsDNA, this study used a computational pipeline to generate an alanine mutant of each interacting residue and determine the impact on the binding. Our analysis revealed that R469A, K514A, Y518A, R521A and R522A are the key hotspots for the recognition of dsDNA by the EBNA1. The dynamics properties, i.e. stability, flexibility, structural compactness, hydrogen bonding frequency, binding affinity, are altered by disrupting the protein-DNA contacts, thereby decreases the binding affinity. In particular, the two arginine substitution, R521A and R522A, significantly affected the total binding energy. Thus, we hypothesize that these residues impart a critical role in the dsDNA recognition and pathogenesis. This study would help to design structure-based drugs against the EBV infections.
Collapse
Affiliation(s)
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Kaoshan Chen
- College of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
35
|
Khan T, Khan A, Nasir SN, Ahmad S, Ali SS, Wei DQ. CytomegaloVirusDb: Multi-omics knowledge database for cytomegaloviruses. Comput Biol Med 2021; 135:104563. [PMID: 34256256 DOI: 10.1016/j.compbiomed.2021.104563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022]
Abstract
Cytomegalovirus infection is a significant health concern and need further exploration in immunologic response mechanisms during primary and reactivated CMV infection. In this work, we evaluated the whole genomes and proteomes of different CMV species and developed an integrated open-access platform, CytomegaloVirusDb, a multi-Omics knowledge database for Cytomegaloviruses. The resource is categorized into the main sections "Genomics," "Proteomics," "Immune response," and "Therapeutics,". The database is annotated with the list of all CMV species included in the study, and available information is freely accessible at http://www.cmvdb.dqweilab-sjtu.com/index.php. Various parameters used in the analysis for each section were primarily based on the whole genome or proteome of each specie. The platform provided datasets are open to access for researchers to obtain CMV species-specific information. This will help further to explore the dynamics of CMV-specific immune response and therapeutics. This platform is a useful resource to aid in advancing research against Cytomegaloviruses.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Syed Nouman Nasir
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
36
|
Khan A, Khan S, Saleem S, Nizam-Uddin N, Mohammad A, Khan T, Ahmad S, Arshad M, Ali SS, Suleman M, Wei DQ. Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Comput Biol Med 2021; 133:104420. [PMID: 33930764 PMCID: PMC8064902 DOI: 10.1016/j.compbiomed.2021.104420] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
Reports of the novel and more contagious strains of SARS-CoV-2 originating in different countries have further aggravated the pandemic situation. The recent substitutions in spike protein may be critical for the virus to evade the host's immune system and therapeutics that have already been developed. Thus, this study has employed an immunoinformatics pipeline to target the spike protein of this novel strain to construct an immunogenic epitope (CTL, HTL, and B cell) vaccine against the new variant. Our investigation revealed that 12 different epitopes imparted a critical role in immune response induction. This was validated by an exploration of physiochemical properties and experimental feasibility. In silico and host immune simulation confirmed the expression and induction of both primary and secondary immune factors such as IL, cytokines, and antibodies. The current study warrants further lab experiments to demonstrate its efficacy and safety.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shahzeb Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila, Pakistan
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
37
|
Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021; 44:317-337. [PMID: 34154948 PMCID: PMC8358216 DOI: 10.1016/j.bj.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ongoing search for viable treatment options to curtail Epstein Barr Virus (EBV) pathogenicity has necessitated a paradigmatic shift towards the design of peptide-based vaccines. Potential B-cell and T-cell epitopes were predicted for nine antigenic EBV proteins that mediate epithelial cell-attachment and spread, capsid self-assembly, DNA replication and processivity. METHODS Predictive algorithms incorporated in the Immune Epitope Database (IEDB) resources were used to determine potential B-cell epitopes based on their physicochemical attributes. These were combined with a string-kernel method and an antigenicity predictive AlgPred tool to enhance accuracy in the end-point selection of highly potential antigenic EBV B-cell epitopes. NetCTL 1.2 algorithms enabled the prediction of probable T-cell epitopes which were structurally modeled and subjected to blind peptide-protein docking with HLA-A*02:01. All-atom molecular dynamics (MD) simulation and Molecular Mechanics Generalized-Born Surface Area methods were used to investigate interaction dynamics and affinities of predicted T-cell peptide-protein complexes. RESULTS Computational predictions and sequence overlapping analysis yielded 18 linear (continuous) and discontinuous (conformational) subunit epitopes from the antigenic proteins with characteristic surface accessibility, flexibility and antigenicity, and predictive scores above the threshold value (1) set. A novel site was identified on HLA-A*02:01 with preferential affinity binding for modeled BMRF2, BXLF1 and BGLF4 T-cell epitopes. Interaction dynamics and energies were also computed in addition to crucial residues that mediated complex formation and stability. CONCLUSION This study implemented an integrative meta-analytical approach to model highly probable B-cell and T-cell epitopes as potential peptide-vaccine candidates for the treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
38
|
Nangraj AS, Khan A, Umbreen S, Sahar S, Arshad M, Younas S, Ahmad S, Ali S, Ali SS, Ali L, Wei DQ. Insights Into Mutations Induced Conformational Changes and Rearrangement of Fe 2+ Ion in pncA Gene of Mycobacterium tuberculosis to Decipher the Mechanism of Resistance to Pyrazinamide. Front Mol Biosci 2021; 8:633365. [PMID: 34095218 PMCID: PMC8174790 DOI: 10.3389/fmolb.2021.633365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is the first-line drug commonly used in treating Mycobacterium tuberculosis (Mtb) infections and reduces treatment time by 33%. This prodrug is activated and converted to an active form, Pyrazinoic acid (POA), by Pyrazinamidase (PZase) enzyme. Mtb resistance to PZA is the outcome of mutations frequently reported in pncA, rpsA, and panD genes. Among the mentioned genes, pncA mutations contribute to 72-99% of the total resistance to PZA. Thus, considering the vital importance of this gene in PZA resistance, its frequent mutations (D49N, Y64S, W68G, and F94A) were investigated through in-depth computational techniques to put conclusions that might be useful for new scaffolds design or structure optimization to improve the efficacy of the available drugs. Mutants and wild type PZase were used in extensive and long-run molecular dynamics simulations in triplicate to disclose the resistance mechanism induced by the above-mentioned point mutations. Our analysis suggests that these mutations alter the internal dynamics of PZase and hinder the correct orientation of PZA to the enzyme. Consequently, the PZA has a low binding energy score with the mutants compared with the wild type PZase. These mutations were also reported to affect the binding of Fe2+ ion and its coordinated residues. Conformational dynamics also revealed that β-strand two is flipped, which is significant in Fe2+ binding. MM-GBSA analysis confirmed that these mutations significantly decreased the binding of PZA. In conclusion, these mutations cause conformation alterations and deformities that lead to PZA resistance.
Collapse
Affiliation(s)
- Asma Sindhoo Nangraj
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Sana Sahar
- The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Arshad
- Government College University Faisalabad, Sahiwal, Pakistan
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Ahmad N, Ali SS, Ahmad S, Hussain Z, Qasim M, Suleman M, Ali S, Nizam-Uddin N, Khan A, Wei DQ. Computational Modeling of Immune Response Triggering Immunogenic Peptide Vaccine Against the Human Papillomaviruses to Induce Immunity Against Cervical Cancer. Viral Immunol 2021; 34:457-469. [PMID: 33973819 DOI: 10.1089/vim.2020.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Papillomaviruses are placed within the family Papillomaviride, and the members of this family have a double-stranded circular DNA genome. Every year, ∼30% of cancers are reported to be human papillomavirus (HPV) related, which represents 63,000 cancers of all infectious agent-induced cancers. HPV16 and HPV18 are reported to be associated with 70% of cervical cancers. The quest for an effective drug or vaccine candidate still continues. In this study, we aim to design B cell and T cell epitope-based vaccine using the two structural major capsid protein L1 and L2 as well as other three important proteins (E1, E2, and E6) against HPV strain 16 (HPV16). We used a computational pipeline to design a multiepitope subunit vaccine and tested its efficacy using in silico computational modeling approaches. Our analysis revealed that the multiepitope subunit vaccine possesses antigenic properties, and using in silico cloning method revealed proper expression and downstream processing of the vaccine construct. Besides this, we also performed in silico immune simulation to check the immune response upon the injection. Our results strongly suggest that this vaccine candidate should be tested immediately for the immune response against the cervical cancer-causing agent. The safety, efficacy, expression, and immune response profiling makes it the first choice for experimental and in vivo setup.
Collapse
Affiliation(s)
- Namra Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Sajjad Ahmad
- Department of Biological and Health Sciences, Abasyn University, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad Qasim
- Department of Environmental and Conservation Sciences, University of Swat, Swat, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - N Nizam-Uddin
- Department of Biomedical Engineering, HITEC University, Taxila, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, P.R China
| |
Collapse
|
40
|
Tahir Ul Qamar M, Ahmad S, Fatima I, Ahmad F, Shahid F, Naz A, Abbasi SW, Khan A, Mirza MU, Ashfaq UA, Chen LL. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput Biol Med 2021; 132:104389. [PMID: 33866250 DOI: 10.1016/j.compbiomed.2021.104389] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a deadly human bacterial pathogen that causes a wide variety of clinical manifestations. Invasive S. aureus infections in hospitals and the community are one of the main causes of mortality and morbidity, as virulent and multi-drug-resistant strains have evolved. There is an unmet and urgent clinical need for immune-based non-antibiotic approaches to treat these infections as the growing antibiotic resistance poses a significant public health danger. Subtractive proteomics assisted reverse vaccinology-based immunoinformatics pipeline was used in this study to target the suitable antigenic proteins for the development of multi-epitope vaccine (MEV). Three essential virulent and antigenic proteins were identified including Glycosyltransferase, Elastin Binding Protein, and Staphylococcal secretory antigen. A variety of immunoinformatics tools have been used to forecast T-cell and B-cell epitopes from target proteins. Seven CTL, five HTL, and eight LBL epitopes, connected through suitable linkers and adjuvant, were employed to design 444 amino acids long MEV construct. The vaccine was paired with the TLR4 agonist 50S ribosomal protein L7/L12 adjuvant to enhance the immune response towards the vaccine. The predicted MEV structure was assessed to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. Molecular docking simulation of the MEV with the human TLR4 (toll-like receptor 4) and major histocompatibility complex molecules (MHCI and MHCII) was performed to validate the interactions with the receptors. Molecular dynamics (MD) simulation and MMGBSA binding free energy analyses were carried out for the stability evaluation and binding of the MEV docked complexes with TLR4, MHCI and MHCII. To achieve maximal vaccine protein expression with optimal post-translational modifications, MEV was reverse translated, its mRNA structure was analyzed, and finally in silico cloning was performed into E. coli expression host. These rigorous computational analyses supported the effectivity of proposed MEV in protection against infections associated with S. aureus. However, further experimental validations are required to fully evaluate the potential of proposed vaccine candidate.
Collapse
Affiliation(s)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
41
|
Solanki V, Tiwari M, Tiwari V. Immunoinformatic approach to design a multiepitope vaccine targeting non-mutational hotspot regions of structural and non-structural proteins of the SARS CoV2. PeerJ 2021; 9:e11126. [PMID: 33828922 PMCID: PMC7996071 DOI: 10.7717/peerj.11126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The rapid Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV2) outbreak caused severe pandemic infection worldwide. The high mortality and morbidity rate of SARS CoV2 is due to the unavailability of vaccination and mutation in this virus. The present article aims to design a potential vaccine construct VTC3 targeting the non-mutational region of structural and non-structural proteins of SARS CoV2. METHODS In this study, vaccines were designed using subtractive proteomics and reverse vaccinology. To target the virus adhesion and evasion, 10 different structural and non-structural proteins have been selected. Shortlisted proteins have been screened for B cell, T cell and IFN gamma interacting epitopes. 3D structure of vaccine construct was modeled and evaluated for its physicochemical properties, immunogenicity, allergenicity, toxicity and antigenicity. The finalized construct was implemented for docking and molecular dynamics simulation (MDS) with different toll-like receptors (TLRs) and human leukocyte antigen (HLA). The binding energy and dissociation construct of the vaccine with HLA and TLR was also calculated. Mutational sensitivity profiling of the designed vaccine was performed, and mutations were reconfirmed from the experimental database. Antibody production, clonal selection, antigen processing, immune response and memory generation in host cells after injection of the vaccine was also monitored using immune simulation. RESULTS Subtractive proteomics identified seven (structural and non-structural) proteins of this virus that have a role in cell adhesion and infection. The different epitopes were predicted, and only extracellular epitopes were selected that do not have similarity and cross-reactivity with the host cell. Finalized epitopes of all proteins with minimum allergenicity and toxicity were joined using linkers to designed different vaccine constructs. Docking different constructs with different TLRs and HLA demonstrated a stable and reliable binding affinity of VTC3 with the TLRs and HLAs. MDS analysis further confirms the interaction of VTC3 with HLA and TLR1/2 complex. The VTC3 has a favorable binding affinity and dissociation constant with HLA and TLR. The VTC3 does not have similarities with the human microbiome, and most of the interacting residues of VTC3 do not have mutations. The immune simulation result showed that VTC3 induces a strong immune response. The present study designs a multiepitope vaccine targeting the non-mutational region of structural and non-structural proteins of the SARS CoV2 using an immunoinformatic approach, which needs to be experimentally validated.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
42
|
Khan S, Hussain Z, Safdar M, Khan A, Wei DQ. Targeting the N-terminal domain of the RNA-binding protein of the SARS-CoV-2 with high affinity natural compounds to abrogate the protein-RNA interaction: a molecular dynamics study. J Biomol Struct Dyn 2021; 40:6286-6294. [PMID: 33554747 DOI: 10.1080/07391102.2021.1882337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The emergence of COVID-19 took the world by shock in December 2019, starting from Wuhan, China and swiftly spreading across the globe. The number of COVID-19 cases continues to rise which is a global burden on the health care system worldwide. Efforts are continuing to come up with a solution either to develop a small molecular inhibitor or vaccine, but still no success. In the fight against SARS-CoV-2, targeting a different protein of the SARS-CoV-2 is the need of the hour to impede and relinquish the current pandemic. Therefore, in this study, computational modelling and simulation approaches are used to target the N-terminal domain of the phosphor-nucleoprotein (RNA binding protein), which is primarily responsible for binding and packing the viral genome to get ribonucleoprotein complex (RNP). Our multi-step drug screening approach shortlisted potential drugs. These top hits were confirmed by re-docking which revealed that the interacting molecules block the key residues i.e. Thr57, His59, Ser105, Arg107, and Arg177 and thus ultimately block the NTD from RNA recognition. Furthermore, the activity of the top four hits was also confirmed by using molecular dynamics simulation and free energy calculation. Our analysis suggests that these top hits possess strong inhibitory properties and should be tested experimentally. In conclusion, we hope these top hits would abrogate the binding of RNA and the NTD of the SARS-CoV-2, which might be helpful to combat COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sohail Khan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Muhammad Safdar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Abbas Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Proteome wide vaccine targets prioritization and designing of antigenic vaccine candidate to trigger the host immune response against the Mycoplasma genitalium infection. Microb Pathog 2021; 152:104771. [PMID: 33524568 DOI: 10.1016/j.micpath.2021.104771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Mycoplasma genitalium is a small size, sexually transmitted bacterial pathogen that causes urethritis in males and cervicitis in females. Being resistant to antibiotics, difficulty in diagnosis, treatment, and control of this cosmopolitan infection, vaccination is the alternating method for its effective management. Herein, this study was conducted to computationally design a multi-epitope vaccine to boost host immune responses against M. genitalium. To achieve the study aim, immunoinformatics approaches were applied to the said pathogen's proteomics sequence data. B and T cell epitopes were projected from the three shortlisted vaccine proteins; MG014, MG015, Hmw3MG317. The final vaccine ensemble comprises cytotoxic and helper T cell epitopes fused through appropriate linkers. The epitopes peptide is then liked to an adjuvant for efficient recognition and processing by the host immune system. The various physicochemical parameters such as allergenicity, antigenicity, theoretical pI, GRAVY, and molecular weight of the vaccine were checked and found safe and effective to be used in post-experimental studies. The stability and binding affinity of the vaccine with the TLR1/2 heterodimer were ensured by performing molecular docking. The best-docked complex was considered, ranked top having the lowest binding energy and strong intermolecular binding and stability. Finally, the vaccine constructs better expression was obtained by in silico cloning into the pET28a (+) vector in Escherichia coli K-12 strain, and immune simulation validated the immune response. In a nutshell, all these approaches lead to developing a multi-epitope vaccine that possessed the ability to induce cellular and antibody-mediated immune responses against the pathogen used.
Collapse
|
44
|
Tahir ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One 2020; 15:e0244176. [PMID: 33351863 PMCID: PMC7755200 DOI: 10.1371/journal.pone.0244176] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.
Collapse
Affiliation(s)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Xitong Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
45
|
Naz S, Ahmad S, Walton S, Abbasi SW. Multi-epitope based vaccine design against Sarcoptes scabiei paramyosin using immunoinformatics approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Ahmad I, Ali SS, Zafar B, Hashmi HF, Shah I, Khan S, Suleman M, Khan M, Ullah S, Ali S, Khan J, Ali M, Khan A, Wei DQ. Development of multi-epitope subunit vaccine for protection against the norovirus' infections based on computational vaccinology. J Biomol Struct Dyn 2020; 40:3098-3109. [PMID: 33170093 DOI: 10.1080/07391102.2020.1845799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human Norovirus belongs to a family Calciviridae, and was identified in the outbreak of gastroenteritis in Norwalk, due to its seasonal prevalence known as "winter vomiting disease." Treatment of Norovirus infection is still mysterious because there is no effective antiviral drugs or vaccine developed to protect against the infection, to eradicate the infection an effective vaccine should be developed. In this study, capsid protein (A7YK10), small protein (A7YK11), and polyprotein (A7YK09) were utilized. These proteins were subjected to B and T cell epitopes prediction by using reliable immunoinformatics tools. The antigenic and non-allergenic epitopes were selected for the subunit vaccine, which can activate cellular and humoral immune responses. Linkers joined these epitopes together. The vaccine structure was modelled and validated by using Errat, ProSA, and rampage servers. The modelled vaccine was docked with TLR-7. The stability of the docked complex was evaluated by MD simulation. To apply the concept in a wet lab, the reverse translated vaccine sequence was cloned in pET28a (+). The vaccine developed in this study requires experimental validation to ensure its effectiveness against the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Irfan Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Bisma Zafar
- Department of Biotechnology, University of Okara, Punjab, Pakistan
| | | | - Ismail Shah
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahzeb Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, P.R. China
| | - Saif Ullah
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Jafar Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, P.R. China
| |
Collapse
|
47
|
Singh H, Jakhar R, Sehrawat N. Designing spike protein (S-Protein) based multi-epitope peptide vaccine against SARS COVID-19 by immunoinformatics. Heliyon 2020; 6:e05528. [PMID: 33225084 PMCID: PMC7667438 DOI: 10.1016/j.heliyon.2020.e05528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/22/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023] Open
Abstract
The outbreak of COVID-19 was originated from China, responsible for Several Acute Respiratory Syndrome (SARS). Scientists are forced to develop vaccine and effective drugs to control COVID-19 infection. To develop effective vaccine for SARS - COVID 19, immunoinformatics and computational approaches could helps to design successful vaccine against this biggest danger for humanity. Here we used various in - silico approaches to designed vaccine against COVID-19. To develop vaccine, we target S- protein, expressed on the virus surface plays important role in COVID-19 infection. We identified 12 B-cell, 9 T-helper and 20 Cytotoxic T-cell epitope based on criteria of selection. The predicted epitopes were link simultaneously with GPGPG & AAY linkers. The β-defensin was used as adjuvant, linked with selected epitope by using EAAAK linker. For vaccine construct justification we analysed its immunogenicity, allergenicity and physiochemical properties. Our study revealed that vaccine was non toxic, immunogenic and antigenic in nature and covers 98.6% of world population, important for vaccine effectively. In- silico cloning was used to analyse its expression in vector. Molecular docking was performed to study the interaction of construct with TLR (TLR3, TLR4, and TLR9) molecules. The immune simulation was conducted and conformed that our vaccine constructs can induces both acquired and humoral immunity effectively against COVID-19 at very low concentration, but along with bioinformatics study we need to conduct experiment in laboratory to validate its safety and effectiveness.
Collapse
Affiliation(s)
- Hitesh Singh
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Renu Jakhar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
48
|
Gul H, Ali SS, Saleem S, Khan S, Khan J, Wadood A, Rehman AU, Ullah Z, Ali S, Khan H, Hussain Z, Akbar F, Khan A, Wei DQ. Subtractive proteomics and immunoinformatics approaches to explore Bartonella bacilliformis proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine. INFECTION GENETICS AND EVOLUTION 2020; 85:104551. [DOI: 10.1016/j.meegid.2020.104551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023]
|
49
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
50
|
Khan A, Khan M, Saleem S, Babar Z, Ali A, Khan AA, Sardar Z, Hamayun F, Ali SS, Wei DQ. Phylogenetic Analysis and Structural Perspectives of RNA-Dependent RNA-Polymerase Inhibition from SARs-CoV-2 with Natural Products. Interdiscip Sci 2020; 12:335-348. [PMID: 32617855 PMCID: PMC7332347 DOI: 10.1007/s12539-020-00381-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
Abstract Most recently, an outbreak of severe pneumonia caused by the infection of SARS-CoV-2, a novel coronavirus first identified in Wuhan, China, imposes serious threats to public health. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Therefore, the role and inhibition of nsp12 are indispensable. A cryo-EM structure of RdRp from SARs-CoV-2 was used to identify novel drugs from Northern South African medicinal compounds database (NANPDB) by using computational virtual screening and molecular docking approaches. Considering Remdesivir as the control, 42 compounds were shortlisted to have docking score better than Remdesivir. The top 5 hits were validated by using molecular dynamics simulation approach and free energy calculations possess strong inhibitory properties than the Remdesivir. Thus, this study paved a way for designing novel drugs by decoding the architecture of an important enzyme and its inhibition with compounds from natural resources. This disclosing of necessary knowledge regarding the screening and the identification of top hits could help to design effective therapeutic candidates against the coronaviruses and design robust preventive measurements. Graphic abstract ![]()
Collapse
Affiliation(s)
- Abbas Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zainib Babar
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arif Ali
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Aziz Khan
- Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zain Sardar
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Fahad Hamayun
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|