1
|
Burand Jr. AJ, Waltz TB, Manis AD, Hodges MR, Stucky CL. HomeCageScan analysis reveals ongoing pain in Fabry rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100113. [PMID: 36660199 PMCID: PMC9843259 DOI: 10.1016/j.ynpai.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
HomeCageScan (HCS) is an automated behavioral scoring system that can be used to classify and quantify rodent behaviors in the home cage. Although HCS has been used for a number of inducible models of severe pain, little has been done to test this system in clinically relevant genetic disease models associated with chronic pain such as Fabry disease. Rats with Fabry disease exhibit mechanical hypersensitivity, however, it is unclear if these rodents also exhibit ongoing non-evoked pain. Therefore, we analyzed HCS data from male and female rats with Fabry disease. Using hierarchical clustering and principal component analysis, we found both sex and genotype differences in several home cage behaviors. Additionally, we used hierarchical clustering to derive behavioral clusters in an unbiased manner. Analysis of these behavioral clusters showed that primarily female Fabry animals moved less, spent less time caring for themselves (e.g., less time spent grooming and drinking), explored less, and slept more; changes that are similar to lifestyle changes observed in patients with long lasting chronic pain. We also show that sniffing, one of the exploratory behaviors that is depressed in Fabry animals, can be partly restored with the analgesic gabapentin, suggesting that depressed sniffing may reflect ongoing pain. Therefore, this approach to HCS data analysis can be used to assess drug efficacy in Fabry disease and potentially other genetic and inducible rodent models associated with persistent pain.
Collapse
Affiliation(s)
- Anthony J. Burand Jr.
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anna D. Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
2
|
Larivee R, Johnson N, Freedgood NR, Cameron HA, Schoenfeld TJ. Inhibition of Hippocampal Neurogenesis Starting in Adolescence Increases Anxiodepressive Behaviors Amid Stress. Front Behav Neurosci 2022; 16:940125. [PMID: 35864848 PMCID: PMC9294378 DOI: 10.3389/fnbeh.2022.940125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stressors during the adolescent period can affect development of the brain and have long-lasting impacts on behavior. Specifically, adolescent stress impairs hippocampal neurogenesis and can increase risk for anxiety, depression, and a dysregulated stress response in adulthood. In order to model the functional effects of reduced hippocampal neurogenesis during adolescence, a transgenic neurogenesis ablation rat model was used to suppress neurogenesis during the adolescent period and test anxiodepressive behaviors and stress physiology during adulthood. Wildtype and transgenic (TK) rats were given valganciclovir during the first two weeks of adolescence (4-6 weeks old) to knock down neurogenesis in TK rats. Starting in young adulthood (13 weeks old), blood was sampled for corticosterone at several time points following acute restraint stress to measure negative feedback of the stress response, and rats were tested on a battery of anxiodepressive tests at baseline and following acute restraint stress. Although TK rats had large reductions in both cell proliferation during adolescence, as measured by bromodeoxyuridine (BrdU), and ongoing neurogenesis in adulthood (by doublecortin), resulting in decreased volume of the dentate gyrus, negative feedback of the stress response following acute restraint was similar across all rats. Despite similar stress responses, TK rats showed higher anxiety-like behavior at baseline. In addition, only TK rats had increased depressive-like behavior when tested after acute stress. Together, these results suggest that long-term neurogenesis ablation starting in adolescence produces hippocampal atrophy and increases behavioral caution and despair amid stressful environments.
Collapse
Affiliation(s)
- Rachelle Larivee
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie Johnson
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie R. Freedgood
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Timothy J. Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
- *Correspondence: Timothy J. Schoenfeld,
| |
Collapse
|
3
|
Sex Differences in the Spatial Behavior Functions of Adult-Born Neurons in Rats. eNeuro 2022; 9:ENEURO.0054-22.2022. [PMID: 35473765 PMCID: PMC9116935 DOI: 10.1523/eneuro.0054-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding. We therefore trained intact and neurogenesis-deficient rats in the spatial water maze at temperatures that vary in their degree of aversiveness. In the standard water maze, ablating neurogenesis did not alter spatial learning in either sex. However, in cold water, ablating neurogenesis had divergent sex-dependent effects: relative to intact rats, male neurogenesis-deficient rats were slower to escape the maze and female neurogenesis-deficient rats were faster. Neurogenesis promoted temperature-related changes in search strategy in females, but it promoted search strategy stability in males. Females displayed greater recruitment (Fos expression) of the dorsal hippocampus than males, particularly in cold water. However, blocking neurogenesis did not alter Fos expression in either sex. Finally, morphologic analyses revealed greater experience-dependent plasticity in males. Adult-born neurons in males and females had similar morphology at baseline but training increased spine density and reduced presynaptic terminal size, specifically in males. Collectively, these findings indicate that adult-born neurons contribute to spatial learning in stressful conditions and they provide new evidence for sex differences in their behavioral functions.
Collapse
|
4
|
Hippocampal neurogenesis promotes preference for future rewards. Mol Psychiatry 2021; 26:6317-6335. [PMID: 34021262 DOI: 10.1038/s41380-021-01165-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Adult hippocampal neurogenesis has been implicated in a number of disorders where reward processing is disrupted but whether new neurons regulate specific aspects of reward-related decision making remains unclear. Given the role of the hippocampus in future-oriented cognition, here we tested whether adult neurogenesis regulates preference for future, advantageous rewards in a delay discounting paradigm for rats. Indeed, blocking neurogenesis caused a profound aversion for delayed rewards, and biased choice behavior toward immediately available, but smaller, rewards. Consistent with a role for the ventral hippocampus in impulsive decision making and future-thinking, neurogenesis-deficient animals displayed reduced activity in the ventral hippocampus. In intact animals, delay-based decision making restructured dendrites and spines in adult-born neurons and specifically activated adult-born neurons in the ventral dentate gyrus, relative to dorsal activation in rats that chose between immediately-available rewards. Putative developmentally-born cells, located in the superficial granule cell layer, did not display task-specific activity. These findings identify a novel and specific role for neurogenesis in decisions about future rewards, thereby implicating newborn neurons in disorders where short-sighted gains are preferred at the expense of long-term health.
Collapse
|
5
|
Vyleta NP, Snyder JS. Prolonged development of long-term potentiation at lateral entorhinal cortex synapses onto adult-born neurons. PLoS One 2021; 16:e0253642. [PMID: 34143843 PMCID: PMC8213073 DOI: 10.1371/journal.pone.0253642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Critical period plasticity at adult-born neuron synapses is widely believed to contribute to the learning and memory functions of the hippocampus. Experience regulates circuit integration and for a transient interval, until cells are ~6 weeks old, new neurons display enhanced long-term potentiation (LTP) at afferent and efferent synapses. Since neurogenesis declines substantially with age, this raises questions about the extent of lasting plasticity offered by adult-born neurons. Notably, however, the hippocampus receives sensory information from two major cortical pathways. Broadly speaking, the medial entorhinal cortex conveys spatial information to the hippocampus via the medial perforant path (MPP), and the lateral entorhinal cortex, via the lateral perforant path (LPP), codes for the cues and items that make experiences unique. While enhanced critical period plasticity at MPP synapses is relatively well characterized, no studies have examined long-term plasticity at LPP synapses onto adult-born neurons, even though the lateral entorhinal cortex is uniquely vulnerable to aging and Alzheimer's pathology. We therefore investigated LTP at LPP inputs both within (4-6 weeks) and beyond (8+ weeks) the traditional critical period. At immature stages, adult-born neurons did not undergo significant LTP at LPP synapses, and often displayed long-term depression after theta burst stimulation. However, over the course of 3-4 months, adult-born neurons displayed increasingly greater amounts of LTP. Analyses of short-term plasticity point towards a presynaptic mechanism, where transmitter release probability declines as cells mature, providing a greater dynamic range for strengthening synapses. Collectively, our findings identify a novel form of new neuron plasticity that develops over an extended interval, and may therefore be relevant for maintaining cognitive function in aging.
Collapse
Affiliation(s)
- Nicholas P. Vyleta
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S. Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
6
|
Osterlund Oltmanns JR, Lipton MH, Adamczyk N, Lake RI, Blackwell AA, Schaeffer EA, Tsai SY, Kartje GL, Wallace DG. Organization of exploratory behavior under dark conditions in female and male rats. Behav Processes 2021; 189:104437. [PMID: 34089779 DOI: 10.1016/j.beproc.2021.104437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Sexually dimorphic performance has been observed across humans and rodents in many spatial tasks. In general, these spatial tasks do not dissociate the use of environmental and self-movement cues. Previous work has demonstrated a role for self-movement cue processing in organizing open field behavior; however, these studies have not directly compared female and male movement characteristics. The current study examined the organization of open field behavior under dark conditions in female and male rats. Significant differences between female and male rats were observed in the location of stopping behavior relative to a cue and the topography exhibited during lateral movements. In contrast, no sex differences were observed on measures used to detect self-movement cue processing deficits. These results provide evidence that female and male rats are similar in their use of self-movement cues to organize open field behavior; however, other factors may be contributing to differences in performance.
Collapse
Affiliation(s)
| | - Megan H Lipton
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Natalie Adamczyk
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Rami I Lake
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Ashley A Blackwell
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Ericka A Schaeffer
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Shih-Yen Tsai
- Loyola University Health Sciences Division, Maywood, IL, United States; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, United States
| | - Gwendolyn L Kartje
- Loyola University Health Sciences Division, Maywood, IL, United States; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, United States
| | - Douglas G Wallace
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| |
Collapse
|
7
|
Bernstein HL, Lu YL, Botterill JJ, Scharfman HE. Novelty and Novel Objects Increase c-Fos Immunoreactivity in Mossy Cells in the Mouse Dentate Gyrus. Neural Plast 2019; 2019:1815371. [PMID: 31534449 PMCID: PMC6732597 DOI: 10.1155/2019/1815371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The dentate gyrus (DG) and its primary cell type, the granule cell (GC), are thought to be critical to many cognitive functions. A major neuronal subtype of the DG is the hilar mossy cell (MC). MCs have been considered to play an important role in cognition, but in vivo studies to understand the activity of MCs during cognitive tasks are challenging because the experiments usually involve trauma to the overlying hippocampus or DG, which kills hilar neurons. In addition, restraint typically occurs, and MC activity is reduced by brief restraint stress. Social isolation often occurs and is potentially confounding. Therefore, we used c-fos protein expression to understand when MCs are active in vivo in socially housed adult C57BL/6 mice in their home cage. We focused on c-fos protein expression after animals explored novel objects, based on previous work which showed that MCs express c-fos protein readily in response to a novel housing location. Also, MCs are required for the training component of the novel object location task and novelty-encoding during a food-related task. GluR2/3 was used as a marker of MCs. The results showed that MC c-fos protein is greatly increased after exposure to novel objects, especially in ventral DG. We also found that novel objects produced higher c-fos levels than familiar objects. Interestingly, a small subset of neurons that did not express GluR2/3 also increased c-fos protein after novel object exposure. In contrast, GCs appeared relatively insensitive. The results support a growing appreciation of the role of the DG in novelty detection and novel object recognition, where hilar neurons and especially MCs are very sensitive.
Collapse
Affiliation(s)
- Hannah L. Bernstein
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Yi-Ling Lu
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Justin J. Botterill
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Helen E. Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| |
Collapse
|
8
|
Seib DR, Chahley E, Princz-Lebel O, Snyder JS. Correction: Intact memory for local and distal cues in male and female rats that lack adult neurogenesis. PLoS One 2018; 13:e0199905. [PMID: 29940048 PMCID: PMC6016938 DOI: 10.1371/journal.pone.0199905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|