1
|
Gunasekaran S, Moffat JJ, Epstein JD, Phamluong K, Ehinger Y, Ron D. BDNF in Ventrolateral Orbitofrontal Cortex to Dorsolateral Striatum Circuit Moderates Alcohol Consumption and Gates Alcohol Habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632255. [PMID: 39868120 PMCID: PMC11761066 DOI: 10.1101/2025.01.09.632255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use. The major source of BDNF in the striatum is the prefrontal cortex. We identified a small ensemble of BDNF-positive neurons in the ventrolateral orbitofrontal cortex (vlOFC), a region involved in AUD, that extend axonal projections to the DLS. We speculated that BDNF in vlOFC-to-DLS circuit may play a role in limiting alcohol drinking and that heavy alcohol use disrupts this protective pathway. We found that BDNF expression is reduced in the vlOFC of male but not female mice after long-term cycles of binge alcohol drinking and withdrawal. We discovered that overexpression of BDNF in vlOFC-to-DLS but not in vlOFC-to-dorsomedial striatum (DMS) or M2 motor cortex-to-DLS circuit reduces alcohol but not sucrose intake and preference. The DLS plays a major role in habitual behaviors. We hypothesized that BDNF in vlOFC-to-DLS circuitry controls alcohol intake by gating habitual alcohol seeking. We found that BDNF over-expression in vlOFC-to-DLS circuit and systemic administration of BDNF receptor TrkB agonist, LM22A-4, biases habitually trained mice towards goal-directed alcohol seeking. Together, our data suggest that BDNF in a small ensemble of vlOFC-to-DLS neurons gates alcohol intake by attenuating habitual alcohol seeking.
Collapse
|
2
|
Jacobs DS, Bogachuk AP, Moghaddam B. Orbitofrontal and Prelimbic Cortices Serve Complementary Roles in Adapting Reward Seeking to Learned Anxiety. Biol Psychiatry 2024; 96:727-738. [PMID: 38460582 DOI: 10.1016/j.biopsych.2024.02.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Anxiety is a common symptom of several mental health disorders and adversely affects motivated behaviors. Anxiety can emerge from associating risk of future harm while engaged in goal-guided actions. Using a recently developed behavioral paradigm to model this aspect of anxiety, we investigated the role of 2 cortical subregions, the prelimbic medial frontal cortex (PL) and lateral orbitofrontal cortex (lOFC), which have been implicated in anxiety and outcome expectation, in flexible representation of actions associated with harm risk. METHODS A seek-take reward-guided instrumental task design was used to train animals (N = 8) to associate the seek action with a variable risk of punishment. After learning, animals underwent extinction training for this association. Fiber photometry was used to measure and compare neuronal activity in the PL and lOFC during learning and extinction. RESULTS Animals increased action suppression in response to punishment contingencies. This increase dissipated after extinction training. These behavioral changes were associated with region-specific changes in neuronal activity. PL neuronal activity preferentially adapted to the threat of punishment, whereas lOFC activity adapted to safe aspects of the task. Moreover, correlated activity between these regions was suppressed during actions associated with harm risk, suggesting that these regions may guide behavior independently under anxiety. CONCLUSIONS These findings suggest that the PL and lOFC serve distinct but complementary roles in the representation of learned anxiety. This dissociation may provide a mechanism to explain how overlapping cortical systems are implicated in reward-guided action execution during anxiety.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alina P Bogachuk
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Bita Moghaddam
- Department of Psychiatry, Oregon Health and Science University, Portland, Oregon; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
3
|
Strickland JA, McDannald MA. Brainstem networks construct threat probability and prediction error from neuronal building blocks. Nat Commun 2022; 13:6192. [PMID: 36261515 PMCID: PMC9582012 DOI: 10.1038/s41467-022-34021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
When faced with potential threat we must estimate its probability, respond advantageously, and leverage experience to update future estimates. Threat estimation is the proposed domain of the forebrain, while behaviour is elicited by the brainstem. Yet, the brainstem is also a source of prediction error, a learning signal to acquire and update threat estimates. Neuropixels probes allowed us to record single-unit activity across a 21-region brainstem axis in rats receiving probabilistic fear discrimination with foot shock outcome. Against a backdrop of diffuse behaviour signaling, a brainstem network with a dorsal hub signaled threat probability. Neuronal function remapping during the outcome period gave rise to brainstem networks signaling prediction error and shock on multiple timescales. The results reveal brainstem networks construct threat probability, behaviour, and prediction error signals from neuronal building blocks.
Collapse
Affiliation(s)
- Jasmin A Strickland
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
- Department of Psychology, Durham University, Durham, DH1 3LE, UK.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
4
|
Sun CF, Chang CH. Aberrant orbitofrontal cortical activation interferes with encoding of Pavlovian fear conditioning. Front Behav Neurosci 2022; 16:981041. [PMID: 36072088 PMCID: PMC9442050 DOI: 10.3389/fnbeh.2022.981041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) patients were usually found with the hyper-activation of the orbitofrontal cortex (OFC) and a deficit in fear extinction learning. The OFC can be subdivided into the lateral OFC (lOFC) and the medial OFC (mOFC). Previous studies have suggested that both subregions are involved in the modulation of negative emotions. However, how aberrant activation of the OFC interacts with the encoding of Pavlovian fear remains unknown. In this study, the lOFC or the mOFC was pharmacologically activated or inactivated before the fear conditioning on Day 1, followed by a context test on Day 2 and a tone test on Day 3 in male Long-Evans rats. We found that for the animals that underwent fear conditioning under aberrant activation of either the lOFC or the mOFC, they showed normal within-session fear expression. However, the acquisition/consolidation of contextual fear was impaired under mOFC activation, while the acquisition/consolidation of cued fear was impaired under either the lOFC or the mOFC activation, in that these animals showed lower freezing compared to controls during the retrieval test. On the other hand, for the animals that underwent fear conditioning under inactivation of either the lOFC or the mOFC, they showed normal within-session fear expression, as well as intact encoding of both the contextual and cued fear. Together, our results suggested that the OFC was not actively engaged in the acquisition of Pavlovian fear conditioning, but aberrant activation of the OFC impaired fear learning.
Collapse
Affiliation(s)
- Chung-Fu Sun
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Chun-hui Chang,
| |
Collapse
|
5
|
Schuh KM, Sneddon EA, Nader AM, Muench MA, Radke AK. Orbitofrontal cortex subregion inhibition during binge-like and aversion-resistant alcohol drinking. Alcohol 2022; 99:1-8. [PMID: 34863917 PMCID: PMC8844094 DOI: 10.1016/j.alcohol.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023]
Abstract
Two important contributors to alcohol-related problems and alcohol use disorder (AUD) are binge- and compulsive-like drinking. The orbitofrontal cortex (OFC), a brain region implicated in outcome valuation and behavioral flexibility, is functionally altered by alcohol exposure. Data from animal models also suggest that both the medial (mOFC) and lateral (lOFC) subregions of the OFC regulate alcohol-related behaviors. The current study was designed to examine the contributions of mOFC and lOFC using a model of binge-like and aversion-resistant ethanol drinking in C57BL/6J male and female mice. The inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) hM4Di were used to inhibit neurons in either the mOFC or the lOFC in mice drinking 15% ethanol in a two-bottle, limited-access, modified drinking in the dark paradigm. The effects of chemogenetic inhibition on consumption of quinine-adulterated ethanol, water, and water + quinine were also assessed. Inhibiting the mOFC did not alter consumption of ethanol or aversion-resistant drinking of ethanol + quinine. In contrast, inhibition of neurons in the lOFC increased consumption, but not preference, of ethanol alone. mOFC and lOFC inhibition did not alter water or quinine-adulterated water intake, indicating the effects shown here are specific to ethanol drinking. These data support the role of the lOFC in regulating alcohol consumption but fail to find a similar role for mOFC.
Collapse
Affiliation(s)
| | | | | | | | - Anna K. Radke
- Correspondence to: Anna K. Radke, Ph.D., 90 N. Patterson Ave., Oxford, OH, USA 45056, , Phone: 513-529-6941, Fax: 513-529-2420
| |
Collapse
|
6
|
Colbert SMC, Funkhouser SA, Johnson EC, Morrison CL, Hoeffer CA, Friedman NP, Ehringer MA, Evans LM. Novel characterization of the multivariate genetic architecture of internalizing psychopathology and alcohol use. Am J Med Genet B Neuropsychiatr Genet 2021; 186:353-366. [PMID: 34569141 PMCID: PMC8556277 DOI: 10.1002/ajmg.b.32874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors. We identified 14 significant regions of local, largely positive, genetic covariance between PAU and internalizing psychopathology and 12 regions of significant local genetic covariance (including both positive and negative genetic covariance) between consumption factors and internalizing psychopathology. Partitioned genetic covariance among functional annotations suggested that brain tissues contribute significantly to positive genetic covariance between internalizing psychopathology and PAU but not to the genetic covariance between internalizing psychopathology and quantity or frequency of alcohol consumption. We hypothesize that genome-wide genetic correlations between alcohol use and psychiatric traits may not capture the more complex shared or divergent genetic architectures at the locus or tissue specific level. This study highlights the complexity of genetic architectures of alcohol use and internalizing psychopathology, and the differing shared genetics of internalizing disorders with PAU compared to consumption.
Collapse
Affiliation(s)
- Sarah M. C. Colbert
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder
| | | | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine
| | - Claire L. Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Charles A. Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Integrative Physiology, University of Colorado Boulder
| | - Naomi P. Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Integrative Physiology, University of Colorado Boulder
| | - Luke M. Evans
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder
| |
Collapse
|
7
|
Moaddab M, McDannald MA. Retrorubral field is a hub for diverse threat and aversive outcome signals. Curr Biol 2021; 31:2099-2110.e5. [PMID: 33756109 DOI: 10.1016/j.cub.2021.02.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023]
Abstract
Adaptive fear scales to the degree of threat and requires diverse neural signals for threat and aversive outcome. We propose that the retrorubral field (RRF), a midbrain region containing A8 dopamine, is a neural origin of such signals. To reveal these signals, we recorded RRF single-unit activity while male rats discriminated danger, uncertainty, and safety. Many RRF neurons showed firing extremes to danger and safety that framed intermediate firing to uncertainty. The remaining neurons showed unique, threat-selective cue firing patterns. Diversity in firing direction, magnitude, and temporal characteristics led to the detection of at least eight functional neuron types. Neuron types defined with respect to threat showed unique firing patterns following aversive outcome. The result was RRF signals for foot shock receipt, positive prediction error, anti-positive prediction error, persistent safety, and persistent threat. The diversity of threat and aversive outcome signals points to a key role for the RRF in adaptive fear.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.
| | - Michael A McDannald
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
8
|
Strickland JA, Dileo AD, Moaddab M, Ray MH, Walker RA, Wright KM, McDannald MA. Foot shock facilitates reward seeking in an experience-dependent manner. Behav Brain Res 2021; 399:112974. [PMID: 33144178 PMCID: PMC7855116 DOI: 10.1016/j.bbr.2020.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Animals organize reward seeking around aversive events. An abundance of research shows that foot shock, as well as a shock-associated cue, can elicit freezing and suppress reward seeking. Yet, there is evidence that experience can flip the effect of foot shock to facilitate reward seeking. Here we examined cue suppression, foot shock suppression and foot shock facilitation of reward seeking in a single behavioural setting. Male Long Evans rats received fear discrimination consisting of danger, uncertainty, and safety cues. Discrimination took place over a baseline of rewarded nose poking. With limited experience (1-2 sessions), all cues and foot shock suppressed reward seeking. With continued experience (10-16 sessions), suppression became specific to shock-associated cues, foot shock briefly suppressed, then facilitated reward seeking. Our results provide a means of assessing positive properties of foot shock, and may provide insight into maladaptive behaviour around aversive events.
Collapse
Affiliation(s)
- J A Strickland
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA.
| | - A D Dileo
- Tufts University School of Medicine, School of Graduate Biomedical Sciences, Boston, MA, USA
| | - M Moaddab
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - M H Ray
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - R A Walker
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - K M Wright
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - M A McDannald
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA.
| |
Collapse
|
9
|
Absence Makes the Mind Grow Fonder: Reconceptualizing Studies of Safety Learning in Translational Research on Anxiety. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1-13. [PMID: 33420710 DOI: 10.3758/s13415-020-00855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/04/2023]
Abstract
Overgeneralized fear (OGF), or indiscriminate fear responses to signals of threat and nonthreat, is a well-studied cognitive mechanism in human anxiety. Anxiety-related OGF has been studied primarily through fear-learning paradigms and conceptualized as overly exaggerated learning of cues signaling imminent threat. However, the role of safety learning in OGF has not only received much less empirical attention but has been fundamentally conceptualized as learning about the absence of threat rather than the presence of safety. As a result, the relative contributions of exaggerated fear learning and weakened safety learning to anxiety-related OGF remain poorly understood, as do the potentially unique biological and behavioral underpinnings of safety learning. The present review outlines these gaps by, first, summarizing animal and human research on safety learning related to anxiety and OGF. Second, we outline innovations in methods to tease apart unique biological and behavioral contributions of safety learning to OGF. Lastly, we describe clinical and treatment implications of this framework for translational research relevant to human anxiety.
Collapse
|
10
|
Moaddab M, Wright KM, McDannald MA. Early adolescent adversity alters periaqueductal gray/dorsal raphe threat responding in adult female rats. Sci Rep 2020; 10:18035. [PMID: 33093472 PMCID: PMC7582948 DOI: 10.1038/s41598-020-74457-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Early adolescent adversity increases adult risk for anxiety disorders. The ventrolateral periaqueductal gray (vlPAG) and neighboring dorsal raphe (DR) are integral to threat prediction, and are responsive to acute stressors. Here, we tested the hypothesis that early adolescent adversity reshapes vlPAG/DR threat-related cue activity and threat probability signaling. Female, Long Evans rats experienced a battery of adverse adolescent experiences (n = 12), while controls did not (n = 8). Single-unit activity was recorded 50 + days following the final adverse experience, when the adult rats received fear discrimination consisting of danger, uncertainty and safety cues. Despite achieving fear discrimination that was equivalent to controls, vlPAG/DR threat responding was altered in adverse-experienced rats. Early adolescent adversity resulted in a greater proportion of cue-responsive neurons. Cue-excited neurons showed greater increases in firing and cue-inhibited neurons showed greater decreases. Even more, early adversity reduced flexible, threat probability signaling by cue-excited neurons and promoted more rigid, fear output signaling by cue-inhibited neurons. The results reveal long-lasting changes in vlPAG/DR threat responding resulting from early adolescent adversity.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Ave., 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Kristina M Wright
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Ave., 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA
| | - Michael A McDannald
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Ave., 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
11
|
Neural correlates of safety learning. Behav Brain Res 2020; 396:112884. [PMID: 32871228 DOI: 10.1016/j.bbr.2020.112884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.
Collapse
|
12
|
Hernandez JS, Binette AN, Rahman T, Tarantino JD, Moorman DE. Chemogenetic Inactivation of Orbitofrontal Cortex Decreases Cue-induced Reinstatement of Ethanol and Sucrose Seeking in Male and Female Wistar Rats. Alcohol Clin Exp Res 2020; 44:1769-1782. [PMID: 32628778 DOI: 10.1111/acer.14407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The orbitofrontal cortex (OFC) encodes internal representations of outcomes and subjective value to facilitate flexible reward seeking. OFC activation is associated with drug seeking in both human subjects and animal models. OFC plays a role in alcohol use, but studies in animal models have produced conflicting results with some showing decreased seeking after OFC inactivation but others showing increased seeking or no changes. In part, this may be due to the different measures of alcohol seeking used (e.g., homecage drinking vs. operant seeking). METHODS We characterized the impact of transient inactivation of OFC (primarily lateral and, to a lesser extent, ventral subregions) using inhibitory hM4Di designer receptors exclusively activated by designer drugs (DREADDs). OFC neurons were transiently inhibited during 10% and 20% alcohol (ethanol, EtOH) and sucrose homecage consumption, fixed ratio (FR1) operant self-administration, and cue-induced reinstatement of either 10% EtOH or sucrose in male and female rats. RESULTS OFC inactivation did not affect sucrose or EtOH consumption in the homecage, nor did it influence seeking or consumption under FR1 operant conditions. In contrast, OFC inactivation suppressed cued-induced reinstatement for both EtOH and sucrose in both male and female rats. CONCLUSIONS Our results are aligned with previous work indicating a selective suppressive effect of OFC inactivation on reinstatement for alcohol and other drugs of abuse. They extend these findings to demonstrate no effect on homecage consumption or FR1 seeking as well as showing an impact of sucrose reinstatement. These data indicate that OFC plays a uniquely important role when reward seeking is driven by associations between external stimuli and internal representations of reward value, both for natural and drug rewards. They further implicate the OFC as a key structure driving relapse-associated seeking and potentially contributing to alcohol use disorder and other diseases of compulsive reward seeking.
Collapse
Affiliation(s)
- John S Hernandez
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalise N Binette
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Taryn Rahman
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jeffrey D Tarantino
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - David E Moorman
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
13
|
Orbitofrontal Cortex Encodes Preference for Alcohol. eNeuro 2020; 7:ENEURO.0402-19.2020. [PMID: 32661066 PMCID: PMC7365858 DOI: 10.1523/eneuro.0402-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/03/2023] Open
Abstract
Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. To understand the relationship between OFC function and individual alcohol use, we recorded OFC neuron activity in rats during EtOH self-administration, characterizing the neural correlates of individual preference for alcohol. After one month of intermittent access to 20% EtOH, male Long–Evans rats were trained to self-administer 20% EtOH, 10% EtOH, and 15% sucrose. OFC neuronal activity was recorded and associated with task performance and EtOH preference. Rats segregated into high and low EtOH drinkers based on homecage consumption and operant seeking of 20% EtOH. Motivation for 10% EtOH and sucrose was equally high in both groups. OFC neuronal activity was robustly increased or decreased during sucrose and EtOH seeking and consumption, and strength of changes in OFC activity was directly associated with individual preference for 20% EtOH. EtOH-associated OFC activity was more similar to sucrose-associated activity in high versus low EtOH drinkers. The results show that OFC neurons are activated during alcohol seeking based on individual preference, supporting this brain region as a potential substrate for alcohol motivation that may be dysregulated in alcohol misuse.
Collapse
|
14
|
Lay BPP, Pitaru AA, Boulianne N, Esber GR, Iordanova MD. Different methods of fear reduction are supported by distinct cortical substrates. eLife 2020; 9:e55294. [PMID: 32589138 PMCID: PMC7343386 DOI: 10.7554/elife.55294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.
Collapse
Affiliation(s)
- Belinda PP Lay
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Audrey A Pitaru
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Nathan Boulianne
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Guillem R Esber
- Department of Psychology, Brooklyn College of the City University of New YorkBrooklynUnited States
| | - Mihaela D Iordanova
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| |
Collapse
|
15
|
The Nucleus Accumbens Core is Necessary to Scale Fear to Degree of Threat. J Neurosci 2020; 40:4750-4760. [PMID: 32381486 DOI: 10.1523/jneurosci.0299-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Fear is adaptive when the level of the response rapidly scales to degree of threat. Using a discrimination procedure consisting of danger, uncertainty, and safety cues, we have found rapid fear scaling (within 2 s of cue presentation) in male rats. Here, we examined a possible role for the nucleus accumbens core (NAcc) in the acquisition and expression of fear scaling. In experiment 1, male Long-Evans rats received bilateral sham or neurotoxic NAcc lesions, recovered, and underwent fear discrimination. NAcc-lesioned rats were generally impaired in scaling fear to degree of threat, and specifically impaired in rapid uncertainty-safety discrimination. In experiment 2, male Long-Evans rats received NAcc transduction with halorhodopsin (Halo) or a control fluorophore. After fear scaling was established, the NAcc was illuminated during cue or control periods. NAcc-Halo rats receiving cue illumination were specifically impaired in rapid uncertainty-safety discrimination. The results reveal a general role for the NAcc in scaling fear to degree of threat, and a specific role in rapid discrimination of uncertain threat and safety.SIGNIFICANCE STATEMENT Rapidly discriminating cues for threat and safety is essential for survival and impaired threat-safety discrimination is a hallmark of stress and anxiety disorders. In two experiments, we induced nucleus accumbens core (NAcc) dysfunction in rats receiving fear discrimination consisting of cues for danger, uncertainty, and safety. Permanent NAcc dysfunction, via neurotoxic lesion, generally disrupted the ability to scale fear to degree of threat, and specifically impaired one component of scaling: rapid discrimination of uncertain threat and safety. Reversible NAcc dysfunction, via optogenetic inhibition, specifically impaired rapid discrimination of uncertain threat and safety. The results reveal that the NAcc is essential to scale fear to degree of threat, and is a plausible source of dysfunction in stress and anxiety disorders.
Collapse
|
16
|
Kissorphin improves spatial memory and cognitive flexibility impairment induced by ethanol treatment in the Barnes maze task in rats. Behav Pharmacol 2020; 31:272-282. [DOI: 10.1097/fbp.0000000000000557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Abstract
Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.
Collapse
Affiliation(s)
- Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
18
|
Walker RA, Wright KM, Jhou TC, McDannald MA. The ventrolateral periaqueductal grey updates fear via positive prediction error. Eur J Neurosci 2019; 51:866-880. [PMID: 31376295 DOI: 10.1111/ejn.14536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Aversive, positive prediction error (+PE) provides a mechanism to update and increase future fear to uncertain threat predictors. The ventrolateral periaqueductal grey (vlPAG) has been offered as a neural locus for +PE computation. Yet, a causal demonstration of vlPAG +PE activity to update fear remains elusive. We devised a fear discrimination procedure in which a danger cue predicts shock deterministically and an uncertainty cue predicts shock probabilistically, requiring prediction errors to achieve an appropriate fear response. Recording vlPAG single-unit activity during fear discrimination in Long-Evans rats, we reveal activity related to shock is consistent with +PE and updates subsequent fear to uncertainty at the trial level. We further demonstrate that vlPAG inhibition during shock selectively decreases future fear to uncertainty, but not danger, and temporal emergence of this effect is consistent with single-unit activity. These findings provide causal evidence that vlPAG +PE is necessary for fear updating.
Collapse
Affiliation(s)
- Rachel A Walker
- Psychology Department, Boston College, Chestnut Hill, Massachusetts
| | | | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
19
|
Wright KM, McDannald MA. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. eLife 2019; 8:e45013. [PMID: 30843787 PMCID: PMC6435320 DOI: 10.7554/elife.45013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Faced with potential harm, individuals must estimate the probability of threat and initiate an appropriate fear response. In the prevailing view, threat probability estimates are relayed to the ventrolateral periaqueductal gray (vlPAG) to organize fear output. A straightforward prediction is that vlPAG single-unit activity reflects fear output, invariant of threat probability. We recorded vlPAG single-unit activity in male, Long Evans rats undergoing fear discrimination. Three 10 s auditory cues predicted unique foot shock probabilities: danger (p=1.00), uncertainty (p=0.375) and safety (p=0.00). Fear output was measured by suppression of reward seeking over the entire cue and in one-second cue intervals. Cued fear non-linearly scaled to threat probability and cue-responsive vlPAG single-units scaled their firing on one of two timescales: at onset or ramping toward shock delivery. VlPAG onset activity reflected threat probability, invariant of fear output, while ramping activity reflected both signals with threat probability prioritized.
Collapse
|