1
|
Costa FRC, Schietti J, Stark SC, Smith MN. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? THE NEW PHYTOLOGIST 2023; 237:714-733. [PMID: 35037253 DOI: 10.1111/nph.17914] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Tropical forest function is of global significance to climate change responses, and critically determined by water availability patterns. Groundwater is tightly related to soil water through the water table depth (WT), but historically neglected in ecological studies. Shallow WT forests (WT < 5 m) are underrepresented in forest research networks and absent in eddy flux measurements, although they represent c. 50% of the Amazon and are expected to respond differently to global-change-related droughts. We review WT patterns and consequences for plants, emerging results, and advance a conceptual model integrating environment and trait distributions to predict climate change effects. Shallow WT forests have a distinct species composition, with more resource-acquisitive and hydrologically vulnerable trees, shorter canopies and lower biomass than deep WT forests. During 'normal' climatic years, shallow WT forests have higher mortality and lower productivity than deep WT forests, but during moderate droughts mortality is buffered and productivity increases. However, during severe drought, shallow WT forests may be more sensitive due to shallow roots and drought-intolerant traits. Our evidence supports the hypothesis of neglected shallow WT forests being resilient to moderate drought, challenging the prevailing view of widespread negative effects of climate change on Amazonian forests that ignores WT gradients, but predicts they could collapse under very strong droughts.
Collapse
Affiliation(s)
- Flavia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av André Araújo 2223, Manaus, AM, 69067-375, Brazil
| | - Juliana Schietti
- Departmento de Biologia, Universidade Federal do Amazonas, Manaus, AM, 69067-005, Brazil
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Helmer EH, Kay S, Marcano-Vega H, Powers JS, Wood TE, Zhu X, Gwenzi D, Ruzycki TS. Multiscale predictors of small tree survival across a heterogeneous tropical landscape. PLoS One 2023; 18:e0280322. [PMID: 36920898 PMCID: PMC10016699 DOI: 10.1371/journal.pone.0280322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023] Open
Abstract
Uncertainties about controls on tree mortality make forest responses to land-use and climate change difficult to predict. We tracked biomass of tree functional groups in tropical forest inventories across Puerto Rico and the U.S. Virgin Islands, and with random forests we ranked 86 potential predictors of small tree survival (young or mature stems 2.5-12.6 cm diameter at breast height). Forests span dry to cloud forests, range in age, geology and past land use and experienced severe drought and storms. When excluding species as a predictor, top predictors are tree crown ratio and height, two to three species traits and stand to regional factors reflecting local disturbance and the system state (widespread recovery, drought, hurricanes). Native species, and species with denser wood, taller maximum height, or medium typical height survive longer, but short trees and species survive hurricanes better. Trees survive longer in older stands and with less disturbed canopies, harsher geoclimates (dry, edaphically dry, e.g., serpentine substrates, and highest-elevation cloud forest), or in intervals removed from hurricanes. Satellite image phenology and bands, even from past decades, are top predictors, being sensitive to vegetation type and disturbance. Covariation between stand-level species traits and geoclimate, disturbance and neighboring species types may explain why most neighbor variables, including introduced vs. native species, had low or no importance, despite univariate correlations with survival. As forests recovered from a hurricane in 1998 and earlier deforestation, small trees of introduced species, which on average have lighter wood, died at twice the rate of natives. After hurricanes in 2017, the total biomass of trees ≥12.7 cm dbh of the introduced species Spathodea campanulata spiked, suggesting that more frequent hurricanes might perpetuate this light-wooded species commonness. If hurricane recovery favors light-wooded species while drought favors others, climate change influences on forest composition and ecosystem services may depend on the frequency and severity of extreme climate events.
Collapse
Affiliation(s)
- Eileen H. Helmer
- USDA Forest Service, International Institute of Tropical Forestry, Río Piedras, Puerto Rico, United States of America
- * E-mail:
| | - Shannon Kay
- USDA Forest Service, Rocky Mountain Research Station Fort Collins, Fort Collins, Colorado, United States of America
| | - Humfredo Marcano-Vega
- USDA Forest Service, International Institute of Tropical Forestry, Río Piedras, Puerto Rico, United States of America
- USDA Forest Service, Southern Research Station, Asheville, NC, United States of America
| | - Jennifer S. Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Tana E. Wood
- USDA Forest Service, International Institute of Tropical Forestry, Río Piedras, Puerto Rico, United States of America
| | - Xiaolin Zhu
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - David Gwenzi
- Department of Environmental Science & Management, Cal Poly Humboldt State University, Arcata, California, United States of America
| | - Thomas S. Ruzycki
- Center for Environmental Management of Military Lands, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
3
|
Willson AM, Trugman AT, Powers JS, Smith-Martin CM, Medvigy D. Climate and hydraulic traits interact to set thresholds for liana viability. Nat Commun 2022; 13:3332. [PMID: 35680917 PMCID: PMC9184652 DOI: 10.1038/s41467-022-30993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Lianas, or woody vines, and trees dominate the canopy of tropical forests and comprise the majority of tropical aboveground carbon storage. These growth forms respond differently to contemporary variation in climate and resource availability, but their responses to future climate change are poorly understood because there are very few predictive ecosystem models representing lianas. We compile a database of liana functional traits (846 species) and use it to parameterize a mechanistic model of liana-tree competition. The substantial difference between liana and tree hydraulic conductivity represents a critical source of inter-growth form variation. Here, we show that lianas are many times more sensitive to drying atmospheric conditions than trees as a result of this trait difference. Further, we use our competition model and projections of tropical hydroclimate based on Representative Concentration Pathway 4.5 to show that lianas are more susceptible to reaching a hydraulic threshold for viability by 2100.
Collapse
Affiliation(s)
- Alyssa M Willson
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jennifer S Powers
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Plant and Microbial Ecology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Chris M Smith-Martin
- Department of Ecology, Evolution and Evolutionary Biology, Columbia University, New York, NY, 10027, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia 2021; 197:795-806. [PMID: 34613464 DOI: 10.1007/s00442-021-05048-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Humans are transforming the ecology of the Earth through rapid changes in land use and climate. These changes can affect tropical forest structure, dynamics and diversity. While numerous studies have focused on diversity metrics, other aspects of forest function, such as long-term biomass dynamics, are often less considered. We evaluated plant community structure change (i.e., abundance, diversity, composition, and aboveground biomass) in a 2.25 ha forest dynamics plot located within a ~ 365 ha reserve in southern Costa Rica. We censused, mapped and identified to species all plants ≥ 5 cm diameter at breast height (DBH) in three surveys spanning 2010-2020. While there were no changes in late-successional species diversity, there were marked changes in overall species composition and biomass. Abundance of large (≥ 40 cm DBH) old-growth dense-wooded trees (e.g., Lauraceae, Rosaceae) decreased dramatically (27%), leading to major biomass decline over time, possibly driven by recent and recurrent drought events. Gaps created by large trees were colonized by early-successional species, but these recruits did not make up for the biomass lost. Finally, stem abundance increased by 20%, driven by increasing dominance of Hampea appendiculata. While results suggest this reserve may effectively conserve overall plant diversity, this may mask other key shifts such as large aboveground biomass loss. If this pattern is pervasive across tropical forest reserves, it could hamper efforts to preserve forest structure and ecosystem services (e.g., carbon storage). Monitoring programs could better assess carbon trends in reserves over time simply by tracking large tree dynamics.
Collapse
|
5
|
High aboveground carbon stock of African tropical montane forests. Nature 2021; 596:536-542. [PMID: 34433947 DOI: 10.1038/s41586-021-03728-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.
Collapse
|
6
|
Muller-Landau HC, Cushman KC, Arroyo EE, Martinez Cano I, Anderson-Teixeira KJ, Backiel B. Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. THE NEW PHYTOLOGIST 2021; 229:3065-3087. [PMID: 33207007 DOI: 10.1111/nph.17084] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/12/2020] [Indexed: 05/25/2023]
Abstract
Tropical forests vary widely in biomass carbon (C) stocks and fluxes even after controlling for forest age. A mechanistic understanding of this variation is critical to accurately predicting responses to global change. We review empirical studies of spatial variation in tropical forest biomass, productivity and woody residence time, focusing on mature forests. Woody productivity and biomass decrease from wet to dry forests and with elevation. Within lowland forests, productivity and biomass increase with temperature in wet forests, but decrease with temperature where water becomes limiting. Woody productivity increases with soil fertility, whereas residence time decreases, and biomass responses are variable, consistent with an overall unimodal relationship. Areas with higher disturbance rates and intensities have lower woody residence time and biomass. These environmental gradients all involve both direct effects of changing environments on forest C fluxes and shifts in functional composition - including changing abundances of lianas - that substantially mitigate or exacerbate direct effects. Biogeographic realms differ significantly and importantly in productivity and biomass, even after controlling for climate and biogeochemistry, further demonstrating the importance of plant species composition. Capturing these patterns in global vegetation models requires better mechanistic representation of water and nutrient limitation, plant compositional shifts and tree mortality.
Collapse
Affiliation(s)
- Helene C Muller-Landau
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
| | - K C Cushman
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
| | - Eva E Arroyo
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Isabel Martinez Cano
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kristina J Anderson-Teixeira
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
- Conservation Ecology Center, Smithsonian Conservation Biology Institute and National Zoological Park, 1500 Remount Rd, Front Royal, VA, 22630, USA
| | - Bogumila Backiel
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
7
|
Petter G, Zotz G, Kreft H, Cabral JS. Agent-based modeling of the effects of forest dynamics, selective logging, and fragment size on epiphyte communities. Ecol Evol 2021; 11:2937-2951. [PMID: 33767848 PMCID: PMC7981202 DOI: 10.1002/ece3.7255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022] Open
Abstract
Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three-dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three-dimensional functional-structural forest model, allowing the study of forest-epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long-term dynamics of epiphyte communities.The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very-low-turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near-complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.Synthesis: The presented model is a first step toward studying the dynamic forest-epiphyte interactions in an agent-based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human-induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
Collapse
Affiliation(s)
- Gunnar Petter
- Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
- Department of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
| | - Gerhard Zotz
- Functional Ecology GroupInstitute of Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Smithsonian Tropical Research InstituteBalboaPanamá
| | - Holger Kreft
- Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land Use (CBL)University of GöttingenGermany
| | - Juliano Sarmento Cabral
- Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
- Ecosystem ModelingCenter for Computational and Theoretical Biology (CCTB)University of WürzburgWürzburgGermany
| |
Collapse
|
8
|
Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc Natl Acad Sci U S A 2020; 117:33358-33364. [PMID: 33318167 DOI: 10.1073/pnas.2003873117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forests are the largest terrestrial biomass pool, with over half of this biomass stored in the highly productive tropical lowland forests. The future evolution of forest biomass depends critically on the response of tree longevity and growth rates to future climate. We present an analysis of the variation in tree longevity and growth rate using tree-ring data of 3,343 populations and 438 tree species and assess how climate controls growth and tree longevity across world biomes. Tropical trees grow, on average, two times faster compared to trees from temperate and boreal biomes and live significantly shorter, on average (186 ± 138 y compared to 322 ± 201 y outside the tropics). At the global scale, growth rates and longevity covary strongly with temperature. Within the warm tropical lowlands, where broadleaf species dominate the vegetation, we find consistent decreases in tree longevity with increasing aridity, as well as a pronounced reduction in longevity above mean annual temperatures of 25.4 °C. These independent effects of temperature and water availability on tree longevity in the tropics are consistent with theoretical predictions of increases in evaporative demands at the leaf level under a warmer and drier climate and could explain observed increases in tree mortality in tropical forests, including the Amazon, and shifts in forest composition in western Africa. Our results suggest that conditions supporting only lower tree longevity in the tropical lowlands are likely to expand under future drier and especially warmer climates.
Collapse
|
9
|
Nabe‐Nielsen J, Valencia R. Canopy structure and forest understory conditions in a wet Amazonian forest—No change over the last 20 years. Biotropica 2020. [DOI: 10.1111/btp.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Renato Valencia
- Laboratorio de Ecología de Plantas Escuela de Ciencias Biológicas Pontificia Universidad Católica del Ecuador Quito Ecuador
| |
Collapse
|
10
|
Blundo C, Malizia A, Malizia LR, Lichstein JW. Forest biomass stocks and dynamics across the subtropical Andes. Biotropica 2020. [DOI: 10.1111/btp.12858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cecilia Blundo
- Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Tucumán Argentina
| | - Agustina Malizia
- Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Tucumán Argentina
| | - Lucio R. Malizia
- Facultad de Ciencias Agrarias Centro de Estudios Territoriales Ambientales y Sociales Universidad Nacional de Jujuy San Salvador de Jujuy, Jujuy Argentina
| | | |
Collapse
|
11
|
Martínez Cano I, Shevliakova E, Malyshev S, Wright SJ, Detto M, Pacala SW, Muller-Landau HC. Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA-TV). GLOBAL CHANGE BIOLOGY 2020; 26:4478-4494. [PMID: 32463934 DOI: 10.1111/gcb.15188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA-TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA-TV drew on extensive datasets on tropical tree traits and long-term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade-tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand-level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand-level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA-TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.
Collapse
Affiliation(s)
- Isabel Martínez Cano
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Sergey Malyshev
- NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | | | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
12
|
Boyle WA, Shogren EH, Brawn JD. Hygric Niches for Tropical Endotherms. Trends Ecol Evol 2020; 35:938-952. [PMID: 32693967 DOI: 10.1016/j.tree.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Biotic selective pressures dominate explanations for the evolutionary ecology of tropical endotherms. Yet, abiotic factors, principally precipitation regimes, shape biogeographical and phenological patterns in tropical regions. Despite its importance, we lack a framework for understanding when, why, and how rain affects endotherms. Here, we review how tropical birds and mammals respond to rain at individual, population, and community levels, and propose a conceptual framework to interpret divergent responses. Diverse direct and indirect mechanisms underlie responses to rainfall, including physiological, top-down, and food-related drivers. Our framework constitutes a roadmap for the empirical studies required to understand the consequences of rainfall variability. Identifying the patterns and mechanisms underpinning responses to temporal variation in precipitation is crucial to anticipate consequences of anthropogenic climate change.
Collapse
Affiliation(s)
- W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Elsie H Shogren
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. FORESTS 2019. [DOI: 10.3390/f10050443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Central and South America tropical dry forest (TDF) is a water-limited biome with a high number of endemic species and numerous ecosystem services which has experienced a boom in research in the last decade. Although the number of case studies across these seasonal, water-limited, tropical forests has increased, there has not been a comprehensive review to assess the physiological variability of this biome across the continent and assess how these forests respond to climatic variables. Additionally, understanding forest change and resilience under climatic variability, currently and in the future, is essential for assessing the future extent and health of forests in the future. Therefore, the objective of this paper is to provide a literature review on the variability of TDF diversity and structure across a latitudinal gradient and to assess how these components respond to differences in climatic variables across this geographic area. We first assess the current state of understanding of the structure, biomass, phenological cycles, and successional stages across the latitudinal gradient. We subsequently review the response of these five areas to differences in precipitation, temperature, and extreme weather events, such as droughts and hurricanes. We find that there is a range of adaptability to precipitation, with many areas exhibiting drought tolerance except under the most extreme circumstances, while being susceptible to damage from increased extreme precipitation events. Finally, we use this climatic response to provide a commentary on the projected resilience of TDFs under climatic changes, finding a likelihood of resilience under drying scenarios, although model projections do not agree on the magnitude or direction of precipitation change. This review of quantitative studies will provide more concrete details on the current diversity that encompasses the TDF, the natural climatic ranges under which this ecosystem can survive and thrive, and can help inform future forest management practices under climate change scenarios.
Collapse
|