1
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hovd AMK, Nayar S, Smith CG, Kanapathippillai P, Iannizzotto V, Barone F, Fenton KA, Pedersen HL. Podoplanin expressing macrophages and their involvement in tertiary lymphoid structures in mouse models of Sjögren's disease. Front Immunol 2024; 15:1455238. [PMID: 39355243 PMCID: PMC11442383 DOI: 10.3389/fimmu.2024.1455238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.
Collapse
Affiliation(s)
- Aud-Malin Karlsson Hovd
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte G. Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Premasany Kanapathippillai
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Valentina Iannizzotto
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Okojie AK, Uweru JO, Coburn MA, Li S, Cao-Dao VD, Eyo UB. Distinguishing the effects of systemic CSF1R inhibition by PLX3397 on microglia and peripheral immune cells. J Neuroinflammation 2023; 20:242. [PMID: 37865779 PMCID: PMC10590528 DOI: 10.1186/s12974-023-02924-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are derived from the yolk sac and populate the brain during development. Once microglia migrate to the CNS, they are self-renewing and require CSF1R signaling for their maintenance. Pexidartinib (PLX3397, PLX), a small molecule inhibitor of the CSF1R, has been shown to effectively deplete microglia since microglial maintenance is CSF1R-dependent. There have, however, been several conflicting reports that have shown the potential off-target effects of PLX on peripheral immune cells particularly those of lymphoid origin. Given this controversy in the use of the PLX family of drugs, it has become important to ascertain to what extent PLX affects the peripheral immune profile in lymphoid (spleen, and bone marrow) and non-lymphoid (kidney, lungs, and heart) organs. PLX3397 chow treatment at 660 mg/kg for 7 days significantly reduced CD45+ macrophages, CX3CR1-GFP cells, CD11b+CD45intermediate cells, and P2RY12 expression in the brain. However, there were minimal effects on peripheral immune cells from both lymphoid and non-lymphoid organs except in the heart where there was a significant decrease in CD3+ cells, inflammatory and patrolling monocytes, and CD11b+Ly6G+ neutrophils. We then stimulated the immune system with 1 mg/kg of LPS which resulted in a significant reduction in the number of innate immune cells. In this context, PLX did not alter the cytokine profile in the serum and the brain of naïve mice but did so in the LPS-stimulated group resulting in a significant reduction in TNFα, IL-1α, IFN-γ and IL-1β. Furthermore, PLX did not alter locomotor activity in the open field test suggesting that microglia do not contribute to LPS-induced sickness behavior. Our results provide an assessment of immune cell populations with PLX3397 treatment on brain, lymphoid and non-lymphoid organs without and during LPS treatment that can serve as a resource for understanding consequences of such approaches.
Collapse
Affiliation(s)
- Akhabue K Okojie
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Joseph O Uweru
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Morgan A Coburn
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vivian D Cao-Dao
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Snelgrove SL, Susanto O, Yeung L, Hall P, Norman MU, Corbett AJ, Kitching AR, Hickey MJ. T-cell receptor αβ + double-negative T cells in the kidney are predominantly extravascular and increase in abundance in response to ischemia-reperfusion injury. Immunol Cell Biol 2023; 101:49-64. [PMID: 36222375 PMCID: PMC10953373 DOI: 10.1111/imcb.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023]
Abstract
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Olivia Susanto
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
- Departments of Nephrology and Paediatric NephrologyMonash Medical CentreClaytonVICAustralia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| |
Collapse
|
5
|
Ishii T, Mimura I, Nagaoka K, Naito A, Sugasawa T, Kuroda R, Yamada D, Kanki Y, Kume H, Ushiku T, Kakimi K, Tanaka T, Nangaku M. Effect of M2-like macrophages of the injured-kidney cortex on kidney cancer progression. Cell Death Dis 2022; 8:480. [PMID: 36470862 PMCID: PMC9722672 DOI: 10.1038/s41420-022-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects kidney cancer patients' mortality. However, the underlying mechanism remains unknown. M2-like macrophages have pro-tumor functions, also exist in injured kidney, and promote kidney fibrosis. Thus, it is suspected that M2-like macrophages in injured kidney induce the pro-tumor microenvironment leading to kidney cancer progression. We found that M2-like macrophages present in the injured kidney promoted kidney cancer progression and induced resistance to anti-PD1 antibody through its pro-tumor function and inhibition of CD8+ T cell infiltration. RNA-seq revealed Slc7a11 was upregulated in M2-like macrophages. Inhibition of Slc7a11 with sulfasalazine inhibited the pro-tumor function of M2-like macrophages and synergized with anti-PD1 antibody. Moreover, SLC7A11-positive macrophages were associated with poor prognosis among kidney cancer patients. Collectively, this study dissects the characteristic microenvironment in the injured kidney that contributed to kidney cancer progression and anti-PD1 antibody resistance. This insight offers promising combination therapy with anti-PD1 antibody and macrophage targeted therapy.
Collapse
Affiliation(s)
- Taisuke Ishii
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Imari Mimura
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Koji Nagaoka
- grid.412708.80000 0004 1764 7572Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Akihiro Naito
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Takehito Sugasawa
- grid.20515.330000 0001 2369 4728Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577 Japan
| | - Ryohei Kuroda
- grid.26999.3d0000 0001 2151 536XDepartment of Pathology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Daisuke Yamada
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Yasuharu Kanki
- grid.20515.330000 0001 2369 4728Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577 Japan
| | - Haruki Kume
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Tetsuo Ushiku
- grid.26999.3d0000 0001 2151 536XDepartment of Pathology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Kazuhiro Kakimi
- grid.412708.80000 0004 1764 7572Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Tetsuhiro Tanaka
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan ,grid.69566.3a0000 0001 2248 6943Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 9808574 Japan
| | - Masaomi Nangaku
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| |
Collapse
|
6
|
Hosseini S, Moody SC, Fietz D, Indumathy S, Schuppe HC, Hedger MP, Loveland KL. The changing landscape of immune cells in the fetal mouse testis. Histochem Cell Biol 2022; 158:345-368. [PMID: 35829816 PMCID: PMC9512757 DOI: 10.1007/s00418-022-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Fetal testis growth involves cell influx and extensive remodeling. Immediately after sex determination in mouse, macrophages enable normal cord formation and removal of inappropriately positioned cells. This study provides new information about macrophages and other immune cells after cord formation in fetal testes, including their density, distribution, and close cellular contacts. C57BL6J mouse testes from embryonic day (E) 13.5 to birth (post-natal day 0; PND0), were examined using immunofluorescence, immunohistochemistry, and RT-qPCR to identify macrophages (F4/80, CD206, MHCII), T cells (CD3), granulocytes/neutrophils (Ly6G), and germ cells (DDX4). F4/80+ cells were the most abundant, comprising 90% of CD45+ cells at E13.5 and declining to 65% at PND0. Changes in size, shape, and markers (CD206 and MHCII) documented during this interval align with the understanding that F4/80+ cells have different origins during embryonic life. CD3+ cells and F4/80−/MHCII+ were absent to rare until PND0. Ly6G+ cells were scarce at E13.5 but increased robustly by PND0 to represent half of the CD45+ cells. These immunofluorescence data were in accord with transcript analysis, which showed that immune marker mRNAs increased with testis age. F4/80+ and Ly6G+ cells were frequently inside cords adjacent to germ cells at E13.5 and E15.5. F4/80+ cells were often in clusters next to other immune cells. Macrophages inside cords at E13.5 and E15.5 (F4/80Hi/CD206+) were different from macrophages at PND0 (F4/80Dim/CD206−), indicating that they have distinct origins. This histological quantification coupled with transcript information identifies new cellular interactions for immune cells in fetal testis morphogenesis, and highlights new avenues for studies of their functional significance.
Collapse
Affiliation(s)
- Samira Hosseini
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Sarah C Moody
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sivanjah Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia. .,Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
7
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, Eitner F, Becker MS. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep 2021; 11:13251. [PMID: 34168267 PMCID: PMC8225656 DOI: 10.1038/s41598-021-92784-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Mononuclear phagocytes (MNPs) participate in inflammation and repair after kidney injury, reflecting their complex nature. Dissection into refined functional subunits has been challenging and would benefit understanding of renal pathologies. Flow cytometric approaches are limited to classifications of either different MNP subsets or functional state. We sought to combine these two dimensions in one protocol that considers functional heterogeneity in each MNP subset. We identified five distinct renal MNP subsets based on a previously described strategy. In vitro polarization of bone marrow-derived macrophages (BMDM) into M1- and M2-like cells suggested functional distinction of CD86 + MHCII + CD206- and CD206 + cells. Combination of both distinction methods identified CD86 + MHCII + CD206- and CD206 + cells in all five MNP subsets, revealing their heterologous nature. Our approach revealed that MNP composition and their functional segmentation varied between different mouse models of kidney injury and, moreover, was dynamically regulated in a time-dependent manner. CD206 + cells from three analyzed MNP subsets had a higher ex vivo phagocytic capacity than CD86 + MHCII + CD206- counterparts, indicating functional uniqueness of each subset. In conclusion, our novel flow cytometric approach refines insights into renal MNP heterogeneity and therefore could benefit mechanistic understanding of renal pathology.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Ilona Hulsmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Svenja Schwafertz
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Jasmin Zgrajek
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Frank Eitner
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Research and Development, Pharmaceuticals, Kidney Diseases, Bayer AG, Building 0500, 214, 42113, Wuppertal, Germany.
| |
Collapse
|
9
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
Battistone MA, Mendelsohn AC, Spallanzani RG, Allegretti AS, Liberman RN, Sesma J, Kalim S, Wall SM, Bonventre JV, Lazarowski ER, Brown D, Breton S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest 2020; 130:3734-3749. [PMID: 32287042 PMCID: PMC7324186 DOI: 10.1172/jci134791] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery, or exposure to nephrotoxins. Here, using a murine renal ischemia/reperfusion injury (IRI) model, we show that intercalated cells (ICs) rapidly adopted a proinflammatory phenotype after IRI. Wwe demonstrate that during the early phase of AKI either blockade of the proinflammatory P2Y14 receptor located on the apical membrane of ICs or ablation of the gene encoding the P2Y14 receptor in ICs (a) inhibited IRI-induced increase of chemokine expression in ICs, (b) reduced neutrophil and monocyte renal infiltration, (c) reduced the extent of kidney dysfunction, and (d) attenuated proximal tubule damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand UDP-glucose (UDP-Glc) was higher in urine samples from intensive care unit patients who developed AKI compared with patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic AKI.
Collapse
Affiliation(s)
- Maria Agustina Battistone
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra C. Mendelsohn
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rachel N. Liberman
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliana Sesma
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Eduardo R. Lazarowski
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sylvie Breton
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Aiello S, Podestà MA, Rodriguez-Ordonez PY, Pezzuto F, Azzollini N, Solini S, Carrara C, Todeschini M, Casiraghi F, Noris M, Remuzzi G, Benigni A. Transplantation-Induced Ischemia-Reperfusion Injury Modulates Antigen Presentation by Donor Renal CD11c +F4/80 + Macrophages through IL-1R8 Regulation. J Am Soc Nephrol 2020; 31:517-531. [PMID: 31988271 DOI: 10.1681/asn.2019080778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In donor kidneys subjected to ischemia-reperfusion injury during kidney transplant, phagocytes coexpressing the F4/80 and CD11c molecules mediate proinflammatory responses and trigger adaptive immunity in transplantation through antigen presentation. After injury, however, resident renal macrophages coexpressing these surface markers acquire a proreparative phenotype, which is pivotal in controlling inflammation and fibrosis. No data are currently available regarding the effects of transplant-induced ischemia-reperfusion injury on the ability of donor-derived resident renal macrophages to act as professional antigen-presenting cells. METHODS We evaluated the phenotype and function of intragraft CD11c+F4/80+ renal macrophages after cold ischemia. We also assessed the modifications of donor renal macrophages after reversible ischemia-reperfusion injury in a mouse model of congeneic renal transplantation. To investigate the role played by IL-1R8, we conducted in vitro and in vivo studies comparing cells and grafts from wild-type and IL-R8-deficient donors. RESULTS Cold ischemia and reversible ischemia-reperfusion injury dampened antigen presentation by renal macrophages, skewed their polarization toward the M2 phenotype, and increased surface expression of IL-1R8, diminishing activation mediated by toll-like receptor 4. Ischemic IL-1R8-deficient donor renal macrophages acquired an M1 phenotype, effectively induced IFNγ and IL-17 responses, and failed to orchestrate tissue repair, resulting in severe graft fibrosis and aberrant humoral immune responses. CONCLUSIONS IL-1R8 is a key regulator of donor renal macrophage functions after ischemia-reperfusion injury, crucial to guiding the phenotype and antigen-presenting role of these cells. It may therefore represent an intriguing pathway to explore with respect to modulating responses against autoantigens and alloantigens after kidney transplant.
Collapse
Affiliation(s)
- Sistiana Aiello
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Pamela Y Rodriguez-Ordonez
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Francesca Pezzuto
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Nadia Azzollini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Samantha Solini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Camillo Carrara
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Marina Noris
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| |
Collapse
|
12
|
Lee SA, Noel S, Kurzhagen JT, Sadasivam M, Pierorazio PM, Arend LJ, Hamad AR, Rabb H. CD4 + T Cell-Derived NGAL Modifies the Outcome of Ischemic Acute Kidney Injury. THE JOURNAL OF IMMUNOLOGY 2019; 204:586-595. [PMID: 31889023 DOI: 10.4049/jimmunol.1900677] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
CD4+ T cells mediate the pathogenesis of ischemic and nephrotoxic acute kidney injury (AKI). However, the underlying mechanisms of CD4+ T cell-mediated pathogenesis are largely unknown. We therefore conducted unbiased RNA-sequencing to discover novel mechanistic pathways of kidney CD4+ T cells after ischemia compared with normal mouse kidney. Unexpectedly, the lipocalin-2 (Lcn2) gene, which encodes neutrophil gelatinase-associated lipocalin (NGAL) had the highest fold increase (∼60). The NGAL increase in CD4+ T cells during AKI was confirmed at the mRNA level with quantitative real-time PCR and at the protein level with ELISA. NGAL is a potential biomarker for the early detection of AKI and has multiple potential biological functions. However, the role of NGAL produced by CD4+ T cells is not known. We found that ischemic AKI in NGAL knockout (KO) mice had worse renal outcomes compared with wild-type (WT) mice. Adoptive transfer of NGAL-deficient CD4+ T cells from NGAL KO mice into CD4 KO or WT mice led to worse renal function than transfer of WT CD4+ T cells. In vitro-simulated ischemia/reperfusion showed that NGAL-deficient CD4+ T cells express higher levels of IFN-γ mRNA compared with WT CD4+ T cells. In vitro differentiation of naive CD4+ T cells to Th17, Th1, and Th2 cells led to significant increase in Lcn2 expression. Human kidney CD4+ T cell NGAL also increased significantly after ischemia. These results demonstrate an important role for CD4+ T cell NGAL as a mechanism by which CD4+ T cells mediate AKI and extend the importance of NGAL in AKI beyond diagnostics.
Collapse
Affiliation(s)
- Sul A Lee
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Johanna T Kurzhagen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Phillip M Pierorazio
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Abdel R Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| |
Collapse
|
13
|
Nemenoff RA, Kleczko EK, Hopp K. Renal double negative T cells: unconventional cells in search of a function. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S342. [PMID: 32016060 PMCID: PMC6976428 DOI: 10.21037/atm.2019.09.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Kleczko
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Yang Q, Wang Y, Pei G, Deng X, Jiang H, Wu J, Zhou C, Guo Y, Yao Y, Zeng R, Xu G. Bone marrow-derived Ly6C - macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis 2019; 10:291. [PMID: 30926787 PMCID: PMC6440948 DOI: 10.1038/s41419-019-1531-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Macrophages play an important role in renal injury and repair after acute kidney injury (AKI) and the subsequent chronic kidney disease (CKD) that often results. However, as macrophages have a high degree of plasticity and heterogeneity, the function(s) of macrophage subtypes in AKI-to-CKD progression are not fully understood. Here, we focused on Ly6C− macrophages, which are derived from the embryonic yolk sac and post-development become resident in the kidneys. We found that C–C chemokine receptor type 2 (CCR2) deficiency, which blocks the migration of Ly6C+ macrophages from the bone marrow to the sites of injury, alleviated ischemia-induced AKI in mice. Unexpectedly, though, CCR2 deficiency worsened the subsequent renal fibrosis, which was marked by notable intra-renal infiltration of Ly6C− macrophages. These Ly6C− macrophages were greater in number in both the acute and chronic phases after ischemia reperfusion (I/R) in kidneys of wild type (WT) mice, and we showed them to be derived from the bone marrow by bone marrow chimerism. Clodronate Liposomes (CLs)-mediated depletion of renal Ly6C− macrophages in CCR2−/− mice or in WT mice after I/R alleviated the renal injury and fibrosis. On the contrary, adoptive transfer of Ly6C− macrophages from injured kidneys of WT mice into immune-deficient mice was sufficient to induce renal injury and fibrosis. Transcriptome sequencing of Ly6C− macrophages from injured kidneys revealed that they secreted various cytokines and growth factors, which were associated with the transdifferentiation of fibroblasts into myofibroblasts. This transdifferentiation effect was further supported by in vitro studies showing that Ly6C− macrophages induced the secretion of extracellular matrix proteins from co-cultured fibroblasts. In conclusion, the presence of bone marrow-derived Ly6C− macrophages after ischemia induces AKI and worsens subsequent CKD.
Collapse
Affiliation(s)
- Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hongyang Jiang
- Division of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jianliang Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Cheng Zhou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yi Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Mylonas KJ, Anderson J, Sheldrake TA, Hesketh EE, Richards JA, Ferenbach DA, Kluth DC, Savill J, Hughes J. Granulocyte macrophage-colony stimulating factor: A key modulator of renal mononuclear phagocyte plasticity. Immunobiology 2018; 224:60-74. [PMID: 30415915 PMCID: PMC6401212 DOI: 10.1016/j.imbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Macrophage-colony stimulating factor (M-CSF) and granulocyte macrophage-colony stimulating factor (GM-CSF) play key roles in the differentiation of macrophages and dendritic cells (DCs). We examined the effect of treatment with M-CSF-containing macrophage medium or GM-CSF-containing DC medium upon the phenotype of murine bone marrow-derived macrophages and DCs. Culture of macrophages for 5 days in DC medium reduced F4/80 expression and increased CD11c expression with cells effectively stimulating T cell proliferation in a mixed lymphocyte reaction. DC medium treatment of macrophages significantly reduced phagocytosis of both apoptotic cells and latex beads and strongly induced the expression of the chemokine receptor CCR7 known to be involved in DC trafficking to lymph nodes. Lysates of obstructed murine kidneys expressed both M-CSF and GM-CSF though M-CSF expression was dominant (M-CSF:GM-CSF ratio ∼30:1). However, combination treatment with both M-CSF and GM-CSF (ratio 30:1) indicated that small amounts of GM-CSF skewed macrophages towards a DC-like phenotype. To determine whether macrophage phenotype might be modulated in vivo we tracked CD45.1+ bone marrow-derived macrophages intravenously administered to CD45.2+ mice with unilateral ureteric obstruction. Flow cytometry of enzyme dissociated kidneys harvested 3 days later indicated CD11c and MHC Class II upregulation by adoptively transferred CD45.1+ cells with CD45.1+ cells evident in draining renal lymph nodes. Our data suggests that GM-CSF modulates mononuclear phagocyte plasticity, which likely promotes resolution of injury and healing in the injured kidney.
Collapse
Affiliation(s)
- Katie J Mylonas
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom.
| | - Jennifer Anderson
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Tara A Sheldrake
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Emily E Hesketh
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - James A Richards
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - David A Ferenbach
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - David C Kluth
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - John Savill
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Jeremy Hughes
- The University of Edinburgh/ Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent Edinburgh EH16 4TJ, Scotland, United Kingdom
| |
Collapse
|
16
|
Puranik AS, Leaf IA, Jensen MA, Hedayat AF, Saad A, Kim KW, Saadalla AM, Woollard JR, Kashyap S, Textor SC, Grande JP, Lerman A, Simari RD, Randolph GJ, Duffield JS, Lerman LO. Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Sci Rep 2018; 8:13948. [PMID: 30224726 PMCID: PMC6141464 DOI: 10.1038/s41598-018-31887-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.
Collapse
Affiliation(s)
- Amrutesh S Puranik
- The Divisions of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | | | | | - Ahmad F Hedayat
- The Divisions of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ahmad Saad
- The Divisions of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ki-Wook Kim
- Department of Pathology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - John R Woollard
- The Divisions of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sonu Kashyap
- Departments of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph P Grande
- Departments of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Departments of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Robert D Simari
- University of Kansas, School of Medicine, Kansas City, KS, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeremy S Duffield
- University of Washington, Seattle, WA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Lilach O Lerman
- The Divisions of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Correction: Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells". PLoS One 2018; 13:e0200056. [PMID: 29949637 PMCID: PMC6021095 DOI: 10.1371/journal.pone.0200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0198608.].
Collapse
|