1
|
Jairoce C, Macià D, Torres-Yaguana JP, Mayer L, Vidal M, Santano R, Hurtado-Guerrero R, Reiter K, Narum DL, Lopez-Gutierrez B, Hamerly T, Sacarlal J, Aguilar R, Dinglasan RR, Moncunill G, Izquierdo L, Dobaño C. RTS,S/AS02A Malaria Vaccine-Induced IgG Responses Equally Recognize Native-Like Fucosylated and Nonfucosylated Plasmodium falciparum Circumsporozoite Proteins. J Infect Dis 2024; 229:795-799. [PMID: 37889513 PMCID: PMC11491836 DOI: 10.1093/infdis/jiad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.
Collapse
Affiliation(s)
- Chenjerai Jairoce
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Dídac Macià
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jorge P Torres-Yaguana
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Leonie Mayer
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rebeca Santano
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Borja Lopez-Gutierrez
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Timothy Hamerly
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
2
|
Aguilar R, Cruz A, Jiménez A, Almuedo A, Saumell CR, Lopez MG, Gasch O, Falcó G, Jiménez-Lozano A, Martínez-Perez A, Sanchez-Collado C, Tedesco A, López MC, Pinazo MJ, Leonel T, Bisoffi Z, Färnert A, Dobaño C, Requena-Méndez A. Evaluation of the accuracy of a multi-infection screening test based on a multiplex immunoassay targeting imported diseases common in migrant populations. Travel Med Infect Dis 2024; 57:102681. [PMID: 38141899 DOI: 10.1016/j.tmaid.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND We aimed to evaluate the performance of a novel multiplex serological assay, able to simultaneously detect IgG of six infections, as a screening tool for imported diseases in migrants. METHODS Six panels of 40 (n = 240) anonymized serum samples with confirmed infections were used as positive controls to assess the multiplex assay's sensitivity. One panel of 40 sera from non-infected subjects was used to estimate the seropositivity cutoffs, and 32 non-infected sera were used as negative controls to estimate each serology's sensitivity and specificity. The multi-infection screening test was validated in a prospective cohort of 48 migrants from endemic areas. The sensitivity of the Luminex assay was calculated as the proportion of positive results over all positive samples identified by reference tests. The specificity was calculated using 32 negative samples. Uncertainty was quantified with 95 % confidence intervals using receiver operating characteristic analyses. RESULTS The sensitivity/specificity were 100 %/100 % for HIV (gp41 antigen), 97.5 %/100 % for Hepatitis B virus (HBV-core antigen), 100 %/100 % for Hepatitis C virus (HCV-core antigen), 92.5 %/90.6 % for strongyloidiasis [31-kDa recombinant antigen (NIE)], 97.5 %/100 % for schistosomiasis (combined serpin Schistosoma mansoni and S.haematobium antigens) and 95 %/90.6 % for Chagas disease [combined Trypanosoma cruzi kinetoplastid membrane protein-11 (KMP11) and paraflagellar rod proteins 2 (PFR2) antigens]. In the migrant cohort, antibody response to the combination of the T.cruzi antigens correctly identified 100 % individuals, whereas HBV-core antigen correctly identified 91.7 % and Strongyloides-NIE antigen 86.4 %. CONCLUSIONS We developed a new, robust and accurate 8-plex Luminex assay that could facilitate the implementation of screening programmes targeting migrant populations.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain
| | - Angeline Cruz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Avenida Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Alex Almuedo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain
| | - Carme Roca Saumell
- Centre d'Atenció Primaria El Clot, Institut Català de la Salut (ICS), Carrer Concilio de Trento 25, 08018, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Carrer Casanova, 143, 08036, Barcelona, Spain
| | - Marina Gigante Lopez
- Centre d'Atenció Primaria Center Numància, Institut Català de la Salut (ICS), Carrer Numància 23, 08029, Barcelona, Spain
| | - Oriol Gasch
- Infectious Diseases Department, Hospital Universitari Parc Taulí. Institut d'Investigació i Innovació Parc Taulí. Universitat Autònoma de Barcelona, Parc Taulí, 1, 08208, Sabadell-Barcelona, Spain
| | - Gemma Falcó
- Centre d'Atenció Primaria Sant Miquel, Institut Català de la Salut (ICS), Carrer Francesc Macià i Llussà, 154, 08401, Granollers-Barcelona, Spain
| | - Ana Jiménez-Lozano
- Centre d'Atenció Primaria Adrià 5A Marc Aureli, Institut Català de la Salut (ICS), Carrer Vallmajor, 34, 08021, Barcelona, Spain
| | - Angela Martínez-Perez
- Centre d'Atenció Primaria Casanova. Consorci d'Atenció Primària de Salut de l'Eixample (CAPSBE) Casanova. Carrer Rosselló 161, 08036, Barcelona, Spain
| | - Consol Sanchez-Collado
- Centre d'Atenció Primaria Torelló, Institut Català de la Salut (ICS), Avenida Pompeu Fabra, 8, 08570, Torelló-Barcelona, Spain
| | - Andrea Tedesco
- Department of Infectious Tropical diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024, Negrar di Valpolicella, Italy
| | - Manuel Carlos López
- Spanish National Research Council (IPBLN-CSIC), Avenida del Conocimiento 17, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - María Jesús Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain; Biomedical Research Networking Center (CIBER) of Infectious Diseases, Carlos III Health Institute (CIBERINFEC, ISCIII), Carrer Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Drugs for Neglected Diseases Iniciative (DNDi), Switzerland
| | - Thais Leonel
- Liver Unit, Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Biomedical Research Networking Center of Hepatic and Digestive Diseases (CIBEREHD), Carrer Villarroel, 170, 08036, Barcelona, Spain
| | - Zeno Bisoffi
- Department of Infectious Tropical diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024, Negrar di Valpolicella, Italy
| | - Anna Färnert
- Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 17177, Solna-Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Solnavägen 1, 17177, Solna-Stockholm, Sweden
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain; Biomedical Research Networking Center (CIBER) of Infectious Diseases, Carlos III Health Institute (CIBERINFEC, ISCIII), Carrer Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain; Biomedical Research Networking Center (CIBER) of Infectious Diseases, Carlos III Health Institute (CIBERINFEC, ISCIII), Carrer Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 17177, Solna-Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Solnavägen 1, 17177, Solna-Stockholm, Sweden.
| |
Collapse
|
3
|
Chan Y, Martin D, Mace KE, Jean SE, Stresman G, Drakeley C, Chang MA, Lemoine JF, Udhayakumar V, Lammie PJ, Priest JW, Rogier EW. Multiplex Serology for Measurement of IgG Antibodies Against Eleven Infectious Diseases in a National Serosurvey: Haiti 2014-2015. Front Public Health 2022; 10:897013. [PMID: 35757611 PMCID: PMC9218545 DOI: 10.3389/fpubh.2022.897013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Integrated surveillance for multiple diseases can be an efficient use of resources and advantageous for national public health programs. Detection of IgG antibodies typically indicates previous exposure to a pathogen but can potentially also serve to assess active infection status. Serological multiplex bead assays have recently been developed to simultaneously evaluate exposure to multiple antigenic targets. Haiti is an island nation in the Caribbean region with multiple endemic infectious diseases, many of which have a paucity of data for population-level prevalence or exposure. Methods A nationwide serosurvey occurred in Haiti from December 2014 to February 2015. Filter paper blood samples (n = 4,438) were collected from participants in 117 locations and assayed for IgG antibodies on a multiplex bead assay containing 15 different antigens from 11 pathogens: Plasmodium falciparum, Toxoplasma gondii, lymphatic filariasis roundworms, Strongyloides stercoralis, chikungunya virus, dengue virus, Chlamydia trachomatis, Treponema pallidum, enterotoxigenic Escherichia coli, Entamoeba histolytica, and Cryptosporidium parvum. Results Different proportions of the Haiti study population were IgG seropositive to the different targets, with antigens from T. gondii, C. parvum, dengue virus, chikungunya virus, and C. trachomatis showing the highest rates of seroprevalence. Antibody responses to T. pallidum and lymphatic filariasis were the lowest, with <5% of all samples IgG seropositive to antigens from these pathogens. Clear trends of increasing seropositivity and IgG levels with age were seen for all antigens except those from chikungunya virus and E. histolytica. Parametric models were able to estimate the rate of seroconversion and IgG acquisition per year for residents of Haiti. Conclusions Multiplex serological assays can provide a wealth of information about population exposure to different infectious diseases. This current Haitian study included IgG targets for arboviral, parasitic, and bacterial infectious diseases representing multiple different modes of host transmission. Some of these infectious diseases had a paucity or complete absence of published serological studies in Haiti. Clear trends of disease burden with respect to age and location in Haiti can be used by national programs and partners for follow-up studies, resource allocation, and intervention planning.
Collapse
Affiliation(s)
- YuYen Chan
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Diana Martin
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kimberly E Mace
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Samuel E Jean
- Population Services International/Organization Haïtienne de Marketing Social Pour la Santé, Port-au-Prince, Haiti
| | - Gillian Stresman
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michelle A Chang
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jean F Lemoine
- Programme National de Contrôle de la Malaria/MSPP, Port-au-Prince, Haiti
| | - Venkatachalam Udhayakumar
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick J Lammie
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eric William Rogier
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
4
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Manaca MN, Jairoce C, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Cova M, Angov E, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. Reduced Placental Transfer of Antibodies Against a Wide Range of Microbial and Vaccine Antigens in HIV-Infected Women in Mozambique. Front Immunol 2021; 12:614246. [PMID: 33746958 PMCID: PMC7965965 DOI: 10.3389/fimmu.2021.614246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Transplacental transfer of antibodies is essential for conferring protection in newborns against infectious diseases. We assessed the impact of different factors, including gestational age and maternal infections such as HIV and malaria, on the efficiency of cord blood levels and placental transfer of IgG subclasses. We measured total IgG and IgG subclasses by quantitative suspension array technology against 14 pathogens and vaccine antigens, including targets of maternal immunization, in 341 delivering HIV-uninfected and HIV-infected mother-infant pairs from southern Mozambique. We analyzed the association of maternal HIV infection, Plasmodium falciparum exposure, maternal variables and pregnancy outcomes on cord antibody levels and transplacental transfer. Our results show that maternal antibody levels were the main determinant of cord antibody levels. Univariable and multivariable analysis showed that HIV reduced the placental transfer and cord levels of IgG and IgG1 principally, but also IgG2 to half of the antigens tested. P. falciparum exposure and prematurity were negatively associated with cord antibody levels and placental transfer, but this was antigen-subclass dependent. Our findings suggest that lower maternally transferred antibodies may underlie increased susceptibility to infections of HIV-exposed infants. This could affect efficacy of maternal vaccination, especially in sub-Saharan Africa, where there is a high prevalence of HIV, malaria and unfavorable environmental factors.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - M. Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Cova
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J. Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
5
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Jairoce C, Manaca MN, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Angov E, Coppel RL, Gamain B, Cavanagh D, Beeson JG, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. HIV infection and placental malaria reduce maternal transfer of multiple antimalarial antibodies in Mozambican women. J Infect 2021; 82:45-57. [PMID: 33636218 DOI: 10.1016/j.jinf.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG subclasses. METHODS In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess the association of maternal HIV infection, placental malaria, maternal variables and pregnancy outcomes on cord antibody levels and antibody transplacental transfer. RESULTS Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and Rh4.2. CONCLUSIONS We found lower maternally transferred antibodies in HIV-exposed infants and those born from mothers with placental malaria, which may underlie increased susceptibility to malaria in these children.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - M Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Present address: London School of Hygiene and Tropical Medicine (LSHTM). Keppel Street, WC1E 7HT, London, UK
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | | | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| |
Collapse
|
6
|
Dobaño C, Vidal M, Santano R, Jiménez A, Chi J, Barrios D, Ruiz-Olalla G, Rodrigo Melero N, Carolis C, Parras D, Serra P, Martínez de Aguirre P, Carmona-Torre F, Reina G, Santamaria P, Mayor A, García-Basteiro AL, Izquierdo L, Aguilar R, Moncunill G. Highly Sensitive and Specific Multiplex Antibody Assays To Quantify Immunoglobulins M, A, and G against SARS-CoV-2 Antigens. J Clin Microbiol 2021; 59:e01731-20. [PMID: 33127841 PMCID: PMC8111153 DOI: 10.1128/jcm.01731-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Reliable serological tests are required to determine the prevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to characterize immunity to the disease in order to address key knowledge gaps in the coronavirus disease 2019 (COVID-19) pandemic. Quantitative suspension array technology (qSAT) assays based on the xMAP Luminex platform overcome the limitations of rapid diagnostic tests and enzyme-linked immunosorbent assays (ELISAs) with their higher precision, dynamic range, throughput, miniaturization, cost-efficiency, and multiplexing capacity. We developed three qSAT assays for IgM, IgA, and IgG against a panel of eight SARS-CoV-2 antigens, including spike protein (S), nucleocapsid protein (N), and membrane protein (M) constructs. The assays were optimized to minimize the processing time and maximize the signal-to-noise ratio. We evaluated their performances using 128 prepandemic plasma samples (negative controls) and 104 plasma samples from individuals with SARS-CoV-2 diagnosis (positive controls), of whom 5 were asymptomatic, 51 had mild symptoms, and 48 were hospitalized. Preexisting IgG antibodies recognizing N, M, and S proteins were detected in negative controls, which is suggestive of cross-reactivity to common-cold coronaviruses. The best-performing antibody/antigen signatures had specificities of 100% and sensitivities of 95.78% at ≥14 days and 95.65% at ≥21 days since the onset of symptoms, with areas under the curve (AUCs) of 0.977 and 0.999, respectively. Combining multiple markers as assessed by qSAT assays has the highest efficiency, breadth, and versatility to accurately detect low-level antibody responses for obtaining reliable data on the prevalence of exposure to novel pathogens in a population. Our assays will allow gaining insights into antibody correlates of immunity and their kinetics, required for vaccine development to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jordi Chi
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Parras
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Francisco Carmona-Torre
- Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain
- Clinical Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Clínica Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- International Health Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Dobaño C, Vidal M, Santano R, Jiménez A, Chi J, Barrios D, Ruiz-Olalla G, Rodrigo Melero N, Carolis C, Parras D, Serra P, Martínez de Aguirre P, Carmona-Torre F, Reina G, Santamaria P, Mayor A, García-Basteiro AL, Izquierdo L, Aguilar R, Moncunill G. Highly Sensitive and Specific Multiplex Antibody Assays To Quantify Immunoglobulins M, A, and G against SARS-CoV-2 Antigens. J Clin Microbiol 2021. [PMID: 33127841 DOI: 10.1101/2020.06.11.147363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Reliable serological tests are required to determine the prevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to characterize immunity to the disease in order to address key knowledge gaps in the coronavirus disease 2019 (COVID-19) pandemic. Quantitative suspension array technology (qSAT) assays based on the xMAP Luminex platform overcome the limitations of rapid diagnostic tests and enzyme-linked immunosorbent assays (ELISAs) with their higher precision, dynamic range, throughput, miniaturization, cost-efficiency, and multiplexing capacity. We developed three qSAT assays for IgM, IgA, and IgG against a panel of eight SARS-CoV-2 antigens, including spike protein (S), nucleocapsid protein (N), and membrane protein (M) constructs. The assays were optimized to minimize the processing time and maximize the signal-to-noise ratio. We evaluated their performances using 128 prepandemic plasma samples (negative controls) and 104 plasma samples from individuals with SARS-CoV-2 diagnosis (positive controls), of whom 5 were asymptomatic, 51 had mild symptoms, and 48 were hospitalized. Preexisting IgG antibodies recognizing N, M, and S proteins were detected in negative controls, which is suggestive of cross-reactivity to common-cold coronaviruses. The best-performing antibody/antigen signatures had specificities of 100% and sensitivities of 95.78% at ≥14 days and 95.65% at ≥21 days since the onset of symptoms, with areas under the curve (AUCs) of 0.977 and 0.999, respectively. Combining multiple markers as assessed by qSAT assays has the highest efficiency, breadth, and versatility to accurately detect low-level antibody responses for obtaining reliable data on the prevalence of exposure to novel pathogens in a population. Our assays will allow gaining insights into antibody correlates of immunity and their kinetics, required for vaccine development to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jordi Chi
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Parras
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Francisco Carmona-Torre
- Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain
- Clinical Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Clínica Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- International Health Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Mazhari R, Brewster J, Fong R, Bourke C, Liu ZSJ, Takashima E, Tsuboi T, Tham WH, Harbers M, Chitnis C, Healer J, Ome-Kaius M, Sattabongkot J, Kazura J, Robinson LJ, King C, Mueller I, Longley RJ. A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). PLoS One 2020; 15:e0238010. [PMID: 33275613 PMCID: PMC7717507 DOI: 10.1371/journal.pone.0238010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Multiplexed bead-based assays that use Luminex® xMAP® technology have become popular for measuring antibodies against proteins of interest in many fields, including malaria and more recently SARS-CoV-2/COVID-19. There are currently two formats that are widely used: non-magnetic beads or magnetic beads. Data are lacking regarding the comparability of results obtained using these two types of beads, and for assays run on different instruments. Whilst non-magnetic beads can only be run on flow-based instruments (such as the Luminex® 100/200™ or Bio-Plex® 200), magnetic beads can be run on both these and the newer MAGPIX® instruments. In this study we utilized a panel of purified recombinant Plasmodium vivax proteins and samples from malaria-endemic areas to measure P. vivax-specific IgG responses using different combinations of beads and instruments. We directly compared: i) non-magnetic versus magnetic beads run on a Bio-Plex® 200, ii) magnetic beads run on the Bio-Plex® 200 versus MAGPIX® and iii) non-magnetic beads run on a Bio-Plex® 200 versus magnetic beads run on the MAGPIX®. We also performed an external comparison of our optimized assay. We observed that IgG antibody responses, measured against our panel of P. vivax proteins, were moderately-strongly correlated in all three of our comparisons (pearson r>0.5 for 18/19 proteins), however higher amounts of protein were required for coupling to magnetic beads. Our external comparison indicated that results generated in different laboratories using the same coupled beads are also highly comparable (pearson r>0.7), particularly if a reference standard curve is used.
Collapse
Affiliation(s)
- Ramin Mazhari
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Brewster
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Rich Fong
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Caitlin Bourke
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Zoe S. J. Liu
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wai-Hong Tham
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chetan Chitnis
- Department of Parasites & Insect Vectors, Malaria Parasite Biology and Vaccines, Institut Pasteur, Paris, France
| | - Julie Healer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - James Kazura
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Leanne J. Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
- Burnet Institute, Melbourne, Australia
| | - Christopher King
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Parasites & Insect Vectors, Malaria Parasites & Hosts Unit, Institut Pasteur, Paris, France
| | - Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
van den Hoogen LL, Présumé J, Romilus I, Mondélus G, Elismé T, Sepúlveda N, Stresman G, Druetz T, Ashton RA, Joseph V, Eisele TP, Hamre KES, Chang MA, Lemoine JF, Tetteh KKA, Boncy J, Existe A, Drakeley C, Rogier E. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti. Sci Rep 2020; 10:1135. [PMID: 31980693 PMCID: PMC6981173 DOI: 10.1038/s41598-020-57876-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | - Gina Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Tamara Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications, University of Lisbon, Lisbon, Portugal
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Canada
| | - Ruth A Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Karen E S Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- CDC Foundation, Atlanta, Georgia, USA
| | - Michelle A Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jean F Lemoine
- Ministère de la santé publique et de la population, Port-au-Prince, Haiti
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Dobaño C, Santano R, Vidal M, Jiménez A, Jairoce C, Ubillos I, Dosoo D, Aguilar R, Williams NA, Díez-Padrisa N, Ayestaran A, Valim C, Asante KP, Owusu-Agyei S, Lanar D, Chauhan V, Chitnis C, Dutta S, Angov E, Gamain B, Coppel RL, Beeson JG, Reiling L, Gaur D, Cavanagh D, Gyan B, Nhabomba AJ, Campo JJ, Moncunill G. Differential Patterns of IgG Subclass Responses to Plasmodium falciparum Antigens in Relation to Malaria Protection and RTS,S Vaccination. Front Immunol 2019; 10:439. [PMID: 30930896 PMCID: PMC6428712 DOI: 10.3389/fimmu.2019.00439] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally acquired immunity (NAI) to Plasmodium falciparum malaria is mainly mediated by IgG antibodies but the subclasses, epitope targets and effector functions have not been unequivocally defined. Dissecting the type and specificity of antibody responses mediating NAI is a key step toward developing more effective vaccines to control the disease. We investigated the role of IgG subclasses to malaria antigens in protection against disease and the factors that affect their levels, including vaccination with RTS,S/AS01E. We analyzed plasma and serum samples at baseline and 1 month after primary vaccination with RTS,S or comparator in African children and infants participating in a phase 3 trial in two sites of different malaria transmission intensity: Kintampo in Ghana and Manhiça in Mozambique. We used quantitative suspension array technology (qSAT) to measure IgG1−4 responses to 35 P. falciparum pre-erythrocytic and blood stage antigens. Our results show that the pattern of IgG response is predominantly IgG1 or IgG3, with lower levels of IgG2 and IgG4. Age, site and RTS,S vaccination significantly affected antibody subclass levels to different antigens and susceptibility to clinical malaria. Univariable and multivariable analysis showed associations with protection mainly for cytophilic IgG3 levels to selected antigens, followed by IgG1 levels and, unexpectedly, also with IgG4 levels, mainly to antigens that increased upon RTS,S vaccination such as MSP5 and MSP1 block 2, among others. In contrast, IgG2 was associated with malaria risk. Stratified analysis in RTS,S vaccinees pointed to novel associations of IgG4 responses with immunity mainly involving pre-erythrocytic antigens upon RTS,S vaccination. Multi-marker analysis revealed a significant contribution of IgG3 responses to malaria protection and IgG2 responses to malaria risk. We propose that the pattern of cytophilic and non-cytophilic IgG antibodies is antigen-dependent and more complex than initially thought, and that mechanisms of both types of subclasses could be involved in protection. Our data also suggests that RTS,S efficacy is significantly affected by NAI, and indicates that RTS,S vaccination significantly alters NAI.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, Boston, MA, United States
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana.,Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Evelina Angov
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, UMR_S1134, Inserm, INTS, Université Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | | | | | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - David Cavanagh
- Ashworth Laboratories, Centre for Immunity, Infection and Evolution, School of Biological Sciences, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Gyan
- Kintampo Health Research Centre, Kintampo, Ghana.,Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| |
Collapse
|
11
|
Ubillos I, Ayestaran A, Nhabomba AJ, Dosoo D, Vidal M, Jiménez A, Jairoce C, Sanz H, Aguilar R, Williams NA, Díez-Padrisa N, Mpina M, Sorgho H, Agnandji ST, Kariuki S, Mordmüller B, Daubenberger C, Asante KP, Owusu-Agyei S, Sacarlal J, Aide P, Aponte JJ, Dutta S, Gyan B, Campo JJ, Valim C, Moncunill G, Dobaño C. Baseline exposure, antibody subclass, and hepatitis B response differentially affect malaria protective immunity following RTS,S/AS01E vaccination in African children. BMC Med 2018; 16:197. [PMID: 30376866 PMCID: PMC6208122 DOI: 10.1186/s12916-018-1186-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure. METHODS We measured total IgM, IgG, and IgG1-4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them. RESULTS RTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified. CONCLUSIONS Cytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines.
Collapse
Affiliation(s)
- Itziar Ubillos
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Aintzane Ayestaran
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Augusto J Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain.,Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Núria Díez-Padrisa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain
| | - Maximilian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Center, P.O. Box 74, Bagamoyo, Tanzania
| | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon.,Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Simon Kariuki
- Kenya Medical Research Institute (KEMRI)/Centre for Global Health Research, Kisumu, Kenya
| | - Benjamin Mordmüller
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
| | - Claudia Daubenberger
- Ifakara Health Institute, Bagamoyo Research and Training Center, P.O. Box 74, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
| | | | | | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.,Facultade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Sheetij Dutta
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| | - Ben Gyan
- Kintampo Health Research Centre, Kintampo, Ghana.,Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, 909 Fee Road, Room B 309 West Fee Hall, East Lansing, MI, 48824, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, 675 Huntington Ave., Boston, MA, 02115, USA
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK building, E-08036, Barcelona, Catalonia, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| |
Collapse
|