1
|
Ramos Peña DE, Pillet S, Grupioni Lourenço A, Pozzetto B, Bourlet T, Motta ACF. Human immunodeficiency virus and oral microbiota: mutual influence on the establishment of a viral gingival reservoir in individuals under antiretroviral therapy. Front Cell Infect Microbiol 2024; 14:1364002. [PMID: 38660490 PMCID: PMC11039817 DOI: 10.3389/fcimb.2024.1364002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The role of the oral microbiota in the overall health and in systemic diseases has gained more importance in the recent years, mainly due to the systemic effects that are mediated by the chronic inflammation caused by oral diseases, such as periodontitis, through the microbial communities of the mouth. The chronic infection by the human immunodeficiency virus (HIV) interacts at the tissue level (e.g. gut, genital tract, brain) to create reservoirs; the modulation of the gut microbiota by HIV infection is a good example of these interactions. The purpose of the present review is to assess the state of knowledge on the oral microbiota (microbiome, mycobiome and virome) of HIV-infected patients in comparison to that of HIV-negative individuals and to discuss the reciprocal influence of HIV infection and oral microbiota in patients with periodontitis on the potential establishment of a viral gingival reservoir. The influence of different clinical and biological parameters are reviewed including age, immune and viral status, potent antiretroviral therapies, smoking, infection of the airway and viral coinfections, all factors that can modulate the oral microbiota during HIV infection. The analysis of the literature proposed in this review indicates that the comparisons of the available studies are difficult due to their great heterogeneity. However, some important findings emerge: (i) the oral microbiota is less influenced than that of the gut during HIV infection, although some recurrent changes in the microbiome are identified in many studies; (ii) severe immunosuppression is correlated with altered microbiota and potent antiretroviral therapies correct partially these modifications; (iii) periodontitis constitutes a major factor of dysbiosis, which is exacerbated in HIV-infected patients; its pathogenesis can be described as a reciprocal reinforcement of the two conditions, where the local dysbiosis present in the periodontal pocket leads to inflammation, bacterial translocation and destruction of the supporting tissues, which in turn enhances an inflammatory environment that perpetuates the periodontitis cycle. With the objective of curing viral reservoirs of HIV-infected patients in the future years, it appears important to develop further researches aimed at defining whether the inflamed gingiva can serve of viral reservoir in HIV-infected patients with periodontitis.
Collapse
Affiliation(s)
- Diana Estefania Ramos Peña
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Alan Grupioni Lourenço
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Bruno Pozzetto
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Bourlet
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Health and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
O'Connell LM, Mann AE, Osagie E, Akhigbe P, Blouin T, Soule A, Obuekwe O, Omoigberale A, Burne RA, Coker MO, Richards VP. Supragingival mycobiome of HIV-exposed-but-uninfected children reflects a stronger correlation with caries-free-associated taxa compared to HIV-infected or uninfected children. Microbiol Spectr 2023; 11:e0149123. [PMID: 37874172 PMCID: PMC10715047 DOI: 10.1128/spectrum.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Globally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear. Using high-throughput amplicon sequencing, we find taxonomic differences that become pronounced during late-stage caries. Notably, we show a stronger correlation with health-associated taxa for HIV-exposed-but-uninfected children when compared to unexposed and uninfected children. This aligns with a lower incidence of caries in primary teeth at age 6 or less for exposed yet uninfected children. Ultimately, these findings could contribute to improved risk assessment, intervention, and prevention strategies such as biofilm disruption and the informed design of pro-, pre-, and synbiotic oral therapies.
Collapse
Affiliation(s)
- Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ozoemene Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Augustine Omoigberale
- Department of Child Health, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Kuhn L, Wang T, Li F, Strehlau R, Tobin NH, Violari A, Brooker S, Patel F, Liberty A, Shiau S, Arpadi SM, Wadhwa S, Yin MT, Wang S, Tiemessen CT, Aldrovandi GM. Microbiota in the oral cavity of school-age children with HIV who started antiretroviral therapy at young ages in South Africa. AIDS 2023; 37:1583-1591. [PMID: 37199568 PMCID: PMC10524539 DOI: 10.1097/qad.0000000000003599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Infancy is an important developmental period when the microbiome is shaped. We hypothesized that earlier antiretroviral therapy (ART) initiation would attenuate HIV effects on microbiota in the mouth. METHODS Oral swabs were collected from 477 children with HIV (CWH) and 123 children without (controls) at two sites in Johannesburg, South Africa. CWH had started ART less than 3 years of age; 63% less than 6 months of age. Most were well controlled on ART at median age 11 years when the swab was collected. Controls were age-matched and recruited from the same communities. Sequencing of V4 amplicon of 16S rRNA was done. Differences in microbial diversity and relative abundances of taxa were compared between the groups. RESULTS CWH had lower alpha diversity than controls. Genus-level abundances of Granulicatella, Streptococcus, and Gemella were greater and Neisseria and Haemophilus less abundant among CWH than controls. Associations were stronger among boys. Associations were not attenuated with earlier ART initiation. Shifts in genus-level taxa abundances in CWH relative to controls were most marked in children on lopinavir/ritonavir regimens, with fewer shifts seen if on efavirenz ART regimens. CONCLUSION A distinct profile of less diverse oral bacterial taxa was observed in school-aged CWH on ART compared with uninfected controls suggesting modulation of microbiota in the mouth by HIV and/or its treatments. Earlier ART initiation was not associated with microbiota profile. Proximal factors, including current ART regimen, were associated with contemporaneous profile of oral microbiota and may have masked associations with distal factors such as age at ART initiation.
Collapse
Affiliation(s)
- Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Tian Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Fan Li
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Renate Strehlau
- VIDA Nkanyezi Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole H. Tobin
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Avy Violari
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sarah Brooker
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Faeezah Patel
- Wits RHI, Shandukani Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Afaaf Liberty
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Stephen M. Arpadi
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Sunil Wadhwa
- College of Dental Medicine, Columbia University Irving Medical Center, New York, NY
| | - Michael T. Yin
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Caroline T. Tiemessen
- National Institutes for Communicable Diseases, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Beall CJ, Lilly EA, Granada C, Treas K, Dubois KR, Hashmi SB, Vazquez JA, Hagensee ME, Griffen AL, Leys EJ, Fidel PL. Independent Effects of HIV and Antiretroviral Therapy on the Oral Microbiome Identified by Multivariate Analyses. mBio 2023; 14:e0040923. [PMID: 37071004 PMCID: PMC10294613 DOI: 10.1128/mbio.00409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The oral microbiome is an important predictor of health and disease. We recently reported significant yet modest effects of HIV under highly active antiretroviral therapy (ART) on the oral microbiome (bacterial and fungal) in a large cohort of HIV-positive (HIV+) and matched HIV-negative (HIV-) individuals. As it was unclear whether ART added to or masked further effects of HIV on the oral microbiome, the present study aimed to analyze the effects of HIV and ART independently, which also included HIV- subjects on preexposure prophylaxis (PrEP) therapy. Cross-sectional analyses of the effect of HIV devoid of ART (HIV+ ART- versus matched HIV- subjects) showed a significant effect on both the bacteriome and mycobiome (P < 0.024) after controlling for other clinical variables (permutational multivariate analysis of variance [PERMANOVA] of Bray-Curtis dissimilarity). Cross-sectional analyses evaluating the effects of ART (HIV+ ART+ versus HIV+ ART- subjects) revealed a significant effect on the mycobiome (P < 0.007) but not the bacteriome. In parallel longitudinal analyses, ART (before versus after the initiation of ART) had a significant effect on the bacteriome, but not the mycobiome, of HIV+ and HIV- PrEP subjects (P < 0.005 and P < 0.016, respectively). These analyses also revealed significant differences in the oral microbiome and several clinical variables between HIV- PrEP subjects (pre-PrEP) and the HIV-matched HIV- group (P < 0.001). At the species level, a small number of differences in both bacterial and fungal taxa were identified within the effects of HIV and/or ART. We conclude that the effects of HIV and ART on the oral microbiome are similar to those of the clinical variables but collectively are modest overall. IMPORTANCE The oral microbiome can be an important predictor of health and disease. For persons living with HIV (PLWH), HIV and highly active antiretroviral therapy (ART) may have a significant influence on their oral microbiome. We previously reported a significant effect of HIV with ART on both the bacteriome and mycobiome. It was unclear whether ART added to or masked further effects of HIV on the oral microbiome. Hence, it was important to evaluate the effects of HIV and ART independently. For this, multivariate cross-sectional and longitudinal oral microbiome analyses (bacteriome and mycobiome) were conducted within the cohort, including HIV+ ART+ subjects and HIV+ and HIV- (preexposure prophylaxis [PrEP]) subjects before and after the initiation of ART. While we report independent significant effects of HIV and ART on the oral microbiome, we conclude that their influence is similar to that of the clinical variables but collectively modest overall.
Collapse
Affiliation(s)
- Clifford J. Beall
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Elizabeth A. Lilly
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Carolina Granada
- Division of Infectious Diseases, Department of Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, USA
| | - Kelly Treas
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Kenneth R. Dubois
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Shahr B. Hashmi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jose A. Vazquez
- Division of Infectious Diseases, Department of Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, USA
| | - Michael E. Hagensee
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ann L. Griffen
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
- Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Eugene J. Leys
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Meng J, Tao J, Abu Y, Sussman DA, Girotra M, Franceschi D, Roy S. HIV-Positive Patients on Antiretroviral Therapy Have an Altered Mucosal Intestinal but Not Oral Microbiome. Microbiol Spectr 2023; 11:e0247222. [PMID: 36511710 PMCID: PMC9927552 DOI: 10.1128/spectrum.02472-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
This study characterized compositional and functional shifts in the intestinal and oral microbiome in HIV-positive patients on antiretroviral therapy compared to HIV-negative individuals. Seventy-nine specimens were collected from 5 HIV-positive and 12 control subjects from five locations (colon brush, colon wash, terminal ileum [TI] brush, TI wash, and saliva) during colonoscopy and at patient visits. Microbiome composition was characterized using 16S rRNA sequencing, and microbiome function was predicted using bioinformatics tools (PICRUSt and BugBase). Our analysis indicated that the β-diversity of all intestinal samples (colon brush, colon wash, TI brush, and TI wash) from patients with HIV was significantly different from patients without HIV. Specifically, bacteria from genera Prevotella, Fusobacterium, and Megasphaera were more abundant in samples from HIV-positive patients. On the other hand, bacteria from genera Ruminococcus, Blautia, and Clostridium were more abundant in samples from HIV-negative patients. Additionally, HIV-positive patients had higher abundances of biofilm-forming and pathogenic bacteria. Furthermore, pathways related to translation and nucleotide metabolism were elevated in HIV-positive patients, whereas pathways related to lipid and carbohydrate metabolism were positively correlated with samples from HIV-negative patients. Our analyses further showed variations in microbiome composition in HIV-positive and negative patients by sampling site. Samples from colon wash, colon brush, and TI wash were significant between groups, while samples from TI brush and saliva were not significant. Taken together, here, we report altered intestinal microbiome composition and predicted function in patients with HIV compared to uninfected patients, though we found no changes in the oral microbiome. IMPORTANCE Over 37 million people worldwide are living with HIV. Although the availability of antiretroviral therapy has significantly reduced the number of AIDS-related deaths, individuals living with HIV are at increased risk for opportunistic infections. We now know that HIV interacts with the trillions of bacteria, fungi, and viruses in the human body termed the microbiome. Only a limited number of previous studies have compared variations in the oral and gastrointestinal microbiome with HIV infection. Here, we detail how the oral and gastrointestinal microbiome changes with HIV infection, having used 5 different sampling sites to gain a more comprehensive view of these changes by location. Our results show site-specific changes in the intestinal microbiome associated with HIV infection. Additionally, we show that while there were significant changes in the intestinal microbiome, there were no significant changes in the oral microbiome.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Yaa Abu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Daniel Andrew Sussman
- Department of Gastroenterology, University of Miami Medical Group, Miami, Florida, USA
| | - Mohit Girotra
- Department of Gastroenterology, University of Miami Medical Group, Miami, Florida, USA
| | - Dido Franceschi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
7
|
Karajacob AS, Azizan NB, Al-Maleki ARM, Goh JPE, Loke MF, Khor HM, Ho GF, Ponnampalavanar S, Tay ST. Candida species and oral mycobiota of patients clinically diagnosed with oral thrush. PLoS One 2023; 18:e0284043. [PMID: 37068057 PMCID: PMC10109505 DOI: 10.1371/journal.pone.0284043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Overgrowth of Candida yeasts in the oral cavity may result in the development of oral thrush in immunocompromised individuals. This study analyzed the diversity and richness of the oral mycobiota of patients clinically diagnosed with oral thrush (OT), follow-up of oral thrush patients after antifungal therapy (AT), and healthy controls (HC). Oral rinse and oral swab samples were collected from 38 OT patients, 21 AT patients, and 41 healthy individuals (HC). Pellet from the oral rinse and oral swab were used for the isolation of oral Candida yeasts on Brilliance Candida Agar followed by molecular speciation. ITS1 amplicon sequencing using Illumina MiSeq was performed on DNA extracted from the oral rinse pellet of 16 OT, 7 AT, and 7 HC oral rinse samples. Trimmed sequence data were taxonomically grouped and analyzed using the CLC Microbial Genomics Module workflow. Candida yeasts were isolated at significantly higher rates from oral rinse and swab samples of OT (68.4%, p < 0.001) and AT (61.9%, p = 0.012) patients, as compared to HC (26.8%). Predominance of Candida albicans specifically, was noted in OT (60.5%, p < 0.001) and AT (42.9%, p = 0.006) vs. HC (9.8%), while non-albicans Candida species was dominant in HC. Analysis of oral mycobiota from OT patients showed the presence of 8 phyla, 222 genera, and 309 fungal species. Low alpha diversity (Shannon index, p = 0.006; Chao-1 biased corrected index, p = 0.01), varied beta diversity (Bray-Curtis, p = 0.01986; Jaccard, p = 0.02766; Weighted UniFrac, p = 0.00528), and increased relative abundance of C. albicans (p = 3.18E-02) was significantly associated with the oral mycobiota of OT vs. HC. This study supported that C. albicans is the main etiological agent in oral thrush and highlights the association of fungal biodiversity with the pathophysiology of oral thrush.
Collapse
Affiliation(s)
| | - Nuramirah Binti Azizan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Joanne Pei En Goh
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Min Khor
- Department of Medicine, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Gwo Fuang Ho
- Department of Clinical Oncology, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sasheela Ponnampalavanar
- Department of Medicine, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
9
|
Zhao X, Zhong Z, Hua Z. Estimation of the post-mortem interval by modelling the changes in oral bacterial diversity during decomposition. J Appl Microbiol 2022; 133:3451-3464. [PMID: 35950442 PMCID: PMC9825971 DOI: 10.1111/jam.15771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/11/2023]
Abstract
AIMS Decomposition, a complicated process, depends on several factors, including carrion insects, bacteria and the environment. However, the composition of and variation in oral bacteria over long periods of decomposition remain unclear. The current study aims to illustrate the composition of oral bacteria and construct an informative model for estimating the post-mortem interval (PMI) during decomposition. METHODS AND RESULTS Samples were collected from rats' oral cavities for 59 days, and 12 time points in the PMI were selected to detect bacterial community structure by sequencing the V3-V4 region of the bacterial 16S ribosomal RNA (16S rRNA) gene on the Ion S5 XL platform. The results indicated that microorganisms in the oral cavity underwent great changes during decomposition, with a tendency for variation to first decrease and then increase at day 24. Additionally, to predict the PMI, an informative model was established using the random forest algorithm. Three genera of bacteria (Atopostipes, Facklamia and Cerasibacillus) were linearly correlated at all 12 time points in the 59-day period. Planococcaceae was selected as the best feature for the last 6 time points. The R2 of the model reached 93.94%, which suggested high predictive accuracy. Furthermore, to predict the functions of the oral microbiota, PICRUSt results showed that energy metabolism was increased on day 3 post-mortem and carbohydrate metabolism surged significantly on days 3 and 24 post-mortem. CONCLUSIONS Overall, our results suggested that post-mortem oral microbial community data can serve as a forensic resource to estimate the PMI over long time periods. SIGNIFICANCE AND IMPACT OF THE STUDY The results of the present study are beneficial for estimating the PMI. Identifying changes in the bacterial community is of great significance for further understanding the applicability of oral flora in forensic medicine.
Collapse
Affiliation(s)
- Xingchun Zhao
- School of BiopharmacyChina Pharmaceutical UniversityNanjingP.R. China,National Engineering Laboratory for Forensic ScienceBeijingP.R. China,Institute of Forensic ScienceMinistry of Public SecurityBeijingP.R. China,Key Laboratory of Forensic Genetics of Ministry of Public SecurityBeijingP.R. China
| | - Zengtao Zhong
- Department of MicrobiologyCollege of Life SciencesNanjing Agricultural UniversityNanjingP.R. China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjingP.R. China
| |
Collapse
|
10
|
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. THE LANCET. MICROBE 2022; 3:e969-e983. [PMID: 36182668 DOI: 10.1016/s2666-5247(22)00203-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Dominik Aschenbrenner
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | - Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yatsen University, Sun Yat-sen University, Guangzhou, China; Laboratory Animals Centre, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China.
| |
Collapse
|
11
|
Gut dysbiosis of bacteria and fungi associated with human immunodeficiency virus infection. Chin Med J (Engl) 2022; 135:1376-1378. [PMID: 35830264 PMCID: PMC9433070 DOI: 10.1097/cm9.0000000000002194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Gosalbes MJ, Jimenéz-Hernandéz N, Moreno E, Artacho A, Pons X, Ruíz-Pérez S, Navia B, Estrada V, Manzano M, Talavera-Rodriguez A, Madrid N, Vallejo A, Luna L, Pérez-Molina JA, Moreno S, Serrano-Villar S. Interactions among the mycobiome, bacteriome, inflammation, and diet in people living with HIV. Gut Microbes 2022; 14:2089002. [PMID: 35748016 PMCID: PMC9235884 DOI: 10.1080/19490976.2022.2089002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the intestinal microbiome seems a major driver of persistent immune defects in people with HIV (PWH), little is known about its fungal component, the mycobiome. We assessed the inter-kingdom mycobiome-bacteriome interactions, the impact of diet, and the association with the innate and adaptive immunity in PWH on antiretroviral therapy. We included 24 PWH individuals and 12 healthy controls. We sequenced the Internal Transcribed Spacer 2 amplicons, determined amplicon sequence variants, measured biomarkers of the innate and adaptive immunity in blood and relations with diet. Compared to healthy controls, PWH subjects exhibited a distinct and richer mycobiome and an enrichment for Debaryomyces hansenii, Candida albicans, and Candida parapsilosis. In PWH, Candida and Pichia species were strongly correlated with several bacterial genera, including Faecalibacterium genus. Regarding the links between the mycobiome and systemic immunology, we found a positive correlation between Candida species and the levels of proinflammatory cytokines (sTNF-R2 and IL-17), interleukin 22 (a cytokine implicated in the regulation of mucosal immunity), and CD8+ T cell counts. This suggests an important role of the yeasts in systemic innate and adaptive immune responses. Finally, we identified inter-kingdom interactions implicated in fiber degradation, short-chain fatty acid production, and lipid metabolism, and an effect of vegetable and fiber intake on the mycobiome. Therefore, despite the great differences in abundance and diversity between the bacterial and fungal communities of the gut, we defined the changes associated with HIV, determined several different inter-kingdom associations, and found links between the mycobiome, nutrient metabolism, and systemic immunity.
Collapse
Affiliation(s)
- María José Gosalbes
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain,CONTACT María José Gosalbes Genomics and Health Area, FISABIO-Salud Pública46020Valencia, Spain
| | - Nuria Jimenéz-Hernandéz
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Elena Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Artacho
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Xavier Pons
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Beatriz Navia
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Vicente Estrada
- CIBER de Enfermedades Infecciosas, Madrid, Spain,HIV Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Talavera-Rodriguez
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - José A. Pérez-Molina
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain,Sergio Serrano-Villar Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
13
|
Xie Y, Sun J, Hu C, Ruan B, Zhu B. Oral Microbiota Is Associated With Immune Recovery in Human Immunodeficiency Virus-Infected Individuals. Front Microbiol 2021; 12:794746. [PMID: 34956162 PMCID: PMC8696184 DOI: 10.3389/fmicb.2021.794746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the oral microbiota in HIV-infected individuals deserves attention as either HIV infection or antiretroviral therapy (ART) may have effect on the diversity and the composition of the oral microbiome. However, few studies have addressed the oral microbiota and its interplay with different immune responses to ART in HIV-infected individuals. Salivary microbiota and immune activation were studied in 30 HIV-infected immunological responders (IR) and 34 immunological non-responders (INR) (≥500 and < 200 CD4 + T-cell counts/μl after 2 years of HIV-1 viral suppression, respectively) with no comorbidities. Metagenome sequencing revealed that the IR and the INR group presented similar salivary bacterial richness and diversity. The INR group presented a significantly higher abundance of genus Selenomonas_4, while the IR group manifested higher abundances of Candidatus_Saccharimonas and norank_p_Saccharimonas. Candidatus_Saccharimonas and norank_p_Saccharimonas were positively correlated with the current CD4 + T-cells. Candidatus_Saccharimonas was positively correlated with the markers of adaptive immunity CD4 + CD57 + T-cells, while negative correlation was found between norank _p_Saccharimonas and the CD8 + CD38 + T-cells as well as the CD4/CD8 + HLADR + CD38 + T-cells. The conclusions are that the overall salivary microbiota structure was similar in the immunological responders and immunological non-responders, while there were some taxonomic differences in the salivary bacterial composition. Selenomona_4, Candidatus_Saccharimonas, and norank _p_Saccharimonas might act as important factors of the immune recovery in the immunodeficiency patients, and Candidatus_Saccharimonas could be considered in the future as screening biomarkers for the immune responses in the HIV-infected individuals.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia Sun
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Coker MO, Akhigbe P, Osagie E, Idemudia NL, Igedegbe O, Chukwumah N, Adebiyi R, Mann AE, O'Connell LM, Obuekwe O, Omoigberale A, Charurat ME, Richards VP. Dental caries and its association with the oral microbiomes and HIV in young children-Nigeria (DOMHaIN): a cohort study. BMC Oral Health 2021; 21:620. [PMID: 34863179 PMCID: PMC8642767 DOI: 10.1186/s12903-021-01944-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study seeks to understand better the mechanisms underlying the increased risk of caries in HIV-infected school-aged Nigerian children by examining the relationship between the plaque microbiome and perinatal HIV infection and exposure. We also seek to investigate how perinatal HIV infection and exposure impact tooth-specific microbiomes' role on caries disease progression. Methods The participants in this study were children aged 4 to 11 years recruited from the University of Benin Teaching Hospital (UBTH), Nigeria, between May to November 2019. Overall, 568 children were enrolled in three groups: 189 HIV-infected (HI), 189 HIV-exposed but uninfected (HEU) and 190 HIV-unexposed and uninfected (HUU) as controls at visit 1 with a 2.99% and 4.90% attrition rate at visit 2 and visit 3 respectively. Data were obtained with standardized questionnaires. Blood samples were collected for HIV, HBV and HCV screening; CD4, CD8 and full blood count analysis; and plasma samples stored for future investigations; oral samples including saliva, buccal swabs, oropharyngeal swab, tongue swab, dental plaque were collected aseptically from participants at different study visits. Conclusions Results from the study will provide critical information on how HIV exposure, infection, and treatment, influence the oral microbiome and caries susceptibility in children. By determining the effect on community taxonomic structure and gene expression of dental microbiomes, we will elucidate mechanisms that potentially create a predisposition for developing dental caries. As future plans, the relationship between respiratory tract infections, immune and inflammatory markers with dental caries in perinatal HIV infection and exposure will be investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01944-y.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, 110 Bergen Street, Room C-845, Newark, NJ, 07103, USA. .,Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria.
| | - Paul Akhigbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Esosa Osagie
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nosakhare L Idemudia
- Medical Microbiology Division, Medical Laboratory Services, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Oghenero Igedegbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nneka Chukwumah
- Department of Preventive Dentistry, University of Benin, Benin City, Nigeria
| | - Ruxton Adebiyi
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Allison E Mann
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Ozo Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin, Benin City, Nigeria
| | | | - Manhattan E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Perez Rosero E, Heron S, Jovel J, O'Neil CR, Turvey SL, Parashar P, Elahi S. Differential Signature of the Microbiome and Neutrophils in the Oral Cavity of HIV-Infected Individuals. Front Immunol 2021; 12:780910. [PMID: 34858437 PMCID: PMC8630784 DOI: 10.3389/fimmu.2021.780910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
HIV infection is associated with a wide range of changes in microbial communities and immune cell components of the oral cavity. The purpose of this study was to evaluate the oral microbiome in relationship to oral neutrophils in HIV-infected compared to healthy individuals. We evaluated oral washes and saliva samples from HIV-infected individuals (n=52) and healthy controls (n=43). Using 16S-rRNA gene sequencing, we found differential β-diversity using Principal Coordinate Analysis (PCoA) with Bray-Curtis distances. The α-diversity analysis by Faith’s, Shannon, and observed OTUs indexes indicated that the saliva samples from HIV-infected individuals harbored significantly richer bacterial communities compared to the saliva samples from healthy individuals. Notably, we observed that five species of Spirochaeta including Spirochaetaceae, Spirochaeta, Treponema, Treponema amylovorum, and Treponema azotonutricum were significantly abundant. In contrast, Helicobacter species were significantly reduced in the saliva of HIV-infected individuals. Moreover, we found a significant reduction in the frequency of oral neutrophils in the oral cavity of HIV-infected individuals, which was positively related to their CD4+ T cell count. In particular, we noted a significant decline in CD44 expressing neutrophils and the intensity of CD44 expression on oral neutrophils of HIV-infected individuals. This observation was supported by the elevation of soluble CD44 in the saliva of HIV-infected individuals. Overall, the core oral microbiome was distinguishable between HIV-infected individuals on antiretroviral therapy compared to the HIV-negative group. The observed reduction in oral neutrophils might likely be related to the low surface expression of CD44, resulting in a higher bacterial diversity and richness in HIV-infected individuals.
Collapse
Affiliation(s)
| | - Samantha Heron
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Conar R O'Neil
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Shannon Lee Turvey
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
17
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
20
|
Alterations of the gut mycobiome in patients with MS. EBioMedicine 2021; 71:103557. [PMID: 34455391 PMCID: PMC8399064 DOI: 10.1016/j.ebiom.2021.103557] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in MS has not been studied. METHODS In this case-control observational study, we performed ITS sequencing and characterised the gut mycobiome in people with MS (pwMS) and healthy controls at baseline and after six months. FINDINGS The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Saccharomyces and Aspergillus were over-represented in pwMS. Saccharomyces was positively correlated with circulating basophils and negatively correlated with regulatory B cells, while Aspergillus was positively correlated with activated CD16+ dendritic cells in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial microbiome and immune cell subsets in the blood. Initial treatment with dimethyl fumarate, a common immunomodulatory therapy which also has fungicidal activity, did not cause uniform gut mycobiome changes across all pwMS. INTERPRETATION There is an alteration of the gut mycobiome in pwMS, compared to healthy controls. Further study is required to assess any causal association of the mycobiome with MS and its direct or indirect interactions with bacteria and autoimmunity. FUNDING This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS102633-04 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-1805-31003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG- 1907-34474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
|
21
|
Barabona G, Mahiti M, Toyoda M, Kamori D, Masoud S, Judicate GP, Sunguya B, Lyamuya E, Ueno T. Advanced baseline immunosuppression is associated with elevated levels of plasma markers of fungal translocation and inflammation in long-term treated HIV-infected Tanzanians. AIDS Res Ther 2021; 18:55. [PMID: 34446039 PMCID: PMC8394626 DOI: 10.1186/s12981-021-00381-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND For over a decade, antiretroviral therapy (ART) in resource-limited countries was only recommended for patients with advanced HIV disease. We investigated this group of patients in order to determine any relationship between degree of immunosuppression during treatment initiation and the subsequent levels of inflammatory biomarkers, reservoir size and plasma marker of fungal translocation after achieving long-term virological control. METHODS We analyzed 115 virally suppressed (female 83.5%) and 40 untreated (female 70%) subjects from Dar es Salaam, Tanzania. The size of HIV latent reservoir (proviral DNA copy) was determined using quantitative PCR. Inflammatory biomarkers; IL-6, IL-10, and soluble CD14 (sCD14), were measured using multiplex cytometric beads array. Antibody titers for Cytomegalovirus (CMV) and Epstein Barr virus (EBV), plasma level of 1-3-beta-D-Glucan (BDG) was measured using ELISA. High-sensitivity C-reactive protein (hsCRP) was measured using nephelometric method. RESULTS The median age was 36 (IQR 32-44) and 47 (IQR 43-54) years in untreated and virally suppressed patients respectively. Median duration of treatment for virally suppressed patients was 9 years (IQR 7-12) and median baseline CD4 count was 147 cells/mm3 (IQR 65-217). Virally suppressed patients were associated with significantly lower plasma levels of IL-10, sCD14 and BDG (P < 0.05) when compared to untreated patients. However, plasma level of IL-6 was similar between the groups. Baseline advanced level of immunosuppression (CD4 < 100cells/cm3) was associated with significantly higher plasma level of IL-6 (P = 0.02), hsCRP (P = 0.036) and BDG (P = 0.0107). This relationship was not seen in plasma levels of other tested markers. Degree of baseline immunosuppression was not associated with the subsequent proviral DNA copy. In addition, plasma levels of inflammatory marker were not associated with sex, CMV or EBV antibody titers, treatment duration or regimen. CONCLUSIONS Our data suggest that advanced immunosuppression at ART initiation is associated with severity of inflammation and elevated fungal translocation marker despite long term virological control. Further studies are needed to evaluate the potential increased burden of non-AIDS comorbidities that are linked to elevated inflammatory and fungal translocation markers as a result of the policy of HIV treatment at CD4 count < 200 cells/cm3 implemented for over a decade in Tanzania.
Collapse
Affiliation(s)
- Godfrey Barabona
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Macdonald Mahiti
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Doreen Kamori
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Salim Masoud
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - George P Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Bruno Sunguya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eligius Lyamuya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan.
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
22
|
Bhaskaran N, Schneider E, Faddoul F, Paes da Silva A, Asaad R, Talla A, Greenspan N, Levine AD, McDonald D, Karn J, Lederman MM, Pandiyan P. Oral immune dysfunction is associated with the expansion of FOXP3 +PD-1 +Amphiregulin + T cells during HIV infection. Nat Commun 2021; 12:5143. [PMID: 34446704 PMCID: PMC8390677 DOI: 10.1038/s41467-021-25340-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Residual systemic inflammation and mucosal immune dysfunction persist in people living with HIV, despite treatment with combined anti-retroviral therapy, but the underlying immune mechanisms are poorly understood. Here we report that the altered immune landscape of the oral mucosa of HIV-positive patients on therapy involves increased TLR and inflammasome signaling, localized CD4+ T cell hyperactivation, and, counterintuitively, enrichment of FOXP3+ T cells. HIV infection of oral tonsil cultures in vitro causes an increase in FOXP3+ T cells expressing PD-1, IFN-γ, Amphiregulin and IL-10. These cells persist even in the presence of anti-retroviral drugs, and further expand when stimulated by TLR2 ligands and IL-1β. Mechanistically, IL-1β upregulates PD-1 expression via AKT signaling, and PD-1 stabilizes FOXP3 and Amphiregulin through a mechanism involving asparaginyl endopeptidase, resulting in FOXP3+ cells that are incapable of suppressing CD4+ T cells in vitro. The FOXP3+ T cells that are abundant in HIV-positive patients are phenotypically similar to the in vitro cultured, HIV-responsive FOXP3+ T cells, and their presence strongly correlates with CD4+ T cell hyper-activation. This suggests that FOXP3+ T cell dysregulation might play a role in the mucosal immune dysfunction of HIV patients on therapy.
Collapse
Affiliation(s)
- N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - E Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - F Faddoul
- Advanced Education in General Dentistry, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Paes da Silva
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - R Asaad
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Division of Infectious Diseases & HIV Medicine, Cleveland, OH, USA
| | - A Talla
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Greenspan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A D Levine
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - D McDonald
- Division of AIDS, NIAID, NIH, Bethesda, MD, USA
| | - J Karn
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M M Lederman
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Division of Infectious Diseases & HIV Medicine, Cleveland, OH, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Abstract
The oral microbiome is likely a key element of homeostasis in the oral cavity. With >600 bacterial species and >160 fungal species comprising the oral microbiome, influences on its composition can have an impact on both local and systemic health. The oral microbiome is considered an important factor in health and disease. We recently reported significant effects of HIV and several other clinical variables on the oral bacterial communities in a large cohort of HIV-positive and -negative individuals. The purpose of the present study was to similarly analyze the oral mycobiome in the same cohort. To identify fungi, the internal transcribed spacer 2 (ITS2) of the fungal rRNA genes was sequenced using oral rinse samples from 149 HIV-positive and 88 HIV-negative subjects that had previously undergone bacterial amplicon sequencing. Quantitative PCR was performed for total fungal content and total bacterial content. Interestingly, samples often showed predominance of a single fungal species with four major clusters predominated by Candida albicans, Candida dubliniensis, Malassezia restricta, or Saccharomyces cerevisiae. Quantitative PCR analysis showed the Candida-dominated sample clusters had significantly higher total fungal abundance than the Malassezia or Saccharomyces species. Of the 25 clinical variables evaluated for potential influences on the oral mycobiome, significant effects were associated with caries status, geographical site of sampling, sex, HIV under highly active antiretroviral therapy (HAART), and missing teeth, in rank order of statistical significance. Investigating specific interactions between fungi and bacteria in the samples often showed Candida species positively correlated with Firmicutes or Actinobacteria and negatively correlated with Fusobacteria, Proteobacteria, and Bacteroidetes. Our data suggest that the oral mycobiome, while diverse, is often dominated by a limited number of species per individual; is affected by several clinical variables, including HIV positivity and HAART; and shows genera-specific associations with bacterial groups.
Collapse
|
24
|
Ramírez-Amador V, Patton LL, Naglik JR, Nittayananta W. Innovations for prevention and care of oral candidiasis in HIV-infected individuals: Are they available?-A workshop report. Oral Dis 2020; 26 Suppl 1:91-102. [PMID: 32862535 DOI: 10.1111/odi.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral candidiasis (OC) is the most prevalent HIV-related oral lesion in patients on combined anti-retroviral therapy (cART) or without cART. Management is challenged in some patients by development of resistance to azole drugs, such as fluconazole. Recent scientific knowledge about OC pathogenesis, the role of OC in the immune reconstitution inflammatory syndrome (IRIS), the relationship of OC with the microbiome, and novelties in OC treatment was discussed in an international workshop format. Literature searches were conducted to address five questions: (a) Considering the pathogenesis of Candida spp. infection, are there any potential therapeutic targets that could be considered, mainly in HIV-infected individuals resistant to fluconazole? (b) Is oral candidiasis part of IRIS in HIV patients who receive cART? (c) Can management of the oral microbiome reduce occurrence of OC in patients with HIV infection? (d) What are the recent advances (since 2015) regarding plant-based and alternative medicines in management of OC? and (e) Is there a role for photodynamic therapy in management of OC in HIV-infected patients? A number of the key areas where further research is necessary were identified to allow a deeper insight into this oral condition that could help to understand its nature and recommend alternatives for care.
Collapse
Affiliation(s)
- Velia Ramírez-Amador
- Department of Health Care, Master´s Course in Oral Pathology and Oral Medicine, Universidad Autónoma Metropolitana-Xochimilco, México City, Mexico
| | - Lauren L Patton
- Division of Craniofacial and Surgical Care, Adams School of Dentistry University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | |
Collapse
|
25
|
Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis 2020; 26 Suppl 1:69-79. [PMID: 32862519 PMCID: PMC7570967 DOI: 10.1111/odi.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September –15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sharof Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srabanti Rakshit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annapurna Vyakarnam
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Diaz PI, Dongari-Bagtzoglou A. Critically Appraising the Significance of the Oral Mycobiome. J Dent Res 2020; 100:133-140. [PMID: 32924741 DOI: 10.1177/0022034520956975] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent efforts to understand the oral microbiome have focused on its fungal component. Since fungi occupy a low proportion of the oral microbiome biomass, mycobiome studies rely on sequencing of internal transcribed spacer (ITS) amplicons. ITS-based studies usually detect hundreds of fungi in oral samples. Here, we review the oral mycobiome, critically appraising the significance of such large fungal diversity. When harsh lysis methods are used to extract DNA, 2 oral mycobiome community types (mycotypes) are evident, each dominated by only 1 genus, either Candida or Malassezia. The rest of the diversity in ITS surveys represents low-abundance fungi possibly acquired from the environment and ingested food. So far, Candida is the only genus demonstrated to reach a significant biomass in the oral cavity and clearly shown to be associated with a distinct oral ecology. Candida thrives in the presence of lower oral pH and is enriched in caries, with mechanistic studies in animal models suggesting it participates in the disease process by synergistically interacting with acidogenic bacteria. Candida serves as the main etiological agent of oral mucosal candidiasis, in which a Candida-bacteriome partnership plays a key role. The function of other potential oral colonizers, such as lipid-dependent Malassezia, is still unclear, with further studies needed to establish whether Malassezia are metabolically active oral commensals. Low-abundance oral mycobiome members acquired from the environment may be viable in the oral cavity, and although they may not play a significant role in microbiome communities, they could serve as opportunistic pathogens in immunocompromised hosts. We suggest that further work is needed to ascertain the significance of oral mycobiome members beyond Candida. ITS-based surveys should be complemented with other methods to determine the in situ biomass and metabolic state of fungi thought to play a role in the oral environment.
Collapse
Affiliation(s)
- P I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - A Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
27
|
Sodré CS, Rodrigues PMG, Vieira MS, Marques Paes da Silva A, Gonçalves LS, Ribeiro MG, de Carvalho Ferreira D. Oral mycobiome identification in atopic dermatitis, leukemia, and HIV patients - a systematic review. J Oral Microbiol 2020; 12:1807179. [PMID: 32944157 PMCID: PMC7482892 DOI: 10.1080/20002297.2020.1807179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Oral mycobiome profiling is important to understand host-pathogen interactions that occur in various diseases. Invasive fungal infections are particularly relevant for patients who have received chemotherapy and for those who have HIV infection. In addition, changes in fungal microbiota are associated with the worsening of chronic conditions like atopic dermatitis (AD). This work aims, through a systematic review, to analyze the methods used in previous studies to identify oral fungi and their most frequent species in patients with the following conditions: HIV infection, leukemia, and atopic dermatitis. METHODS A literature search was performed on several different databases. Inclusion criteria were: written in English or Portuguese; published between September 2009 and September 2019; analyzed oral fungi of HIV-infected, leukemia, or AD patients. RESULTS 21 studies were included and the most identified species was Candida. The predominant methods of identification were morphological (13/21) and sugar fermentation and assimilation tests (11/21). Polymerase chain reaction (PCR) was the most used molecular method (8/21) followed by sequencing techniques (3/21). CONCLUSIONS Although morphological and biochemical tests are still used, they are associated with high-throughput sequencing techniques, due to their accuracy and time saving for profiling the predominant species in oral mycobiome.
Collapse
Affiliation(s)
- Camila Stofella Sodré
- Faculty of Medicine, Department of Clinical Medicine, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Paulo Matheus Guerra Rodrigues
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| | | | | | - Lucio Souza Gonçalves
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| | - Marcia Gonçalves Ribeiro
- Medical Genetics Service, Martagão Gesteira Pediatric Institute (IPPMG- UFRJ), Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Dennis de Carvalho Ferreira
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Sharma AK, DeBusk WT, Stepanov I, Gomez A, Khariwala SS. Oral Microbiome Profiling in Smokers with and without Head and Neck Cancer Reveals Variations Between Health and Disease. Cancer Prev Res (Phila) 2020; 13:463-474. [PMID: 32071121 DOI: 10.1158/1940-6207.capr-19-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
While smoking is inextricably linked to oral/head and neck cancer (HNSCC), only a small fraction of smokers develop HNSCC. Thus, we have sought to identify other factors, which may influence the development of HNSCC in smokers including microbiology. To determine microbial associations with HNSCC among tobacco users, we characterized oral microbiome composition in smokers with and without HNSCC. 16S rRNA MiSeq sequencing was used to examine the oral mucosa microbiome of 27 smokers with (cases) and 24 without HNSCC (controls). In addition, we correlated previously reported levels of DNA damage with the microbiome data. Smokers with HNSCC showed lower microbiome richness compared with controls (q = 0.012). Beta-diversity analyses, assessed as UniFrac (weighted and unweighted) and Bray-Curtis distances, showed significant differences in oral mucosal microbiome signatures between cases and controls (r 2 = 0.03; P = 0.03) and higher interindividual microbiome heterogeneity in the former (q ≤ 0.01). Higher relative abundance of Stenotrophomonas and Comamonadaceae and predicted bacterial pathways mainly involved in xenobiotic and amine degradation were found in cases compared with controls. The latter, in contrast, exhibited higher abundance of common oral commensals and predicted sugar degradation pathways. Finally, levels of DNA damage in the oral cavity were correlated with the microbiome profiles above. Oral microbiome traits differ in smokers with and without HNSCC, potentially informing the risk of eventual HNSCC and shedding light into possible microbially mediated mechanisms of disease. These findings present data that may be useful in screening efforts for HNSCC among smokers who are unable to quit.
Collapse
Affiliation(s)
- Ashok Kumar Sharma
- Department of Animal Science and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, Minnesota
| | - William T DeBusk
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Andres Gomez
- Department of Animal Science and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, Minnesota.
| | - Samir S Khariwala
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
29
|
Yang L, Dunlap DG, Qin S, Fitch A, Li K, Koch CD, Nouraie M, DeSensi R, Ho KS, Martinson JJ, Methé B, Morris A. Alterations in Oral Microbiota in HIV Are Related to Decreased Pulmonary Function. Am J Respir Crit Care Med 2020; 201:445-457. [PMID: 31682463 PMCID: PMC7049920 DOI: 10.1164/rccm.201905-1016oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
Rationale: Mechanisms of HIV-associated chronic obstructive pulmonary disease (COPD) are poorly understood. The oral microbiome shapes the lung microbiome, and gut dysbiosis can affect lung diseases; however, relationships of the oral and gut microbiome to COPD in HIV have not been explored.Objectives: To examine alterations in the oral and gut microbiome associated with pulmonary disease in persons with HIV (PWH).Methods: Seventy-five PWH and 93 HIV-uninfected men from the MACS (Multicenter AIDS Cohort Study) performed pulmonary function testing. Sequencing of bacterial 16S ribosomal RNA in saliva and stool was performed. We used nonmetric multidimensional scaling, permutational multivariate ANOVA, and linear discriminant analysis to analyze communities by HIV and lung function.Measurements and Main Results: Oral microbiome composition differed by HIV and smoking status. Alterations of oral microbial communities were observed in PWH with abnormal lung function with increases in relative abundance of Veillonella, Streptococcus, and Lactobacillus. There were no significant associations between the oral microbiome and lung function in HIV-uninfected individuals. No associations with HIV status or lung function were seen with the gut microbiome.Conclusions: Alterations of oral microbiota in PWH were related to impaired pulmonary function and to systemic inflammation. These results suggest that the oral microbiome may serve as a biomarker of lung function in HIV and that its disruption may contribute to COPD pathogenesis.
Collapse
Affiliation(s)
- Libing Yang
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
- School of Medicine, Tsinghua University, Beijing, China; and
| | | | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Adam Fitch
- Center for Medicine and the Microbiome, Department of Medicine
| | - Kelvin Li
- Center for Medicine and the Microbiome, Department of Medicine
| | - Carl D. Koch
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Rebecca DeSensi
- Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Ken S. Ho
- Division of Infectious Disease, Department of Medicine, and
| | - Jeremy J. Martinson
- Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - Barbara Methé
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Griffen AL, Thompson ZA, Beall CJ, Lilly EA, Granada C, Treas KD, DuBois KR, Hashmi SB, Mukherjee C, Gilliland AE, Vazquez JA, Hagensee ME, Leys EJ, Fidel PL. Significant effect of HIV/HAART on oral microbiota using multivariate analysis. Sci Rep 2019; 9:19946. [PMID: 31882580 PMCID: PMC6934577 DOI: 10.1038/s41598-019-55703-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023] Open
Abstract
Persons infected with HIV are particularly vulnerable to a variety of oral microbial diseases. Although various study designs and detection approaches have been used to compare the oral microbiota of HIV-negative and HIV-positive persons, both with and without highly active antiretroviral therapy (HAART), methods have varied, and results have not been consistent or conclusive. The purpose of the present study was to compare the oral bacterial community composition in HIV-positive persons under HAART to an HIV-negative group using 16S rRNA gene sequence analysis. Extensive clinical data was collected, and efforts were made to balance the groups on clinical variables to minimize confounding. Multivariate analysis was used to assess the independent contribution of HIV status. Eighty-nine HIV-negative participants and 252 HIV-positive participants under HAART were sampled. The independent effect of HIV under HAART on the oral microbiome was statistically significant, but smaller than the effect of gingivitis, periodontal disease, smoking, caries, and other clinical variables. In conclusion, a multivariate comparison of a large sample of persons with HIV under HAART to an HIV-negative control group showed a complex set of clinical features that influenced oral bacterial community composition, including the presence of HIV under HAART.
Collapse
Affiliation(s)
- Ann L Griffen
- Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, OH, USA.
| | - Zachary A Thompson
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Clifford J Beall
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Elizabeth A Lilly
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Carolina Granada
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Kelly D Treas
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Kenneth R DuBois
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Shahr B Hashmi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Chiranjit Mukherjee
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Aubrey E Gilliland
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Michael E Hagensee
- Section of Infectious Disease, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Eugene J Leys
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| |
Collapse
|
31
|
Dirajlal-Fargo S, Moser C, Rodriguez K, El-Kamari V, Funderburg NT, Bowman E, Brown TT, Hunt PW, Currier J, McComsey GA. Changes in the Fungal Marker β-D-Glucan After Antiretroviral Therapy and Association With Adiposity. Open Forum Infect Dis 2019; 6:ofz434. [PMID: 31737737 PMCID: PMC6847395 DOI: 10.1093/ofid/ofz434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacterial translocation in HIV is associated with inflammation and metabolic complications; few data exist on the role of fungal translocation. METHODS A5260s was a substudy of A5257, a prospective open label randomized trial in which treatment-naïve people with HIV (PWH) were randomized to tenofovir-emtricitabine (TDF/FTC) plus atazanavir-ritonavir (ATV/r), darunavir-ritonavir (DRV/r), or raltegravir (RAL) over 96 weeks. Baseline was assessed, and changes in β-D-glucan (BDG) were assessed at weeks 4, 24, and 96. Wilcoxon rank-sum tests were used to compare distribution shifts in the changes from baseline between treatment arms and linear regression models to assess associations between BDG and measures of inflammation, body composition, and insulin resistance. RESULTS Two hundred thirty-one participants were randomized; 90% were male, the median age was 36 years, HIV-1 RNA was 4.56 log10c/mL, and CD4 cell count was 338 cells/mm3. There was an overall increase in BDG over 96 weeks (1.57 mean fold-change; 95% confidence interval, 1.39 to 1.77) with no differences between arms. Twofold higher BDG levels at week 96 were associated with increases in trunk fat (8%) and total fat (7%) over 96 weeks (P ≤ .035). At week 4, BDG correlated with I-FABP, a marker of enterocyte damage, and zonulin, a marker of intestinal permeability (r = .19-.20; P < .01). CONCLUSIONS In treatment-naïve participants initiating antiretroviral therapy (ART) with TDF/FTC and either RAL or ATV/r, DRV/r, BDG, a marker of fungal translocation, increased similarly in all arms over 96 weeks. This may represent continued intestinal damage during ART and resulting fungal translocation. Higher BDG was associated with larger fat gains on ART.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
- Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, Ohio, USA
| | - Carlee Moser
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Katherine Rodriguez
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vanessa El-Kamari
- University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, Ohio, USA
| | - Nicholas T Funderburg
- College of Medicine, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - Emily Bowman
- College of Medicine, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - Todd T Brown
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter W Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Judith Currier
- Department of Medicine, UCLA, Los Angeles, California, USA
| | - Grace A McComsey
- University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
- Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, Ohio, USA
| |
Collapse
|
32
|
The Dysbiosis and Inter-Kingdom Synergy Model in Oropharyngeal Candidiasis, a New Perspective in Pathogenesis. J Fungi (Basel) 2019; 5:jof5040087. [PMID: 31546600 PMCID: PMC6958497 DOI: 10.3390/jof5040087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
As more information emerges on oral microbiota using advanced sequencing methodologies, it is imperative to examine how organisms modulate the capacity of each other to colonize or trigger infection. Most mouse models of oral C. albicans infection have focused on interactions with single bacterial species. Thus, little is known about the microbiome-mediated interactions that control the switch of C. albicans from commensalism to infection. Evidence is accumulating that in immunosuppression where mucosal candidiasis is more prevalent, there is an altered oral bacterial microbiome with reduced diversity, but not an altered mycobiome. Oropharyngeal candidiasis in immunosuppressed humans and mice is associated with a further reduction in oral bacterial diversity and a dysbiotic shift with significant enrichment of streptococcal and enterococcal species. Our recent studies in a cancer chemotherapy mouse model supported the combined profound effect of immunosuppression and C. albicans in reducing oral bacterial diversity and provided the first direct evidence that these changes contribute to pathogenesis, representing dysbiosis. There is still a gap in understanding the relationship between Candida and the oral bacterial microbiome. We propose that certain oral commensal bacteria contribute to fungal pathogenesis and we identify gaps in our understanding of the mechanisms involved in this cooperative virulence.
Collapse
|
33
|
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 2019; 17:225. [PMID: 31307469 PMCID: PMC6632217 DOI: 10.1186/s12967-019-1971-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The human microbiome harbors a diverse array of microbes which establishes a mutually beneficial relation with the host in healthy conditions, however, the dynamic homeostasis is influenced by both host and environmental factors. Smoking contributes to modifications of the oral, lung and gut microbiome, leading to various diseases, such as periodontitis, asthma, chronic obstructive pulmonary disease, Crohn’s disease, ulcerative colitis and cancers. However, the exact causal relationship between smoking and microbiome alteration remains to be further explored.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China. .,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
34
|
Jiménez-Hernández N, Serrano-Villar S, Domingo A, Pons X, Artacho A, Estrada V, Moya A, Gosalbes MJ. Modulation of Saliva Microbiota through Prebiotic Intervention in HIV-Infected Individuals. Nutrients 2019; 11:nu11061346. [PMID: 31208015 PMCID: PMC6627446 DOI: 10.3390/nu11061346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is characterized by an early depletion of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth, few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics were performed. We studied the effect of a six-week-long prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing with Illumina methodology. At baseline, the different groups shared the same most abundant genera, but the HIV status had an impact on the saliva microbiota composition and diversity parameters. After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters, as well as a change of beta diversity, without a clear directionality toward a healthy microbiota. Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota. On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting a drag of microorganisms from the upper to the lower gastrointestinal tract.
Collapse
Affiliation(s)
- Nuria Jiménez-Hernández
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
| | - Sergio Serrano-Villar
- Departamento de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Alba Domingo
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Xavier Pons
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Alejandro Artacho
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Vicente Estrada
- Unidad de Enfermedades Infecciosas/Medicina Interna, Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, 28040 Madrid, Spain.
| | - Andrés Moya
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
- Instituto de Biología Integrativa de Sistemas, Universidad de Valencia y CSIC, 46980 Paterna, Valencia, Spain.
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
| |
Collapse
|
35
|
Stinson LF, Boyce MC, Payne MS, Keelan JA. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front Microbiol 2019; 10:1124. [PMID: 31231319 PMCID: PMC6558212 DOI: 10.3389/fmicb.2019.01124] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
The human microbiome includes trillions of bacteria, many of which play a vital role in host physiology. Numerous studies have now detected bacterial DNA in first-pass meconium and amniotic fluid samples, suggesting that the human microbiome may commence in utero. However, these data have remained contentious due to underlying contamination issues. Here, we have used a previously described method for reducing contamination in microbiome workflows to determine if there is a fetal bacterial microbiome beyond the level of background contamination. We recruited 50 women undergoing non-emergency cesarean section deliveries with no evidence of intra-uterine infection and collected first-pass meconium and amniotic fluid samples. Full-length 16S rRNA gene sequencing was performed using PacBio SMRT cell technology, to allow high resolution profiling of the fetal gut and amniotic fluid bacterial microbiomes. Levels of inflammatory cytokines were measured in amniotic fluid, and levels of immunomodulatory short chain fatty acids (SCFAs) were quantified in meconium. All meconium samples and most amniotic fluid samples (36/43) contained bacterial DNA. The meconium microbiome was dominated by reads that mapped to Pelomonas puraquae. Aside from this species, the meconium microbiome was remarkably heterogeneous between patients. The amniotic fluid microbiome was more diverse and contained mainly reads that mapped to typical skin commensals, including Propionibacterium acnes and Staphylococcus spp. All meconium samples contained acetate and propionate, at ratios similar to those previously reported in infants. P. puraquae reads were inversely correlated with meconium propionate levels. Amniotic fluid cytokine levels were associated with the amniotic fluid microbiome. Our results demonstrate that bacterial DNA and SCFAs are present in utero, and have the potential to influence the developing fetal immune system.
Collapse
Affiliation(s)
- Lisa F Stinson
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mary C Boyce
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Rosenbaum J, Usyk M, Chen Z, Zolnik CP, Jones HE, Waldron L, Dowd JB, Thorpe LE, Burk RD. Evaluation of Oral Cavity DNA Extraction Methods on Bacterial and Fungal Microbiota. Sci Rep 2019; 9:1531. [PMID: 30728424 PMCID: PMC6365504 DOI: 10.1038/s41598-018-38049-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate the most effective method of DNA extraction of oral mouthwash samples for use in microbiome studies that utilize next generation sequencing (NGS). Eight enzymatic and mechanical DNA extraction methods were tested. Extracted DNA was amplified using barcoded primers targeting the V6 variable region of the bacterial 16S rRNA gene and the ITS1 region of the fungal ribosomal gene cluster and sequenced using the Illumina NGS platform. Sequenced reads were analyzed using QIIME and R. The eight methods yielded significantly different quantities of DNA (p < 0.001), with the phenol-chloroform extraction method producing the highest total yield. There were no significant differences in observed bacterial or fungal Shannon diversity (p = 0.64, p = 0.93 respectively) by extraction method. Bray-Curtis beta-diversity did not demonstrate statistically significant differences between the eight extraction methods based on bacterial (R2 = 0.086, p = 1.00) and fungal (R2 = 0.039, p = 1.00) assays. No differences were seen between methods with or without bead-beating. These data indicate that choice of DNA extraction method affect total DNA recovery without significantly affecting the observed microbiome.
Collapse
MESH Headings
- Biodiversity
- DNA Barcoding, Taxonomic
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Fungal/analysis
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Ribosomal Spacer/analysis
- DNA, Ribosomal Spacer/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Microbiota
- Mouth/microbiology
- Mycobiome
- Pilot Projects
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jennifer Rosenbaum
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zigui Chen
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Christine P Zolnik
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biology, Long Island University, Brooklyn, NY, USA
| | - Heidi E Jones
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Jennifer B Dowd
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
- Department of Global Health and Social Medicine, King's College London, London, UK
| | - Lorna E Thorpe
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
- NYU School of Medicine, Department of Population Health, New York, NY, USA
| | - Robert D Burk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Obstetrics & Gynecology and Women's Health, Epidemiology and Population Health, and Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|