1
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
2
|
Du X, Qi Z, Chen S, Wu J, Xu Y, Hu S, Yu Z, Hou J, Fang Y, Xia J, Cao X. Synthetic Retinoid Sulfarotene Selectively Inhibits Tumor-Repopulating Cells of Intrahepatic Cholangiocarcinoma via Disrupting Cytoskeleton by P-Selectin/PSGL1 N-Glycosylation Blockage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407519. [PMID: 39605300 PMCID: PMC11744644 DOI: 10.1002/advs.202407519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal malignancy that currently lacks effective clinical treatments. Eliminating stem cell-like cancer cells is an extremely promising but challenging strategy for treating ICC. A recently developed synthetic retinoid, sulfarotene, abrogates proliferation, and induces apoptosis of tumor-repopulating cells (TRCs) that exhibit stem cell-like properties, yet its effect and underlying mechanisms remain elusive in ICC. It is found that although 5-fluorouracil, cisplatin, pemigatinib, and gemcitabine all inhibit ICC-TRCs, sulfarotene demonstrates superior efficacy. Sulfarotene induces retinoic acid receptor alpha (RARɑ) translocation from the cytoplasm to the nucleus, suppressing P-selectin expression at the transcriptional level. Moreover, it directly interacts with fucosyltransferase 8 (FUT8), inhibiting the core fucosylation of P-selectin glycoprotein ligand 1 (PSGL1). These actions collectively inhibit ICC-TRCs via destroying PSGL1-regulated cytoskeleton. The findings provide a strategy of inhibiting P-selectin/PSGL1 interaction and altering PSGL1 glycosylation pattern to compromise the cytoskeletal integrity and eliminate ICC-TRCs.
Collapse
Affiliation(s)
- Xiaojing Du
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Endoscopy CenterShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuoran Qi
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sinuo Chen
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Jinlan Wu
- Department of PediatricsJiading District Central HospitalShanghai201800China
| | - Ye Xu
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sunkuan Hu
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Wenzhou Key Laboratory of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jiayun Hou
- Biomedical Research CenterZhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghai200032China
| | - Yuan Fang
- Department of Liver SurgeryKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghai200032China
| | - Jinglin Xia
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
4
|
Xin Z, Wen X, Zhou M, Lin H, Liu J. Identification of molecular characteristics of FUT8 and alteration of core fucosylation in kidney renal clear cell cancer. Aging (Albany NY) 2024; 16:2299-2319. [PMID: 38277230 PMCID: PMC10911337 DOI: 10.18632/aging.205482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. METHODS The alterations of CF-related genes were summarized in pan-cancer. The "ConsensusClusterPlus" package was utilized to identify two CF-related KIRC subtypes. The "ssgsea" function was chosen to estimate the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune responses. The "oncoPredict" was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were scrutinized to evaluate the CF state. RESULTS In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and fibroblast cells. CONCLUSIONS Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited elevated expression in KIRC samples.
Collapse
Affiliation(s)
- Zhu Xin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyu Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Mengying Zhou
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
6
|
Vlad DB, Dumitrascu DI, Dumitrascu AL. Golgi's Role in the Development of Possible New Therapies in Cancer. Cells 2023; 12:1499. [PMID: 37296620 PMCID: PMC10252985 DOI: 10.3390/cells12111499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The Golgi apparatus is an important organelle found in most eukaryotic cells. It plays a vital role in the processing and sorting of proteins, lipids and other cellular components for delivery to their appropriate destinations within the cell or for secretion outside of the cell. The Golgi complex also plays a role in the regulation of protein trafficking, secretion and post-translational modifications, which are significant in the development and progression of cancer. Abnormalities in this organelle have been observed in various types of cancer, although research into chemotherapies that target the Golgi apparatus is still in its early stages. There are a few promising approaches that are being investigated: (1) Targeting the stimulator of interferon genes protein: The STING pathway senses cytosolic DNA and activates several signaling events. It is regulated by numerous post-translational modifications and relies heavily on vesicular trafficking. Based on some observations which state that a decreased STING expression is present in some cancer cells, agonists for the STING pathway have been developed and are currently being tested in clinical trials, showing encouraging results. (2) Targeting glycosylation: Altered glycosylation, which refers to changes in the carbohydrate molecules that are attached to proteins and lipids in cells, is a common feature of cancer cells, and there are several methods that thwart this process. For example, some inhibitors of glycosylation enzymes have been shown to reduce tumor growth and metastasis in preclinical models of cancer. (3) Targeting Golgi trafficking: The Golgi apparatus is responsible for the sorting and trafficking of proteins within the cell, and disrupting this process may be a potential therapeutic approach for cancer. The unconventional protein secretion is a process that occurs in response to stress and does not require the involvement of the Golgi organelles. P53 is the most frequently altered gene in cancer, dysregulating the normal cellular response to DNA damage. The mutant p53 drives indirectly the upregulation of the Golgi reassembly-stacking protein 55kDa (GRASP55). Through the inhibition of this protein in preclinical models, the reduction of the tumoral growth and metastatic capacity have been obtained successfully. This review supports the hypothesis that the Golgi apparatus may be the target of cytostatic treatment, considering its role in the molecular mechanisms of the neoplastic cells.
Collapse
Affiliation(s)
- Dragos-Bogdan Vlad
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
| | - David-Ioan Dumitrascu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alina-Laura Dumitrascu
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Mezher M, Abdallah S, Ashekyan O, Shoukari AA, Choubassy H, Kurdi A, Temraz S, Nasr R. Insights on the Biomarker Potential of Exosomal Non-Coding RNAs in Colorectal Cancer: An In Silico Characterization of Related Exosomal lncRNA/circRNA–miRNA–Target Axis. Cells 2023; 12:cells12071081. [PMID: 37048155 PMCID: PMC10093117 DOI: 10.3390/cells12071081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types, ranking third after lung and breast cancers. As such, it demands special attention for better characterization, which may eventually result in the development of early detection strategies and preventive measures. Currently, components of bodily fluids, which may reflect various disease states, are being increasingly researched for their biomarker potential. One of these components is the circulating extracellular vesicles, namely, exosomes, which are demonstrated to carry various cargo. Of importance, the non-coding RNA cargo of circulating exosomes, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs), may potentially serve as significant diagnostic and prognostic/predictive biomarkers. In this review, we present existing evidence on the diagnostic and prognostic/predictive biomarker value of exosomal non-coding RNAs in CRC. In addition, taking advantage of the miRNA sponging functionality of lncRNAs and circRNAs, we demonstrate an experimentally validated CRC exosomal non-coding RNA-regulated target gene axis benefiting from published miRNA sponging studies in CRC. Hence, we present a set of target genes and pathways downstream of the lncRNA/circRNA–miRNA–target axis along with associated significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may collectively serve to better characterize CRC and shed light on the significance of exosomal non-coding RNAs in CRC diagnosis and prognosis/prediction.
Collapse
Affiliation(s)
- Maria Mezher
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ohanes Ashekyan
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hayat Choubassy
- Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
8
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
9
|
Zhang L, Chen Y, Wang Y, Kong F, Zhu L. A Novel Glycolysis-Related Gene Signature Predicts Prognosis For Cutaneous Melanoma. Comb Chem High Throughput Screen 2023; 26:965-978. [PMID: 35619291 DOI: 10.2174/1386207325666220520105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There exists a lack of effective tools predicting prognosis for cutaneous melanoma patients. Glycolysis plays an essential role in the carcinogenesis process. OBJECTIVE We intended to construct a new prognosis model for cutaneous melanoma. METHODS Based on the data from the TCGA database, we conducted a univariate Cox regression analysis and identified prognostic glycolysis-related genes (GRGs). Meanwhile, the GSE15605 dataset was used to identify differentially expressed genes (DEGs). The intersection of prognostic GRGs and DEGs was extracted for the subsequent multivariate Cox regression analysis. RESULTS A prognostic signature containing ten GRGs was built, and the TCGA cohort was classified into high and low risk subgroups based on the risk score of each patient. K-M analysis manifested that the overall survival of the high-risk group was statistically worse than that of the lowrisk group. Further study indicated that the risk-score could be used as an independent prognostic factor that effectively predicted the clinical prognosis in patients of different ages, genders, and stages. GO and KEGG enrichment analysis showed DEGs between high and low risk groups were enriched in immune-related functions and pathways. In addition, a significant difference existed between high and low risk groups in infiltration pattern of immune cells and expression levels of inhibitory immune checkpoint genes. CONCLUSION A new glycolysis-related gene signature was established for identifying cutaneous melanoma patients with poor prognoses and formulating individualized treatment.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Oncology, Sir Run Run Hospital, Nanjing 211166, China
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Chen
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feifei Kong
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingjun Zhu
- Department of Oncology, Sir Run Run Hospital, Nanjing 211166, China
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Lv Y, Zhang Z, Tian S, Wang W, Li H. Therapeutic potential of fucosyltransferases in cancer and recent development of targeted inhibitors. Drug Discov Today 2023; 28:103394. [PMID: 36223858 DOI: 10.1016/j.drudis.2022.103394] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
11
|
Gong YZ, Ma H, Ruan GT, Zhu LC, Liao XW, Wang S, Yan L, Huang W, Huang KT, Xie H, Zhu GZ, Wang XK, Liao C, Gao F. Diagnosis and prognostic value of C-X-C motif chemokine ligand 1 in colon adenocarcinoma based on The Cancer Genome Atlas and Guangxi cohort. J Cancer 2021; 12:5506-5518. [PMID: 34405013 PMCID: PMC8364656 DOI: 10.7150/jca.51524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: The objective was to identify and validate C-X-C motif chemokine ligand 1(CXCL1) for diagnosis and prognosis in colon adenocarcinoma (COAD). Methods: Our current study had enrolled one The Cancer Genome Atlas (TCGA) cohort and two Guangxi cohorts to identify and verify the diagnostic and prognostic values of CXCL1 in COAD. Functional enrichment was performed by gene set enrichment analysis (GSEA). Results: In TCGA cohort, the expression of CXCL1 was significantly up-regulated in tumor tissues and decreased as the tumor stage developed. The receiver operating characteristic (ROC) curve showed that CXCL1 had a high diagnostic value for COAD. The result of Kaplan-Meier survival analysis showed that CXCL1 gene expression (P=0.045) was significantly correlated with overall survival (OS) of COAD. Results of Guangxi cohort also verified the diagnostic value of CXCL1 in COAD, and sub-group survival analyses also suggested that patients with high CXCL1 expression were related to a favorable OS (Corrected P=0.005). GSEA revealed that CXCL1 high expression phenotype was related to cytokine activity, cell apoptosis, P53 regulation pathway, and regulation of autophagy in COAD. Conclusions: In this study, we found that CXCL1 gene might be a potential diagnostic biomarker for COAD, and might serve as a prognostic biomarker for specific subgroup of COAD.
Collapse
Affiliation(s)
- Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Ma
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke-Tuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hailun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
12
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
13
|
Huang Y, Zhang HL, Li ZL, Du T, Chen YH, Wang Y, Ni HH, Zhang KM, Mai J, Hu BX, Huang JH, Zhou LH, Yang D, Peng XD, Feng GK, Tang J, Zhu XF, Deng R. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun 2021; 12:2672. [PMID: 33976130 PMCID: PMC8113546 DOI: 10.1038/s41467-021-22618-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Most patients with triple negative breast cancer (TNBC) do not respond to anti-PD1/PDL1 immunotherapy, indicating the necessity to explore immune checkpoint targets. B7H3 is a highly glycosylated protein. However, the mechanisms of B7H3 glycosylation regulation and whether the sugar moiety contributes to immunosuppression are unclear. Here, we identify aberrant B7H3 glycosylation and show that N-glycosylation of B7H3 at NXT motif sites is responsible for its protein stability and immunosuppression in TNBC tumors. The fucosyltransferase FUT8 catalyzes B7H3 core fucosylation at N-glycans to maintain its high expression. Knockdown of FUT8 rescues glycosylated B7H3-mediated immunosuppressive function in TNBC cells. Abnormal B7H3 glycosylation mediated by FUT8 overexpression can be physiologically important and clinically relevant in patients with TNBC. Notably, the combination of core fucosylation inhibitor 2F-Fuc and anti-PDL1 results in enhanced therapeutic efficacy in B7H3-positive TNBC tumors. These findings suggest that targeting the FUT8-B7H3 axis might be a promising strategy for improving anti-tumor immune responses in patients with TNBC.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tian Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan-He Ni
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai-Ming Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Huan Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
14
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
15
|
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int J Mol Sci 2021; 22:E455. [PMID: 33466384 PMCID: PMC7795606 DOI: 10.3390/ijms22010455] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
Collapse
Affiliation(s)
- Kayla Bastian
- Institute of Biosciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; (E.S.); (D.J.E.); (J.M.)
| | | | | | | |
Collapse
|
16
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Ma M, Han G, Wang Y, Zhao Z, Guan F, Li X. Role of FUT8 expression in clinicopathology and patient survival for various malignant tumor types: a systematic review and meta-analysis. Aging (Albany NY) 2020; 13:2212-2230. [PMID: 33323540 PMCID: PMC7880376 DOI: 10.18632/aging.202239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Dysregulation of α(1,6)-fucosyltransferase (FUT8) plays significant roles in development of a variety of malignant tumor types. We collected as many relevant articles and microarray datasets as possible to assess the prognostic value of FUT8 expression in malignant tumors. For this purpose, we systematically searched PubMed, Embase, Web of Science, Springer, Chinese National Knowledge Infrastructure (CNKI), and Wan Fang, and eventually identified 7 articles and 35 microarray datasets (involving 6124 patients and 10 tumor types) for inclusion in meta-analysis. In each tumor type, FUT8 expression showed significant (p< 0.05) correlation with one or more clinicopathological parameters; these included patient gender, molecular subgroup, histological grade, TNM stage, estrogen receptor, progesterone receptor, and recurrence status. In regard to survival prognosis, FUT8 expression level was associated with overall survival in non-small cell lung cancer (NSCLC), breast cancer, diffuse large B cell lymphoma, gastric cancer, and glioma. FUT8 expression was also correlated with disease-free survival in NSCLC, breast cancer, and colorectal cancer, and with relapse-free survival in pancreatic ductal adenocarcinoma. For most tumor types, survival prognosis of patients with high FUT8 expression was related primarily to clinical features such as gender, tumor stage, age, and pathological category. Our systematic review and meta-analysis confirmed the association of FUT8 with clinicopathological features and patient survival rates for numerous malignant tumor types. Verification of prognostic value of FUT8 in these tumor types will require a large-scale study using standardized methods of detection and analysis.
Collapse
Affiliation(s)
- Minxing Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoxiong Han
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ziyan Zhao
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1875:188464. [PMID: 33157161 DOI: 10.1016/j.bbcan.2020.188464] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Glycosylation is a well-regulated cell and microenvironment specific post-translational modification. Several glycosyltransferases and glycosidases orchestrate the addition of defined glycan structures on the proteins and lipids. Recent advances and systemic approaches in glycomics have significantly contributed to a better understanding of instrumental roles of glycans in health and diseases. Emerging research evidence recognized aberrantly glycosylated proteins as the modulators of the malignant phenotype of cancer cells. The Cancer Genome Atlas has identified alterations in the expressions of glycosylation-specific genes that are correlated with cancer progression. However, the mechanistic basis remains poorly explored. Recent researches have shown that specific changes in the glycan structures are associated with 'stemness' and epithelial-to-mesenchymal transition of cancer cells. Moreover, epigenetic changes in the glycosylation pattern make the tumor cells capable of escaping immunosurveillance mechanisms. The deciphering roles of glycans in cancer emphasize that glycans can serve as a source for the development of novel clinical biomarkers. The ability of glycans in intervening various stages of tumor progression and the biosynthetic pathways involved in glycan structures constitute a promising target for cancer therapy. Advances in the knowledge of innovative strategies for identifying the mechanisms of glycan-binding proteins are hoped to hold great potential in cancer therapy. This review discusses the fundamental role of glycans in regulating tumorigenesis and tumor progression and provides insights into the influence of glycans in the current tactics of targeted therapies in the clinical setting.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
20
|
Chen X, Li GX, Fang JH, Xu SN, Gao YF, Sun YT. Fucosylation in the intestinal mucosa and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2020; 28:920-924. [DOI: 10.11569/wcjd.v28.i18.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an unexplained, abnormal immune mediated chronic and recurrent inflammatory disorder of the intestine. Fucosylation in the intestinal mucosal is the process of transferring fucose to intestinal mucosal protein side chains under the control of fucosyltransferases to form fucosyl bonds. The mechanism of fucosylation in the intestinal mucosa in IBD has not been fully proved. In this paper, we will review the progress in understanding the relationship between fucosylation in the intestinal mucosa and IBD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| | - Guo-Xiong Li
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| | - Jia-Heng Fang
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| | - Si-Nan Xu
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| | - Yu-Fei Gao
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| | - Yi-Tian Sun
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310011, Zhejiang Province, China
| |
Collapse
|
21
|
Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. lncRNA-miRNA-mRNA interaction network for colorectal cancer; An in silico analysis. Comput Biol Chem 2020; 89:107370. [PMID: 32932199 DOI: 10.1016/j.compbiolchem.2020.107370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequent and diagnosed diseases. Accumulating evidences showed that mRNAs and noncoding RNAs play important regulatory roles in tumorigenesis. Identification and determining the relationship between them can help diagnosis and treatment of cancer. METHODS Here we analyzed three microarray datasets; GSE110715, GSE32323 and GSE21510, to identify differentially expressed lncRNAs and mRNAs in CRC. The adjusted p-value ≤0.05 was considered statistically significant. Gene set enrichment analysis was carried out using DAVID tool. The miRCancer database was searched to obtain differentially expressed miRNAs in colorectal cancer, and the miRDB database was used to attain the targets of the obtained miRNAs. To predict the lncRNA-miRNA interactions we used DIANA-LncBase v2 and RegRNA 2.0. Finally the lncRNA-miRNA-mRNA-signaling pathway network was constructed using Cytoscape v3.1. RESULTS By analyzing the three datasets, a total of 21 mRNAs (15 up- and 6 down-regulated) and 24 lncRNAs (18 up- and 6 down-regulated) were identified as common differentially expressed genes between CRC tumor and marginal tissues. Nevertheless, the constructed lncRNA-miRNA-mRNA-signaling pathway network revealed a convergence on 6 lncRNAs (3 up- and 3 downregulated), 7 mRNAs (2 up- and 5 downregulated) and 6 miRNAs (3 up- and 3 downregulated). We found that dysregulation of lncRNAs such as PCBP1-AS1, UCA1 and SNHG16 could sequester several miRNAs such as hsa-miR-582-5p and hsa-miR-198 and promote the proliferation, invasion and drug resistance of colorectal cancer cells. CONCLUSIONS We introduced a set of lncRNAs, mRNAs and miRNAs differentially expressed in CRC which might be considered for further experimental research as potential biomarkers of CRC development.
Collapse
Affiliation(s)
- Tayyebeh Ghasemi
- Dept. of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Parviz Asadi
- Gastroenterology ward, Shahid Mahallati Hospital, Tabriz, Iran
| |
Collapse
|
22
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
23
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
24
|
Overexpression of TP53 protein is associated with the lack of adjuvant chemotherapy benefit in patients with stage III colorectal cancer. Mod Pathol 2020; 33:483-495. [PMID: 31471586 DOI: 10.1038/s41379-019-0353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
TP53 mutations drive colorectal cancer development, with missense mutations frequently leading to accumulation of abnormal TP53 protein. TP53 alterations have been associated with poor prognosis and chemotherapy resistance, but data remain controversial. Here, we examined the predictive utility of TP53 overexpression in the context of current adjuvant treatment practice for patients with stage III colorectal cancer. A prospective cohort of 264 stage III patients was tested for association of TP53 expression with 5-year disease-free survival, grouped by adjuvant treatment. Findings were validated in an independent retrospective cohort of 274 stage III patients. Overexpression of TP53 protein (TP53+) was found in 53% and 52% of cases from the prospective and retrospective cohorts, respectively. Among patients receiving adjuvant chemotherapy, TP53+ status was associated with shorter disease-free survival (p ≤ 0.026 for both cohorts), while no difference in outcomes between TP53+ and TP53- cases was observed for patients treated with surgery alone. Considering patients with TP53- tumors, those receiving adjuvant treatment had better outcomes compared with those treated with surgery alone (p ≤ 0.018 for both cohorts), while no treatment benefit was apparent for patients with TP53+ tumors. Combined cohort-stratified analysis adjusted for clinicopathological variables and DNA mismatch repair status confirmed a significant interaction between TP53 expression and adjuvant treatment for disease-free survival (pinteraction = 0.030). For the combined cohort, the multivariate hazard ratio for TP53 overexpression among patients receiving adjuvant chemotherapy was 2.03 (95% confidence interval 1.41-2.95, p < 0.001), while the hazard ratio for adjuvant treatment among patients with TP53- tumors was 0.42 (95% confidence interval 0.24-0.71, p = 0.001). Findings were maintained irrespective of tumor location or when restricted to mismatch repair-proficient tumors. Our data suggest that adjuvant chemotherapy benefit in stage III colorectal cancer is restricted to cases with low-level TP53 protein expression. Identifying TP53+ tumors could highlight patients that may benefit from more aggressive treatment or follow-up.
Collapse
|
25
|
Zhang X, Wu J, Wang L, Zhao H, Li H, Duan Y, Li Y, Xu P, Ran W, Xing X. HER2 and BRAF mutation in colorectal cancer patients: a retrospective study in Eastern China. PeerJ 2020; 8:e8602. [PMID: 32095377 PMCID: PMC7023828 DOI: 10.7717/peerj.8602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the frequency and prognostic role of the human epidermal growth factor receptor 2 gene (HER2) and BRAF V600E gene mutation in Chinese patients with colorectal cancer (CRC). Methods Clinicopathological and survival information from 480 patients with stage I–III CRC were reviewed and recorded. HER2 amplification was analyzed by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), BRAF V600E mutation was tested by IHC and Sanger sequencing. The relationship between HER2 and BRAF V600E mutation status and clinicopathological characteristics and outcomes were determined. Results The amplification of HER2 and BRAF V600E mutation were identified in 27 of 480 (5.63%) and 19 of 480 (3.96%) CRC patients, respectively. HER2 amplification significantly correlated with greater bowel wall invasion (P = 0.041) and more advanced TNM stage (I vs. II vs. III; 0 vs 5.78% vs. 7.41%, P = 0.013). Patients suffering from tumors with poor differentiation had a higher incidence rate of BRAF V600E mutation than those with moderate/well differentiation (7.77% vs 2.92%, P = 0.04). HER2 amplification was an independent prognostic factor for worse disease-free survival (DFS) (HR = 2.53, 95% CI: 1.21–5.30, P = 0.014). Conclusion The prevalence of HER2 amplification and BRAF V600E mutation in stage I–III CRC patients in Chinese was 6% and 4%, respectively, and HER2 amplification appeared to be associated with a worse DFS. More comprehensive molecular classification and survival analysis are needed to validate our findings.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Wu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuhe Duan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Xu
- Department of Obstetrics, Laixi People's Hospital, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Ruan GT, Gong YZ, Liao XW, Wang S, Huang W, Wang XK, Zhu GZ, Liao C, Gao F. Diagnostic and prognostic values of C‑X‑C motif chemokine ligand 3 in patients with colon cancer. Oncol Rep 2019; 42:1996-2008. [PMID: 31545503 PMCID: PMC6787997 DOI: 10.3892/or.2019.7326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
The diagnostic and prognostic mechanisms of C-X-C motif chemokine ligand 3 (CXCL3) in colon cancer (CC) have not yet been reported. Therefore, the objective of the present study was to use cohorts of patients from Guangxi Medical University and the Gene Expression Omnibus (GEO) database to investigate and validate CXCL3 for the diagnosis and prognosis of CC, and to explore its prospective molecular mechanism. Reverse transcription-quantitative PCR (RT-qPCR) analysis of 38 paired tumor and non-tumor tissues, and immunohistochemistry (IHC) of 212 tumor and 46 non-tumor tissues was conducted to explore the expression of CXCL3 and its diagnostic and prognostic significance in the Guangxi Medical University CC cohort. A GEO dataset, GSE40967, was used to validate the prognostic significance of CXCL3. Gene set enrichment analysis (GSEA) was also conducted to explore the potential molecular mechanisms underlying the effects of CXCL3 in CC. The RT-qPCR results indicated that CXCL3 expression was significantly higher in cancer tissues compared with adjacent normal tissues, suggesting that it may have high diagnostic value for CC. Multivariate Cox analysis based on the IHC results suggested that there was no appreciable association between CXCL3 positivity and the overall survival (OS) time of CC. However, a stratified analysis revealed that high expression of CXCL3 was associated with considerably increased mortality in the subgroup of CC patients with tumor size <5 cm (adjusted P=0.042, adjusted HR=2.298, 95% CI=1.030–5.126) and with tumor thrombus (adjusted P=0.019, adjusted HR=5.096, 95% CI=1.306–19.886). In the GSE40967 dataset, high expression of CXCL3 was closely associated with poor OS in CC (adjusted P=0.049, adjusted HR=1.416, 95% CI=1.002–2.003). Furthermore, GSEA indicated that the high expression of CXCL3 was closely associated with DNA repair, cell cycle process, cell apoptosis process and the P53 regulation pathway. In summary, these result suggest that CXCL3 might serve as a novel biomarker in the diagnosis and prognosis of CC.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Liu D, Gao Z, Yue L. Fucosyltransferase 8 deficiency suppresses breast cancer cell migration by interference of the FAK/integrin pathway. Cancer Biomark 2019; 25:303-311. [DOI: 10.3233/cbm-190209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Wu Y, Chen X, Wang S, Wang S. Advances in the relationship between glycosyltransferases and multidrug resistance in cancer. Clin Chim Acta 2019; 495:417-421. [PMID: 31102590 DOI: 10.1016/j.cca.2019.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Despite great progress in clinical treatment, cancer remains a serious health problem contributing to significant morbidity and mortality worldwide. Although chemotherapy is a common therapeutic measure, multidrug resistance (MDR) presents a major challenge that often leads to poor prognosis. The abnormal expression of glycosyltransferases (GTs) leading to aberrant glycosylation patterns are considered a marker of cancer. Furthermore, the biosynthesis of these glycoconjugates has been associated with tumor proliferation, invasion and metastasis. Recently, studies have found that GTs are involved in mediating MDR in cancer cells through complex mechanisms and can influence therapeutic effect. In this review, we focus on several types of cancers and summarize previous studies on the correlation between GTs and MDR.
Collapse
Affiliation(s)
- Yinshuang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China
| | - Xixi Chen
- Department of Biological Sciences, School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
29
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Zhang Q, Wang L, Huang D, Xu M, Weng W, Ni S, Tan C, Sheng W. Pathological risk factors for lymph node metastasis in patients with submucosal invasive colorectal carcinoma. Cancer Manag Res 2019; 11:1107-1114. [PMID: 30774439 PMCID: PMC6361223 DOI: 10.2147/cmar.s181740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Risk grade assessment determines therapy in patients with submucosal invasive colorectal carcinoma (CRC). However, treatment decisions are often difficult due to a lack of consensus on which risk factors should be considered. We aimed to identify predictive risk factors for lymph node metastasis (LNM) in a large cohort of submucosal invasive CRC patients from China. Patients and methods Following collection of clinicopathological data and disease-free survival (DFS) rates from 290 patients who underwent radical intestinal resection with regional lymphadenectomy, we immunohistochemically assessed expression of DNA mismatch repair (MMR) proteins and p53. The correlation between clinicopathological parameters, MMR expression, p53 status, and LNM status was determined using chi-squared tests and logistic analysis. Receiver operator characteristic curve analysis was used to compare the predictive values. The DFS curves were plotted using the Kaplan-Meier method. Results LNM was detected in 15.5% of the cases (45/290 patients). Three pathological characteristics, high tumor differentiation grade, lymphovascular invasion (LVI), and tumor budding, were all positively related to LNM in univariate and multivariate analyses (P<0.05). MMR status did not correlate with either LNM or the pathological characteristics (P>0.05). Overexpression of p53 was associated with tumor budding status (P=0.036). With a negative predicative value of 0.92 and area under the curve of 0.76 (95% CI: 0.68-0.85), the combination of these three factors provided optimal predictive ability. Patients with all three risk factors had poorer DFS (P<0.001). Conclusion High tumor grade, LVI, and positive tumor budding serve as useful LNM predictors in submucosal invasive CRC.
Collapse
Affiliation(s)
- Qiongyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, .,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China,
| |
Collapse
|
31
|
Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, Yang J, Liang Y, Chen M, Li Z. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Adv 2019; 9:22064-22073. [PMID: 35518855 PMCID: PMC9066710 DOI: 10.1039/c9ra04341a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequent cancer and the leading cause of cancer around the world. As one of the major types of lung cancer, lung squamous cell carcinoma (LUSC) is closely associated with smoking and shows poor sensitivity to therapy and prognosis. Although alteration of glycopatterns are reliable indicators of cancer, little is known about the alterations of protein glycosylation related to LUSC. In this study, we compared the differential expression levels of glycopatterns in seven pairs of LUSC tissues and normal pericarcinomatous tissues (PCTs) using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were utilized to validate and assess the expression and distribution of certain glycans in LUSC tissues and PCTs. And we further analyzed their total N-linked glycans using MALDI-TOF/TOF-MS to provide more information about the aberrant glycopatterns. The results showed that the expression level of the core fucosylation recognized by Pisum sativum agglutinin (PSA) and Lens culinaris agglutinin (LCA) was significantly increased in LUSC tissues compared with PCTs. There were 10 and 15 fucosylated N-linked glycans that were detected in PCTs and LUSC tissues respectively, 10 fucosylated N-glycans were common, while five fucosylated N-glycans were unique to LUSC tissues. And the abundance of the fucosylated N-glycans was increased from 40.9% (PCTs) to 48.3% (LUSC). These finding is helpful to elucidate the molecular mechanisms underlying the lung diseases and develop new treatment strategies. The expression level of fucosylated and core fucosylated N-linked glycans increased in lung squamous cell carcinoma tissues.![]()
Collapse
|