1
|
Bliven EK, Fung A, Baker A, Fleps I, Ferguson SJ, Guy P, Helgason B, Cripton PA. How accurately do finite element models predict the fall impact response of ex vivo specimens augmented by prophylactic intramedullary nailing? J Orthop Res 2024. [PMID: 39354743 DOI: 10.1002/jor.25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Ingmar Fleps
- Skeletal Mechanobiology & Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Huang Q, Zhou Z, Kleiven S. Effectiveness of energy absorbing floors in reducing hip fractures risk among elderly women during sideways falls. J Mech Behav Biomed Mater 2024; 157:106659. [PMID: 39029349 DOI: 10.1016/j.jmbbm.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Falls among the elderly cause a huge number of hip fractures worldwide. Energy absorbing floors (EAFs) represent a promising strategy to decrease impact force and hip fracture risk during falls. Femoral neck force is an effective predictor of hip injury. However, the biomechanical effectiveness of EAFs in terms of mitigating femoral neck force remains largely unknown. To address this, a whole-body computational model representing a small-size elderly woman with a biofidelic representation of the soft tissue near the hip region was employed in this study, to measure the attenuation in femoral neck force provided by four commercially available EAFs (Igelkott, Kradal, SmartCells, and OmniSports). The body was positioned with the highest hip force with a -10∘ trunk angle and +10∘ anterior pelvis rotation. At a pelvis impact velocity of 3 m/s, the peak force attenuation provided by four EAFs ranged from 5% to 19%. The risk of hip fractures also demonstrates a similar attenuation range. The results also exhibited that floors had more energy transferred to their internal energy demonstrated greater force attenuation during sideways falls. By comparing the biomechanical effectiveness of existing EAFs, these results can improve the floor design that offers better protection performance in high-fall-risk environments for the elderly.
Collapse
Affiliation(s)
- Qi Huang
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Fung A, Fleps I, Cripton PA, Guy P, Ferguson SJ, Helgason B. The efficacy of femoral augmentation for hip fracture prevention using ceramic-based cements: A preliminary experimentally-driven finite element investigation. Front Bioeng Biotechnol 2023; 11:1079644. [PMID: 36777252 PMCID: PMC9909544 DOI: 10.3389/fbioe.2023.1079644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Femoral fractures due to sideways falls continue to be a major cause of concern for the elderly. Existing approaches for the prevention of these injuries have limited efficacy. Prophylactic femoral augmentation systems, particularly those involving the injection of ceramic-based bone cements, are gaining more attention as a potential alternative preventative approach. We evaluated the mechanical effectiveness of three variations of a bone cement injection pattern (basic ellipsoid, hollow ellipsoid, small ellipsoid) utilizing finite element simulations of sideways fall impacts. The basic augmentation pattern was tested with both high- and low-strength ceramic-based cements. The cement patterns were added to the finite element models (FEMs) of five cadaveric femurs, which were then subject to simulated sideways falls at seven impact velocities ranging from 1.0 m/s to 4.0 m/s. Peak impact forces and peak acetabular forces were examined, and failure was evaluated using a strain-based criterion. We found that the basic HA ellipsoid provided the highest increases in both the force at the acetabulum of the impacted femur ("acetabular force", 55.0% ± 22.0%) and at the force plate ("impact force", 37.4% ± 15.8%). Changing the cement to a weaker material, brushite, resulted in reduced strengthening of the femur (45.2% ± 19.4% acetabular and 30.4% ± 13.0% impact). Using a hollow version of the ellipsoid appeared to have no effect on the fracture outcome and only a minor effect on the other metrics (54.1% ± 22.3% acetabular force increase and 35.3% ± 16.0% impact force increase). However, when the outer two layers of the ellipsoid were removed (small ellipsoid), the force increases that were achieved were only 9.8% ± 5.5% acetabular force and 8.2% ± 4.1% impact force. These results demonstrate the importance of supporting the femoral neck cortex to prevent femoral fractures in a sideways fall, and provide plausible options for prophylactic femoral augmentation. As this is a preliminary study, the surgical technique, the possible effects of trabecular bone damage during the augmentation process, and the effect on the blood supply to the femoral head must be assessed further.
Collapse
Affiliation(s)
- Anita Fung
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,*Correspondence: Anita Fung,
| | - Ingmar Fleps
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Peter A. Cripton
- Orthopaedic and Injury Biomechanics Group, School of Biomedical Engineering and Departments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, BC, Canada,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Guy
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada,Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen J. Ferguson
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benedikt Helgason
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Fleps I, Morgan EF. A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning. Curr Osteoporos Rep 2022; 20:309-319. [PMID: 36048316 PMCID: PMC10941185 DOI: 10.1007/s11914-022-00743-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We reviewed advances over the past 3 years in assessment of fracture risk based on CT scans, considering methods that use finite element models, machine learning, or a combination of both. RECENT FINDINGS Several studies have demonstrated that CT-based assessment of fracture risk, using finite element modeling or biomarkers derived from machine learning, is equivalent to currently used clinical tools. Phantomless calibration of CT scans for bone mineral density enables accurate measurements from routinely taken scans. This opportunistic use of CT scans for fracture risk assessment is facilitated by high-quality automated segmentation with deep learning, enabling workflows that do not require user intervention. Modeling of more realistic and diverse loading conditions, as well as improved modeling of fracture mechanisms, has shown promise to enhance our understanding of fracture processes and improve the assessment of fracture risk beyond the performance of current clinical tools. CT-based screening for fracture risk is effective and, by analyzing scans that were taken for other indications, could be used to expand the pool of people screened, therefore improving fracture prevention. Finite element modeling and machine learning both provide valuable tools for fracture risk assessment. Future approaches should focus on including more loading-related aspects of fracture risk.
Collapse
Affiliation(s)
- Ingmar Fleps
- College of Mechanical Engineering, Boston University, Boston, USA.
| | - Elise F Morgan
- College of Mechanical Engineering, Boston University, Boston, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Cirovic A, Cirovic A, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-dimensional mapping of cortical porosity and thickness along the superolateral femoral neck in older women. Sci Rep 2022; 12:15544. [PMID: 36109611 PMCID: PMC9477875 DOI: 10.1038/s41598-022-19866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Although several studies have analyzed inter-individual differences in the femoral neck cortical microstructure, intra-individual variations have not been comprehensively evaluated. By using microCT, we mapped cortical pore volume fraction (Ct.Po) and thickness (Ct.Th) along the superolateral femoral neck in 14 older women (age: 77.1 ± 9.8 years) to identify subregions and segments with high porosity and/or low thickness—potential “critical” spots where a fracture could start. We showed that Ct.Po and Ct.Th significantly differed between basicervical, midcervical, and subcapital subregions of the femoral neck (p < 0.001), where the subcapital subregion showed the lowest mean Ct.Th and the highest mean Ct.Po. These cortical parameters also varied substantially with age and with the location of the analyzed microsegments along the individual’s neck (p < 0.001), showing multiple microsegments with high porosity and/or low thickness. Although the highest ratio of these microsegments was found in the subcapital subregion, they were also present at other examined subregions, which may provide an anatomical basis for explaining the fracture initiation at various sites of the superolateral neck. Given that fractures likely start at structurally and mechanically weaker spots, intra-individual variability in Ct.Po and Ct.Th should be considered and the average values for the entire femoral neck should be interpreted with caution.
Collapse
|
6
|
Aoshima Y, Murakami S, Mizuno K, Otaka Y, Yamada M, Jinzaki M. Analysis of loading to the hip joint in fall using whole-body FE model. J Biomech 2022; 142:111262. [PMID: 36027638 DOI: 10.1016/j.jbiomech.2022.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Hip fractures caused by falls are important health problems for the elderly. Many studies used finite element (FE) models of the femur and its surroundings to evaluate the hip fracture risk during the impact phase in a fall. In this study, the whole-body human FE model (THUMS) of a small female was applied from the descent to the impact phase in a fall to understand the effect of the whole body. Brosh's material model was used for the soft tissue of the hip. A low-BMI and high-BMI model were developed based on THUMS (middle-BMI). For the middle-BMI model, the torso angle and the pelvis impact velocity were 45.2° and 2.62 m/s at the time of pelvis impact. The effective mass changed with time, and was 18.3 kg when the femoral neck force was maximum. The femoral neck force was 2.11 kN for the low-BMI model. The femoral neck forces when wearing a soft and a hard hip protector, and when falling on an energy-absorbing floor were compared for the FE models of human and a hip protector testing system. Though the force attenuation of the protective devices was 32.0-44.3 % in the testing system, the force attenuation in the middle-BMI was 0.1-22.2 %. In the low-BMI model, the attenuation of the soft protector was limited (4.2 %) because the hip protector protruded from the outer surface, so the contact force was concentrated at the hip region. This research suggests the importance of including the whole body to evaluate the hip fracture risk.
Collapse
Affiliation(s)
- Yuhei Aoshima
- Department of Mechanical Systems Engineering, School of Engineering, Nagoya University, Japan
| | - Sotaro Murakami
- Department of Mechanical Systems Engineering, School of Engineering, Nagoya University, Japan
| | - Koji Mizuno
- Department of Mechanical Systems Engineering, School of Engineering, Nagoya University, Japan.
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Japan
| |
Collapse
|
7
|
Effect of osteoporosis-related reduction in the mechanical properties of bone on the acetabular fracture during a sideways fall: A parametric finite element approach. PLoS One 2022; 17:e0263458. [PMID: 35130332 PMCID: PMC8820641 DOI: 10.1371/journal.pone.0263458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose The incidence of acetabular fractures due to low-energy falls is increasing among the geriatric population. Studies have shown that several biomechanical factors such as body configuration, impact velocity, and trochanteric soft-tissue thickness contribute to the severity and type of acetabular fracture. The effect of reduction in apparent density and elastic modulus of bone as well as other bone mechanical properties due to osteoporosis on low-energy acetabular fractures has not been investigated. Methods The current comprehensive finite element study aimed to study the effect of reduction in bone mechanical properties (trabecular, cortical, and trabecular + cortical) on the risk and type of acetabular fracture. Also, the effect of reduction in the mechanical properties of bone on the load-transferring mechanism within the pelvic girdle was examined. Results We observed that while the reduction in the mechanical properties of trabecular bone considerably affects the severity and area of trabecular bone failure, reduction in mechanical properties of cortical bone moderately influences both cortical and trabecular bone failure. The results also indicated that by reducing bone mechanical properties, the type of acetabular fracture turns from elementary to associated, which requires a more extensive intervention and rehabilitation period. Finally, we observed that the cortical bone plays a substantial role in load transfer, and by increasing reduction in the mechanical properties of cortical bone, a greater share of load is transmitted toward the pubic symphysis. Conclusion This study increases our understanding of the effect of osteoporosis progression on the incidence of low-energy acetabular fractures. The osteoporosis-related reduction in the mechanical properties of cortical bone appears to affect both the cortical and trabecular bones. Also, during the extreme reduction in the mechanical properties of bone, the acetabular fracture type will be more complicated. Finally, during the final stages of osteoporosis (high reduction in mechanical properties of bone) a smaller share of impact load is transferred by impact-side hemipelvis to the sacrum, therefore, an osteoporotic pelvis might mitigate the risk of sacral fracture.
Collapse
|
8
|
Fleps I, Pálsson H, Baker A, Enns-Bray W, Bahaloo H, Danner M, Singh NB, Taylor WR, Sigurdsson S, Gudnason V, Ferguson SJ, Helgason B. Finite element derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Bone 2022; 154:116219. [PMID: 34571206 DOI: 10.1016/j.bone.2021.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
Hip fractures associated with a high economic burden, loss of independence, and a high rate of post-fracture mortality, are a major health concern for modern societies. Areal bone mineral density is the current clinical metric of choice when assessing an individual's future risk of fracture. However, this metric has been shown to lack sensitivity and specificity in the targeted selection of individuals for preventive interventions. Although femoral strength derived from computed tomography based finite element models has been proposed as an alternative based on its superior femoral strength prediction ex vivo, such predictions have only shown marginal or no improvement for assessing hip fracture risk. This study compares finite element derived femoral strength to aBMD as a metric for hip fracture risk assessment in subjects (N = 601) from the AGES Reykjavik Study cohort and analyses the dependence of femoral strength predictions and classification accuracy on the material model and femoral loading alignment. We found hip fracture classification based on finite element derived femoral strength to be significantly improved compared to aBMD. Finite element models with non-linear material models performed better at classifying hip fractures compared to finite element models with linear material models and loading alignments with low internal rotation and adduction, which do not correspond to weak femur alignments, were found to be most suitable for hip fracture classification.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
| | - Halldór Pálsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Hassan Bahaloo
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Michael Danner
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Navrag B Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | | | | | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Benedikt Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| |
Collapse
|
9
|
Salem M, Westover L, Adeeb S, Duke K. Prediction of fracture initiation and propagation in pelvic bones. Comput Methods Biomech Biomed Engin 2021; 25:808-820. [PMID: 34587835 DOI: 10.1080/10255842.2021.1981883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective is developing an XFEM model that is capable of predicting different types of fracture in the pelvic bone under various loading conditions. Previously published mechanical and failure characteristics of cortical and cancellous tissues were implemented and assigned to an intact pelvic bone with specified cortical and cancellous tissues. Various loading conditions, including combined load directions, were applied to the acetabulum to model different types of fracture (e.g., anterior/posterior wall fracture and transverse fracture) in the pelvic bone. The predicated types of fracture and the maximum force at fracture were compared to those acquired from previously published experimental tests. Anterior/posterior wall fracture and transverse fracture were the most common types of fractures determined in the simulations. The XFEM simulations were able to predict similar fractures to those reported in the experimental tests. The maximum fracture force in the XFEM model was found to be 18.6 kN compared to 8.85 kN reported in the previous experimental tests. The results revealed that different types of fracture in the pelvic bones can be caused by the various loading conditions in unstable high-rate impact loads. Using proper mechanical and failure behaviors of cortical and cancellous tissues, XFEM modeling of pelvic bone is capable of predicting bone fracture. In future work, the XFEM models of cancellous and cortical tissues can be assigned to other bones in human body skeleton so that the failure mechanism in such bones can be investigated.
Collapse
Affiliation(s)
- Mohammad Salem
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Samer Adeeb
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Kajsa Duke
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
The effect of body configuration on the strain magnitude and distribution within the acetabulum during sideways falls: A finite element approach. J Biomech 2020; 114:110156. [PMID: 33302183 DOI: 10.1016/j.jbiomech.2020.110156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/17/2023]
Abstract
While the incidence of hip fractures has declined during the last decades, the incidence of acetabular fractures resulting from low-energy sideways falls has increased, and the mechanisms responsible for this trend remain unknown. Previous studies have suggested that body configuration during the impact plays an important role in a hip fracture. Thus, the aim of this study was to investigate the effect of body configuration angles (trunk tilt angle, trunk flexion angle, femur horizontal rotation angle, and femur diaphysis angle) on low-energy acetabular fractures via a parametric analysis. A computed tomography-based (CT) finite element model of the ground-proximal femur-pelvis complex was created, and strain magnitude, time-history response, and distribution within the acetabulum were evaluated. Results showed that while the trunk tilt angle and femur diaphysis angle have the greatest effect on strain magnitude, the direction of the fall (lateral vs. posterolateral) contributes to strain distribution within the acetabulum. The results also suggest that strain level and distribution within the proximal femur and acetabulum resulting from a sideways fall are not similar and, in some cases, even opposite. Taken together, our simulations suggest that a more horizontal trunk and femoral shaft at the impact phase can increase the risk of low-energy acetabular fractures.
Collapse
|
11
|
Palanca M, Perilli E, Martelli S. Body Anthropometry and Bone Strength Conjointly Determine the Risk of Hip Fracture in a Sideways Fall. Ann Biomed Eng 2020; 49:1380-1390. [PMID: 33184710 PMCID: PMC8058010 DOI: 10.1007/s10439-020-02682-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/26/2020] [Indexed: 01/03/2023]
Abstract
We hypothesize that variations of body anthropometry, conjointly with the bone strength, determine the risk of hip fracture. To test the hypothesis, we compared, in a simulated sideways fall, the hip impact energy to the energy needed to fracture the femur. Ten femurs from elderly donors were tested using a novel drop-tower protocol for replicating the hip fracture dynamics during a fall on the side. The impact energy was varied for each femur according to the donor’s body weight, height and soft-tissue thickness, by adjusting the drop height and mass. The fracture pattern, force, energy, strain in the superior femoral neck, bone morphology and microarchitecture were evaluated. Fracture patterns were consistent with clinically relevant hip fractures, and the superior neck strains and timings were comparable with the literature. The hip impact energy (11 – 95 J) and the fracture energy (11 – 39 J) ranges overlapped and showed comparable variance (CV = 69 and 61%, respectively). The aBMD-based definition of osteoporosis correctly classified 7 (70%) fracture/non-fracture cases. The incorrectly classified cases presented large impact energy variations, morphology variations and large subcortical voids as seen in microcomputed tomography. In conclusion, the risk of osteoporotic hip fracture in a sideways fall depends on both body anthropometry and bone strength.
Collapse
Affiliation(s)
- Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
- Department of Oncology and Metabolism, and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin 2020; 23:1201-1214. [PMID: 32687412 DOI: 10.1080/10255842.2020.1793331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fall-related hip fractures are a major public health issue. While individual-level risk assessment tools exist, population-level predictive models could catalyze innovation in large-scale interventions. This study presents a hierarchical probabilistic model that predicts population-level hip fracture risk based on Factor of Risk (FOR) principles. Model validation demonstrated that FOR output aligned with a published dataset categorized by sex and hip fracture status. The model predicted normalized FOR for 100000 individuals simulating the Canadian older-adult population. Predicted hip fracture risk was higher for females (by an average of 38%), and increased with age (by15% per decade). Potential applications are discussed.
Collapse
Affiliation(s)
- Daniel R Martel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew C Laing
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Comparison of Biomechanical Performance of Five Different Treatment Approaches for Fixing Posterior Pelvic Ring Injury. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:5379593. [PMID: 32076495 PMCID: PMC6996702 DOI: 10.1155/2020/5379593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 12/03/2022]
Abstract
Background A large number of pelvic injuries are seriously unstable, with mortality rates reaching 19%. Approximately 60% of pelvic injuries are related to the posterior pelvic ring. However, the selection of a fixation method for a posterior pelvic ring injury remains a challenging problem for orthopedic surgeons. The aim of the present study is to investigate the biomechanical performance of five different fixation approaches for posterior pelvic ring injury and thus provide guidance on the choice of treatment approach in a clinical setting. Methods A finite element (FE) model, including the L3-L5 lumbar vertebrae, sacrum, and full pelvis, was created from CT images of a healthy adult. Tile B and Tile C types of pelvic fractures were created in the model. Five different fixation methods for fixing the posterior ring injury (PRI) were simulated: TA1 (conservative treatment), TA2 (S1 screw fixation), TA3 (S1 + S2 screw fixation), TA4 (plate fixation), and TA5 (modified triangular osteosynthesis). Based on the fixation status (fixed or nonfixed) of the anterior ring and the fixation method for PRI, 20 different FE models were created. An upright standing loading scenario was simulated, and the resultant displacements at the sacroiliac joint were compared between different models. Results When TA5 was applied, the resultant displacements at the sacroiliac joint were the smallest (1.5 mm, 1.6 mm, 1.6 mm, and 1.7 mm) for all the injury cases. The displacements induced by TA3 and TA2 were similar to those induced by TA5. TA4 led to larger displacements at the sacroiliac joint (2.3 mm, 2.4 mm, 4.8 mm, and 4.9 mm), and TA1 was the worst case (3.1 mm, 3.2 mm, 6.3 mm, and 6.5 mm). Conclusions The best internal fixation method for PRI is the triangular osteosynthesis approach (TA5), followed by S1 + S2 screw fixation (TA3), S1 screw fixation (TA2), and plate fixation (TA4).
Collapse
|
14
|
Fleps I, Guy P, Ferguson SJ, Cripton PA, Helgason B. Explicit Finite Element Models Accurately Predict Subject-Specific and Velocity-Dependent Kinetics of Sideways Fall Impact. J Bone Miner Res 2019; 34:1837-1850. [PMID: 31163090 DOI: 10.1002/jbmr.3804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The majority of hip fractures in the elderly are the result of a fall from standing or from a lower height. Current injury models focus mostly on femur strength while neglecting subject-specific loading. This article presents an injury modeling strategy for hip fractures related to sideways falls that takes subject-specific impact loading into account. Finite element models (FEMs) of the human body were used to predict the experienced load and the femoral strength in a single model. We validated these models for their predicted peak force, effective pelvic stiffness, and fracture status against matching ex vivo sideways fall impacts (n = 11) with a trochanter velocity of 3.1 m/s. Furthermore, they were compared to sideways impacts of volunteers with lower impact velocities that were previously conducted by other groups. Good agreement was found between the ex vivo experiments and the FEMs with respect to peak force (root mean square error [RMSE] = 10.7%, R2 = 0.85) and effective pelvic stiffness (R2 = 0.92, RMSE = 12.9%). The FEMs were predictive of the fracture status for 10 out of 11 specimens. Compared to the volunteer experiments from low height, the FEMs overestimated the peak force by 25% for low BMI subjects and 8% for high BMI subjects. The effective pelvic stiffness values that were derived from the FEMs were comparable to those derived from impacts with volunteers. The force attenuation from the impact surface to the femur ranged between 27% and 54% and was highly dependent on soft tissue thickness (R2 = 0.86). The energy balance in the FEMS showed that at the time of peak force 79% to 93% of the total energy is either kinetic or was transformed to soft tissue deformation. The presented FEMs allow for direct discrimination between fracture and nonfracture outcome for sideways falls and bridge the gap between impact testing with volunteers and impact conditions representative of real life falls. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | | | - Peter A Cripton
- Orthopaedics and Injury Biomechanics Group, Department of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
15
|
Fleps I, Fung A, Guy P, Ferguson SJ, Helgason B, Cripton PA. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls. Bone 2019; 125:36-45. [PMID: 31071479 DOI: 10.1016/j.bone.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
Abstract
The risk of hip fracture of a patient due to a fall can be described from a mechanical perspective as the capacity of the femur to withstand the force that it experiences in the event of a fall. So far, impact forces acting on the lateral aspect of the pelvic region and femur strength have been investigated separately. This study used inertia-driven cadaveric impact experiments that mimic falls to the side from standing in order to evaluate the subject-specific force applied to the hip during impact and the fracture outcome in the same experimental model. Eleven fresh-frozen pelvis-femur constructs (6 female, 5 male, age = 77 years (SD = 13 years), BMI = 22.8 kg/m2 (SD = 7.8 kg/m2), total hip aBMD = 0.734 g/cm2 (SD = 0.149 g/cm2)), were embedded into soft tissue surrogate material that matched subject-specific mass and body shape. The specimens were attached to metallic lower-limb constructions with subject-specific masses and subjected to an inverted pendulum motion. Impact forces were recorded with a 6-axis force plate at 10,000 Hz and three dimensional deflections in the pelvic region were tracked with two high-speed cameras at 5000 Hz. Of the 11 specimens, 5 femur fractures and 3 pelvis fractures were observed. Three specimens did not fracture. aBMD alone did not reliably separate femur fractures from non-fractures. However, a mechanical risk ratio, which was calculated as the impact force divided by aBMD, classified specimens reliably into femur fractures and non-fractures. Single degree of freedom models, based on specimen kinetics, were able to predict subject-specific peak impact forces (RMSE = 2.55% for non-fractures). This study provides direct evidence relating subject-specific impact forces and subject-specific strength estimates and improves the assessment of the mechanical risk of hip fracture for a specific femur/pelvis combination in a sideways fall.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | | | | | - Peter A Cripton
- Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Enns-Bray WS, Bahaloo H, Fleps I, Pauchard Y, Taghizadeh E, Sigurdsson S, Aspelund T, Büchler P, Harris T, Gudnason V, Ferguson SJ, Pálsson H, Helgason B. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone 2019; 120:25-37. [PMID: 30240961 DOI: 10.1016/j.bone.2018.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022]
Abstract
Clinical retrospective studies have only reported limited improvements in hip fracture classification accuracy using finite element (FE) models compared to conventional areal bone mineral density (aBMD) measurements. A possible explanation is that state-of-the-art quasi-static models do not estimate patient-specific loads. A novel FE modeling technique was developed to improve the biofidelity of simulated impact loading from sideways falling. This included surrogate models of the pelvis, lower extremities, and soft tissue that were morphed based on subject anthropometrics. Hip fracture prediction models based on aBMD and FE measurements were compared in a retrospective study of 254 elderly female subjects from the AGES-Reykjavik study. Subject fragility ratio (FR) was defined as the ratio between the ultimate forces of paired biofidelic models, one with linear elastic and the other with non-linear stress-strain relationships in the proximal femur. The expected end-point value (EEV) was defined as the FR weighted by the probability of one sideways fall over five years, based on self-reported fall frequency at baseline. The change in maximum volumetric strain (ΔMVS) on the surface of the femoral neck was calculated between time of ultimate femur force and 90% post-ultimate force in order to assess the extent of tensile tissue damage present in non-linear models. After age-adjusted logistic regression, the area under the receiver-operator curve (AUC) was highest for ΔMVS (0.72), followed by FR (0.71), aBMD (0.70), and EEV (0.67), however the differences between FEA and aBMD based prediction models were not deemed statistically significant. When subjects with no history of falling were excluded from the analysis, thus artificially assuming that falls were known a priori with no uncertainty, a statistically significant difference in AUC was detected between ΔMVS (0.85), and aBMD (0.74). Multivariable linear regression suggested that the variance in maximum elastic femur force was best explained by femoral head radius, pelvis width, and soft tissue thickness (R2 = 0.79; RMSE = 0.46 kN; p < 0.005). Weighting the hip fracture prediction models based on self-reported fall frequency did not improve the models' sensitivity, however excluding non-fallers lead to significant differences between aBMD and FE based models. These findings suggest that an accurate assessment of fall probability is necessary for accurately identifying individuals predisposed to hip fracture.
Collapse
Affiliation(s)
- W S Enns-Bray
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - H Bahaloo
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - I Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Y Pauchard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - E Taghizadeh
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - S Sigurdsson
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - T Aspelund
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - P Büchler
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - T Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - V Gudnason
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - S J Ferguson
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - H Pálsson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - B Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| |
Collapse
|
17
|
Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, Helgason B. Correction: On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS One 2018; 13:e0208286. [PMID: 30475925 PMCID: PMC6258374 DOI: 10.1371/journal.pone.0208286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0200952.].
Collapse
|