1
|
Giustina A, Giustina A. Vitamin D and hip protectors in osteosarcopenia: a combined hip fracture preventing approach. Rev Endocr Metab Disord 2025; 26:1-18. [PMID: 39352578 PMCID: PMC11790758 DOI: 10.1007/s11154-024-09907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 09/05/2024] [Indexed: 02/04/2025]
Abstract
Osteosarcopenia is an emerging clinical condition highly prevalent in the older people. Affected subjects due to their intrinsic skeletal fragility and propensity to falls are at elevated risk of hip fractures which can increase morbidity and mortality. Strategies for attenuating the impact of predisposing factors on hip fractures are not yet well defined and should derive from multidisciplinary care and collaborations. Our aim was to narratively review available data on the preventive role of vitamin D and hip protectors on hip fractures in older patients with sarcopenia. Older subjects are at high risk of vitamin D deficiency and of falls due to several concomitant factors besides osteosarcopenia. Vitamin D protective actions against hip fractures may be mediated by both skeletal (increased mineralization) and extra-skeletal (reduced risk of falls) actions. Hip protectors may act downstream attenuating the effects of falls although their use is still not yet enough widespread due to the suboptimal compliance obtained by traditional hard devices. Concomitant use of vitamin D and hip protectors may represent an effective strategy in the prevention of hip fractures which need to be tested in ad hoc designed clinical trials.
Collapse
Affiliation(s)
- Alessandro Giustina
- Department of Aerospace Engineering, Politecnico Di Milano, Via La Masa 34, Milan, 20156, Italy.
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Via Olgettina 60, 20132, Italy
| |
Collapse
|
2
|
Bliven EK, Fung A, Baker A, Fleps I, Ferguson SJ, Guy P, Helgason B, Cripton PA. How accurately do finite element models predict the fall impact response of ex vivo specimens augmented by prophylactic intramedullary nailing? J Orthop Res 2025; 43:396-406. [PMID: 39354743 DOI: 10.1002/jor.25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Ingmar Fleps
- Skeletal Mechanobiology & Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Choi JW, Park JW, Choi WJ. Effects of hip joint kinematics on the effective pelvis stiffness and hip impact force during simulated sideways falls. J Biomech 2024; 162:111885. [PMID: 38039920 DOI: 10.1016/j.jbiomech.2023.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Improved understanding is required on how hip fracture risk is influenced by landing configuration. We examined how hip impact dynamics was affected by hip joint kinematics during simulated sideways falls. Twelve young adults (7 males, 5 females) of mean age 23.5 (SD = 1.5) years, participated in pelvis release experiments. Trials were acquired with the hip flexed 15° and 30° for each of three hip rotations: +15° ("external rotation"), 0°, and -15° ("internal rotation"). During falls, force-deformation data of the pelvis were recorded. Outcome variables included the peak hip impact force (Fexperimental) and effective stiffness of the pelvis (k1st, ksecant, and kms) determined with different methods suggested in literature, and predicted hip impact force during a fall from standing height (F1st, Fsecant and Fms). The two-way repeated-measures ANOVA was used to test whether these variables were associated with hip joint angles. The Fexperimental, ksecant and Fsecant were associated with hip rotation (F = 5.587, p = 0.005; F = 9.278, p < 0.0005; F = 5.778, p = 0.004, respectively), and 15 %, 31 % and 17 % smaller in 15° external than internal rotation (848 versus 998 N; 24.6 versus 35.6 kN/m; 2,637 versus 3,170 N, respectively). However, none of the outcome variables were associated with hip flexion (p > 0.05). Furthermore, there were no interactions between the hip rotation and flexion for all outcome variables (p > 0.05). Our results provide insights on hip impact dynamics, which may help improve a hip model to assess hip fracture risk during a fall.
Collapse
Affiliation(s)
- J W Choi
- Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, Gangwon-do, South Korea
| | - J W Park
- Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, Gangwon-do, South Korea
| | - W J Choi
- Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, Gangwon-do, South Korea.
| |
Collapse
|
4
|
Bliven EK, Fung A, Cripton PA, Helgason B, Guy P. Evaluating femoral augmentation to prevent geriatric hip fracture: A scoping review of experimental methods. J Orthop Res 2023; 41:1855-1862. [PMID: 37249119 DOI: 10.1002/jor.25636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/28/2023] [Indexed: 05/31/2023]
Abstract
Various femoral augmentation designs have been investigated over the past decade for the prevention of geriatric hip fracture. The experimental methods used to evaluate the efficacy of these augmentations have not been critically evaluated or compared in terms of biofidelity, robustness, or ease of application. Such parameters have significant relevance in characterizing future clinical success. In this study we aimed to use a scoping review to summarize the experimental studies that evaluate femoral augmentation approaches, and critically evaluate commonly applied protocols and identify areas for concordance with the clinical situation. We conducted a literature search targeting studies that used experimental test methods to evaluate femoral augmentation to prevent geriatric fragility fracture. A total of 25 studies met the eligibility criteria. The most commonly investigated augmentation to date is the injection of bone cement or another material that cured in situ, and a popular subsequent method for biomechanical evaluation was to load the augmented proximal femur until fracture in a sideways fall configuration. We noted limitations in the clinical relevance of sideways fall scenarios being modeled and large variance in the concordance of many of the studies identified. Our review brings about recommendations for enhancing the fidelity of experimental methods modeling clinical sideways falls, which include an improved representation of soft tissue effects, using outcome metrics beyond load-to-failure, and applying loads inertially. Effective augmentations are encouraging for their potential to reduce the burden of hip fracture; however, the likelihood of this success is only as strong as the methods used in their evaluation.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Pierre Guy
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Quinn ARJ, Saxby DJ, Yang F, de Sousa ACC, Pizzolato C. A digital twin framework for robust control of robotic-biological systems. J Biomech 2023; 152:111557. [PMID: 37019066 DOI: 10.1016/j.jbiomech.2023.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Medical device regulatory standards are increasingly incorporating computational modelling and simulation to accommodate advanced manufacturing and device personalization. We present a method for robust testing of engineered soft tissue products involving a digital twin paradigm in combination with robotic systems. We developed and validated a digital twin framework for calibrating and controlling robotic-biological systems. A forward dynamics model of the robotic manipulator was developed, calibrated, and validated. After calibration, the accuracy of the digital twin in reproducing the experimental data improved in the time domain for all fourteen tested configurations and improved in frequency domain for nine configurations. We then demonstrated displacement control of a spring in lieu of a soft tissue element in a biological specimen. The simulated experiment matched the physical experiment with 0.09 mm (0.001%) root-mean-square error for a 2.9 mm (5.1%) length change. Finally, we demonstrated kinematic control of a digital twin of the knee through 70-degree passive flexion kinematics. The root-mean-square error was 2.00°, 0.57°, and 1.75° degrees for flexion, adduction, and internal rotations, respectively. The system well controlled novel mechanical elements and generated accurate kinematics in silico for a complex knee model. This calibration method could be applied to other situations where the specimen is poorly represented in the model environment (e.g., human or animal tissues), and the control system could be extended to track internal parameters such as tissue strain (e.g., control knee ligament strain). Further development of this framework can facilitate medical device testing and innovative biomechanics research.
Collapse
Affiliation(s)
- Alastair R J Quinn
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Australia; Advanced Design and Prototyping Technologies Institute, Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia.
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Australia; Advanced Design and Prototyping Technologies Institute, Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Fuwen Yang
- School of Engineering and Built Environment, Griffith University, Australia
| | - Ana C C de Sousa
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Australia; Advanced Design and Prototyping Technologies Institute, Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Australia; Advanced Design and Prototyping Technologies Institute, Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| |
Collapse
|
6
|
Fung A, Fleps I, Cripton PA, Guy P, Ferguson SJ, Helgason B. The efficacy of femoral augmentation for hip fracture prevention using ceramic-based cements: A preliminary experimentally-driven finite element investigation. Front Bioeng Biotechnol 2023; 11:1079644. [PMID: 36777252 PMCID: PMC9909544 DOI: 10.3389/fbioe.2023.1079644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Femoral fractures due to sideways falls continue to be a major cause of concern for the elderly. Existing approaches for the prevention of these injuries have limited efficacy. Prophylactic femoral augmentation systems, particularly those involving the injection of ceramic-based bone cements, are gaining more attention as a potential alternative preventative approach. We evaluated the mechanical effectiveness of three variations of a bone cement injection pattern (basic ellipsoid, hollow ellipsoid, small ellipsoid) utilizing finite element simulations of sideways fall impacts. The basic augmentation pattern was tested with both high- and low-strength ceramic-based cements. The cement patterns were added to the finite element models (FEMs) of five cadaveric femurs, which were then subject to simulated sideways falls at seven impact velocities ranging from 1.0 m/s to 4.0 m/s. Peak impact forces and peak acetabular forces were examined, and failure was evaluated using a strain-based criterion. We found that the basic HA ellipsoid provided the highest increases in both the force at the acetabulum of the impacted femur ("acetabular force", 55.0% ± 22.0%) and at the force plate ("impact force", 37.4% ± 15.8%). Changing the cement to a weaker material, brushite, resulted in reduced strengthening of the femur (45.2% ± 19.4% acetabular and 30.4% ± 13.0% impact). Using a hollow version of the ellipsoid appeared to have no effect on the fracture outcome and only a minor effect on the other metrics (54.1% ± 22.3% acetabular force increase and 35.3% ± 16.0% impact force increase). However, when the outer two layers of the ellipsoid were removed (small ellipsoid), the force increases that were achieved were only 9.8% ± 5.5% acetabular force and 8.2% ± 4.1% impact force. These results demonstrate the importance of supporting the femoral neck cortex to prevent femoral fractures in a sideways fall, and provide plausible options for prophylactic femoral augmentation. As this is a preliminary study, the surgical technique, the possible effects of trabecular bone damage during the augmentation process, and the effect on the blood supply to the femoral head must be assessed further.
Collapse
Affiliation(s)
- Anita Fung
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,*Correspondence: Anita Fung,
| | - Ingmar Fleps
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Peter A. Cripton
- Orthopaedic and Injury Biomechanics Group, School of Biomedical Engineering and Departments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, BC, Canada,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Guy
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada,Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen J. Ferguson
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benedikt Helgason
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Kleiven S, Sahandifar P. Upright trunk and lateral or slight anterior rotation of the pelvis cause the highest proximal femur forces during sideways falls. Front Bioeng Biotechnol 2022; 10:1065548. [PMID: 36619387 PMCID: PMC9816430 DOI: 10.3389/fbioe.2022.1065548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Whole-body models are historically developed for traffic injury prevention, and they are positioned accordingly in the standing or sitting configuration representing pedestrian or occupant postures. Those configurations are appropriate for vehicle accidents or pedestrian-vehicle accidents; however, they are uncommon body posture during a fall accident to the ground. This study aims to investigate the influence of trunk and pelvis angles on the proximal femur forces during sideways falls. For this purpose, a previously developed whole-body model was positioned into different fall configurations varying the trunk and pelvis angles. The trunk angle was varied in steps of 10° from 10 to 80°, and the pelvis rotation was changed every 5° from -20° (rotation toward posterior) to +20° (rotation toward anterior). The simulations were performed on a medium-size male (177 cm, 76 kg) and a small-size female (156 cm, 55 kg), representative for elderly men and women, respectively. The results demonstrated that the highest proximal femur force measured on the femoral head was reached when either male or female model had a 10-degree trunk angle and +10° anterior pelvis rotation.
Collapse
Affiliation(s)
- Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden,*Correspondence: Svein Kleiven,
| | | |
Collapse
|
8
|
Fleps I, Morgan EF. A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning. Curr Osteoporos Rep 2022; 20:309-319. [PMID: 36048316 PMCID: PMC10941185 DOI: 10.1007/s11914-022-00743-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We reviewed advances over the past 3 years in assessment of fracture risk based on CT scans, considering methods that use finite element models, machine learning, or a combination of both. RECENT FINDINGS Several studies have demonstrated that CT-based assessment of fracture risk, using finite element modeling or biomarkers derived from machine learning, is equivalent to currently used clinical tools. Phantomless calibration of CT scans for bone mineral density enables accurate measurements from routinely taken scans. This opportunistic use of CT scans for fracture risk assessment is facilitated by high-quality automated segmentation with deep learning, enabling workflows that do not require user intervention. Modeling of more realistic and diverse loading conditions, as well as improved modeling of fracture mechanisms, has shown promise to enhance our understanding of fracture processes and improve the assessment of fracture risk beyond the performance of current clinical tools. CT-based screening for fracture risk is effective and, by analyzing scans that were taken for other indications, could be used to expand the pool of people screened, therefore improving fracture prevention. Finite element modeling and machine learning both provide valuable tools for fracture risk assessment. Future approaches should focus on including more loading-related aspects of fracture risk.
Collapse
Affiliation(s)
- Ingmar Fleps
- College of Mechanical Engineering, Boston University, Boston, USA.
| | - Elise F Morgan
- College of Mechanical Engineering, Boston University, Boston, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Cui Y, Xiang D, Shu L, Duan Z, Liao Z, Wang S, Liu W. Incremental Element Deletion-Based Finite Element Analysis of the Effects of Impact Speeds, Fall Postures, and Cortical Thicknesses on Femur Fracture. MATERIALS 2022; 15:ma15082878. [PMID: 35454571 PMCID: PMC9025544 DOI: 10.3390/ma15082878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
The proximal femur’s numerical simulation could give an effective method for predicting the risk of femoral fracture. However, the majority of existing numerical simulations is static, which does not correctly capture the dynamic properties of bone fractures. On the basis of femoral fracture analysis, a dynamic simulation using incremental element deletion (IED)-based finite element analysis (FEA) was developed and compared to XFEM in this study. Mechanical tests were also used to assess it. Different impact speeds, fall postures, and cortical thicknesses were also studied for their implications on fracture types and mechanical responses. The time it took for the crack to shatter was shorter when the speed was higher, and the crack line slid down significantly. The fracture load fell by 27.37% when the angle was altered from 15° to 135°, indicating that falling forward was less likely to cause proximal femoral fracture than falling backward. Furthermore, the model with scant cortical bone was susceptible to fracture. This study established a theoretical foundation and mechanism for forecasting the risk of proximal femoral fracture in the elderly.
Collapse
Affiliation(s)
- Yangyang Cui
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (Z.D.)
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Liming Shu
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 1138656, Japan;
| | - Zhili Duan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (Z.D.)
| | - Zhenhua Liao
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Weiqiang Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (Z.D.)
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| |
Collapse
|
10
|
Galliker ES, Laing AC, Ferguson SJ, Helgason B, Fleps I. The Influence of Fall Direction and Hip Protector on Fracture Risk: FE Model Predictions Driven by Experimental Data. Ann Biomed Eng 2022; 50:278-290. [PMID: 35129719 PMCID: PMC8847295 DOI: 10.1007/s10439-022-02917-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
Hip fractures in older adults, which often lead to lasting impairments and an increased risk of mortality, are a major public health concern. Hip fracture risk is multi-factorial, affected by the risk of falling, the load acting on the femur, and the load the femur can withstand. This study investigates the influence of impact direction on hip fracture risk and hip protector efficacy. We simulated falls for 4 subjects, in 7 different impact directions (15° and 30° anterior, lateral, and 15°, 30°, 60°, and 90° posterior) at two different impact velocities (2.1 and 3.1 m/s), all with and without hip protector, using previously validated biofidelic finite element models. We found the highest number of fractures and highest fragility ratios in lateral and 15° posterior impacts. The hip protector attenuated femur forces by 23-49 % for slim subjects under impact directions that resulted in fractures (30° anterior to 30° posterior). The hip protector prevented all fractures (6/6) for 2.1 m/s impacts, but only 10% of fractures for 3.1 m/s impacts. Our results provide evidence that, regarding hip fracture risk, posterior-lateral impacts are as dangerous as lateral impacts, and they support the efficacy of soft-shell hip protectors for anterior- and posterior-lateral impacts.
Collapse
Affiliation(s)
| | - Andrew C Laing
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | | | | | - Ingmar Fleps
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Spartacus V, Shojaeizadeh M, Raffault V, Shoults J, Van Wieren K, Sparrey CJ. In vivo soft tissue compressive properties of the human hand. PLoS One 2021; 16:e0261008. [PMID: 34898632 PMCID: PMC8668133 DOI: 10.1371/journal.pone.0261008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background/Purpose Falls onto outstretched hands are the second most common sports injury and one of the leading causes of upper extremity injury. Injury risk and severity depends on forces being transmitted through the palmar surface to the upper extremity. Although the magnitude and distribution of forces depend on the soft tissue response of the palm, the in vivo properties of palmar tissue have not been characterized. The purpose of this study was to characterize the large deformation palmar soft tissue properties. Methods In vivo dynamic indentations were conducted on 15 young adults (21–29 years) to quantify the soft tissue characteristics of over the trapezium. The effects of loading rate, joint position, tissue thickness and sex on soft tissue responses were assessed. Results Energy absorbed by the soft tissue and peak force were affected by loading rate and joint angle. Energy absorbed was 1.7–2.8 times higher and the peak force was 2–2.75 times higher at high rate loading than quasistatic rates. Males had greater energy absorbed than females but not at all wrist positions. Damping characteristics were the highest in the group with the thickest soft tissue while damping characteristics were the lowest in group with the thinnest soft tissues. Conclusion Palmar tissue response changes with joint position, loading rate, sex, and tissue thickness. Accurately capturing these tissue responses is important for developing effective simulations of fall and injury biomechanics and assessing the effectiveness of injury prevention strategies.
Collapse
Affiliation(s)
- Victoria Spartacus
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- * E-mail:
| | - Maedeh Shojaeizadeh
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Vincent Raffault
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - James Shoults
- Science Technical Center, Simon Fraser University, Burnaby, BC, Canada
| | - Ken Van Wieren
- Science Technical Center, Simon Fraser University, Burnaby, BC, Canada
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Prophylactic augmentation implants in the proximal femur for hip fracture prevention: An in silico investigation of simulated sideways fall impacts. J Mech Behav Biomed Mater 2021; 126:104957. [PMID: 34861519 DOI: 10.1016/j.jmbbm.2021.104957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2020] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/26/2022]
Abstract
Femoral fractures from sideways falls in the elderly are associated with significant rates of morbidity and mortality. Approaches to prevent these catastrophic injuries include pharmacological treatments, which have limited efficacy. Prophylactic femoral augmentation systems are a promising alternative that are gaining prominence by addressing the most debilitating osteoporosis-related fracture. We have developed finite element models (FEMs) of a novel experimental sideways fall simulator for cadavers. By virtue of the range of specimens and injury outcomes, these FEMs are well-suited to the evaluation of such implants. The purpose of this study was to use the FEMs to evaluate the mechanical effectiveness of three different prophylactic femoral augmentation systems. Models of the Y-Strut® (Hyprevention®, Pessac, France), Gamma Nail® (Stryker, Kalamazoo, USA), and a simple lag screw femoral fracture implant systems were placed into FEMs of five cadaveric pelvis-femur constructs embedded in a soft tissue surrogate, which were then subject to simulated sideways falls at seven impact velocities. Femur-only FEMs were also evaluated. Peak impact forces and peak acetabular forces were examined, and failure was evaluated using a strain-based criterion. We found that the femoral augmentation systems increased the peak forces prior to fracture, but were unable to prevent fracture for severe impacts. The Gamma Nail® system consistently produced the largest strength increases relative to the unaugmented femur for all five specimens in both the pendulum-drop FEMs and the femur-only simulations. In some cases, the same implant appeared to cause fractures in the acetabulum. The femur-only FEMs showed larger force increases than the pendulum-drop simulations, which suggests that the results of the femur-only simulations may not represent sideways falls as accurately as the soft tissue-embedded pendulum-drop simulations. The results from this study demonstrate the ability to simulate a high energy phenomenon and the effect of implants in an in silico environment. The results also suggest that implants could increase the force applied to the proximal femur during impact. Fracture outcomes from the tested implants can be used to inform the design of future devices, which reaffirms the value of modelling with biofidelic considerations in the implant design process. To the authors' knowledge, this is the first paper to use more complex biofidelic FEMs to assess prophylactic femoral augmentation methods.
Collapse
|
13
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
14
|
Sápi M, Fehér-Kiss A, Csernák K, Domján A, Pintér S. The Effects of Exergaming on Sensory Reweighting and Mediolateral Stability of Women Aged Over 60: Usability Study. JMIR Serious Games 2021; 9:e27884. [PMID: 34287215 PMCID: PMC8339979 DOI: 10.2196/27884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Older adults tend to experience difficulties in switching quickly between various reliable sensory inputs, which ultimately may contribute to an increased risk of falls and injuries. Sideward falls are the most frequent cause of hip fractures among older adults. Recently, exergame programs have been confirmed as beneficial tools for enhancing postural control, which can reduce the risk of falls. However, studies to explore more precisely which mechanism of exergaming directly influences older women’s ability to balance are still needed. Objective Our aim was to evaluate, in a single-group pretest/posttest/follow-up usability study, whether Kinect exergame balance training might have a beneficial impact on the sensory reweighting in women aged over 60. Methods A total of 14 healthy women (mean age 69.57 [SD 4.66] years, mean body mass index 26.21 [SD 2.6] kg/m2) participated in the study. The volunteers trained with the commercially available games of Kinect for Xbox 360 console 3 times (30 minutes/session) a week over a 6-week period (total of 18 visits). Participants’ postural sway in both the anteroposterior (AP) and mediolateral (ML) directions was recorded with NeuroCom Balance Master 6.0. To assess and measure postural sensory reweighting, the Modified Clinical Test of Sensory Interaction in Balance was used, where volunteers were exposed to various changes in visual (eyes open or eyes closed) and surface conditions (firm or foam surface). Results In the ML direction, the Kinect exergame training caused a significant decrease in the sway path on the firm surface with the eyes open (P<.001) and eyes closed (P=.001), and on the foam surface with the eyes open (P=.001) and eyes closed (P<.001) conditions compared with baseline data. The follow-up measurements when compared with the baseline data showed a significant change in the sway path on the firm surface with the eyes open (P<.001) and eyes closed (P<.001) conditions, as well as on the foam surface with the eyes open (P=.003) and eyes closed (P<.001) conditions. Besides, on the firm surface, there were no significant differences in sway path values in the AP direction between the baseline and the posttraining measurements (eyes open: P=.49; eyes closed: P=.18). Likewise, on the foam surface, there were no significant differences in sway path values in the AP direction under both eyes open (P=.24) and eyes closed (P=.84) conditions. Conclusions The improved posturography measurements of the sway path in the ML direction might suggest that the Kinect exergame balance training may have effects on sensory reweighting, and thus on the balance of women aged over 60. Based on these results, Kinect exergaming may provide a safe and potentially useful tool for improving postural stability in the crucial ML direction, and thus it may help reduce the risk of falling.
Collapse
Affiliation(s)
- Mariann Sápi
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Anna Fehér-Kiss
- Physiotherapy Center, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Krisztina Csernák
- Department of Psychiatry and Psychiatric Clinic, Bács-Kiskun County Hospital Kecskemét, Kecskemét, Hungary
| | - Andrea Domján
- Department of Physiotherapy, Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Sándor Pintér
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Grassi L, Fleps I, Sahlstedt H, Väänänen SP, Ferguson SJ, Isaksson H, Helgason B. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone 2021; 142:115678. [PMID: 33022451 DOI: 10.1016/j.bone.2020.115678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
16
|
Palanca M, Perilli E, Martelli S. Body Anthropometry and Bone Strength Conjointly Determine the Risk of Hip Fracture in a Sideways Fall. Ann Biomed Eng 2020; 49:1380-1390. [PMID: 33184710 PMCID: PMC8058010 DOI: 10.1007/s10439-020-02682-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2020] [Accepted: 10/26/2020] [Indexed: 01/03/2023]
Abstract
We hypothesize that variations of body anthropometry, conjointly with the bone strength, determine the risk of hip fracture. To test the hypothesis, we compared, in a simulated sideways fall, the hip impact energy to the energy needed to fracture the femur. Ten femurs from elderly donors were tested using a novel drop-tower protocol for replicating the hip fracture dynamics during a fall on the side. The impact energy was varied for each femur according to the donor’s body weight, height and soft-tissue thickness, by adjusting the drop height and mass. The fracture pattern, force, energy, strain in the superior femoral neck, bone morphology and microarchitecture were evaluated. Fracture patterns were consistent with clinically relevant hip fractures, and the superior neck strains and timings were comparable with the literature. The hip impact energy (11 – 95 J) and the fracture energy (11 – 39 J) ranges overlapped and showed comparable variance (CV = 69 and 61%, respectively). The aBMD-based definition of osteoporosis correctly classified 7 (70%) fracture/non-fracture cases. The incorrectly classified cases presented large impact energy variations, morphology variations and large subcortical voids as seen in microcomputed tomography. In conclusion, the risk of osteoporotic hip fracture in a sideways fall depends on both body anthropometry and bone strength.
Collapse
Affiliation(s)
- Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
- Department of Oncology and Metabolism, and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
17
|
Mahmoudi M, Mahbadi H. Numerical investigation of mechanical behavior of human femoral diaphysis in normal and defective geometry: experimental evaluation. Comput Methods Biomech Biomed Engin 2020; 24:637-652. [PMID: 33164564 DOI: 10.1080/10255842.2020.1843639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
Failure and major reoperation after internal fixation (IF) in mature femoral bones are common and proper selection of fixation method may reduce the rate of reoperations. Investigating the mechanical behavior of the human femoral diaphysis, this article studies effect of mechanical properties and geometry of the bone on selection of IF method. To this aim, we calculated the bone mineral density in human femurs, and then, using computed tomography scan, we obtained geometry and nonhomogeneous properties of the bone. Finite element (FE) models of osteotomised femurs were reinforced using four types of screws with a locking compression plate (LCP). We performed buckling and 4-point bending simulations, and results of these simulations represent critical buckling loads, maximum von Mises stresses, and strains around the screws and the central defect. To evaluate FE analysis, we employed the compressive experiments and compared load vs. displacement curves with FE results. Results corresponding to intact, osteotomised, and reinforced states are compared together, and the effect of cortical and unicortical screws in LCPs is studied. The FE results showed that application of identical prophylactic IF for two persons with identical injuries in the same conditions bring quite inverse results. As a consequence, evaluation of osteoporosis, elastic modulus, and morphometric data are required before fixation and screw selection. Besides, for short diaphysis, unicortical screws have maximum strengthening factor in bending. While for long samples, these types of screws can be the worst option, application of cortical screws results to maximum strength in comparison with other types.
Collapse
Affiliation(s)
- Moeinoddin Mahmoudi
- Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mahbadi
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Grassi L, Kok J, Gustafsson A, Zheng Y, Väänänen SP, Jurvelin JS, Isaksson H. Elucidating failure mechanisms in human femurs during a fall to the side using bilateral digital image correlation. J Biomech 2020; 106:109826. [DOI: 10.1016/j.jbiomech.2020.109826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
|
19
|
Jazinizadeh F, Mohammadi H, Quenneville CE. Comparing the fracture limits of the proximal femur under impact and quasi-static conditions in simulation of a sideways fall. J Mech Behav Biomed Mater 2020; 103:103593. [DOI: 10.1016/j.jmbbm.2019.103593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
|
20
|
Fleps I, Guy P, Ferguson SJ, Cripton PA, Helgason B. Explicit Finite Element Models Accurately Predict Subject-Specific and Velocity-Dependent Kinetics of Sideways Fall Impact. J Bone Miner Res 2019; 34:1837-1850. [PMID: 31163090 DOI: 10.1002/jbmr.3804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/23/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The majority of hip fractures in the elderly are the result of a fall from standing or from a lower height. Current injury models focus mostly on femur strength while neglecting subject-specific loading. This article presents an injury modeling strategy for hip fractures related to sideways falls that takes subject-specific impact loading into account. Finite element models (FEMs) of the human body were used to predict the experienced load and the femoral strength in a single model. We validated these models for their predicted peak force, effective pelvic stiffness, and fracture status against matching ex vivo sideways fall impacts (n = 11) with a trochanter velocity of 3.1 m/s. Furthermore, they were compared to sideways impacts of volunteers with lower impact velocities that were previously conducted by other groups. Good agreement was found between the ex vivo experiments and the FEMs with respect to peak force (root mean square error [RMSE] = 10.7%, R2 = 0.85) and effective pelvic stiffness (R2 = 0.92, RMSE = 12.9%). The FEMs were predictive of the fracture status for 10 out of 11 specimens. Compared to the volunteer experiments from low height, the FEMs overestimated the peak force by 25% for low BMI subjects and 8% for high BMI subjects. The effective pelvic stiffness values that were derived from the FEMs were comparable to those derived from impacts with volunteers. The force attenuation from the impact surface to the femur ranged between 27% and 54% and was highly dependent on soft tissue thickness (R2 = 0.86). The energy balance in the FEMS showed that at the time of peak force 79% to 93% of the total energy is either kinetic or was transformed to soft tissue deformation. The presented FEMs allow for direct discrimination between fracture and nonfracture outcome for sideways falls and bridge the gap between impact testing with volunteers and impact conditions representative of real life falls. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | | | - Peter A Cripton
- Orthopaedics and Injury Biomechanics Group, Department of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
21
|
Fleps I, Fung A, Guy P, Ferguson SJ, Helgason B, Cripton PA. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls. Bone 2019; 125:36-45. [PMID: 31071479 DOI: 10.1016/j.bone.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
Abstract
The risk of hip fracture of a patient due to a fall can be described from a mechanical perspective as the capacity of the femur to withstand the force that it experiences in the event of a fall. So far, impact forces acting on the lateral aspect of the pelvic region and femur strength have been investigated separately. This study used inertia-driven cadaveric impact experiments that mimic falls to the side from standing in order to evaluate the subject-specific force applied to the hip during impact and the fracture outcome in the same experimental model. Eleven fresh-frozen pelvis-femur constructs (6 female, 5 male, age = 77 years (SD = 13 years), BMI = 22.8 kg/m2 (SD = 7.8 kg/m2), total hip aBMD = 0.734 g/cm2 (SD = 0.149 g/cm2)), were embedded into soft tissue surrogate material that matched subject-specific mass and body shape. The specimens were attached to metallic lower-limb constructions with subject-specific masses and subjected to an inverted pendulum motion. Impact forces were recorded with a 6-axis force plate at 10,000 Hz and three dimensional deflections in the pelvic region were tracked with two high-speed cameras at 5000 Hz. Of the 11 specimens, 5 femur fractures and 3 pelvis fractures were observed. Three specimens did not fracture. aBMD alone did not reliably separate femur fractures from non-fractures. However, a mechanical risk ratio, which was calculated as the impact force divided by aBMD, classified specimens reliably into femur fractures and non-fractures. Single degree of freedom models, based on specimen kinetics, were able to predict subject-specific peak impact forces (RMSE = 2.55% for non-fractures). This study provides direct evidence relating subject-specific impact forces and subject-specific strength estimates and improves the assessment of the mechanical risk of hip fracture for a specific femur/pelvis combination in a sideways fall.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | | | | | - Peter A Cripton
- Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, Helgason B. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS One 2018; 13:e0200952. [PMID: 30114192 PMCID: PMC6095517 DOI: 10.1371/journal.pone.0200952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
The majority of hip fractures have been reported to occur as a result of a fall with impact to the greater trochanter of the femur. Recently, we developed a novel cadaveric pendulum-based hip impact model and tested two cadaveric femur-pelvis constructs, embedded in a soft tissue surrogate. The outcome was a femoral neck fracture in a male specimen while a female specimen had no fracture. The aim of the present study was, first, to develop a methodology for constructing and assessing the accuracy of explicit Finite Element Models (FEMs) for simulation of sideways falls to the hip based on the experimental model. Second, to use the FEMs for quantifying the internal reaction forces and energy absorption in the hip during impact. Third, to assess the potential of the FEMs in terms of separating a femoral fracture endpoint from a non-fracture endpoint. Using a non-linear, strain rate dependent, and heterogeneous material mapping strategy for bone tissue in these models, we found the FEM-derived results to closely match the experimental test results in terms of impact forces and displacements of pelvic video markers up to the time of peak impact force with errors below 10%. We found the internal reaction forces in the femoral neck on the impact side to be approximately 35% lower than the impact force measured between soft tissue and ground for both specimens. In addition, we found the soft tissue to be the component that absorbed the largest part of the energy of the tissue types in the hip region. Finally, we found surface strain patterns derived from FEM results to match the fracture location and extent based on post testing x-rays of the specimens. This is the first study with quantitative data on the energy absorption in the pelvic region during a sideways fall.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | | | - Peter A. Cripton
- Orthopaedics and Injury Biomechanics Group, Department of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Benedikt Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|