1
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
2
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
3
|
Ghimire S, Hasan MM, Fang XW. Small ubiquitin-like modifiers E3 ligases in plant stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24032. [PMID: 38669463 DOI: 10.1071/fp24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
5
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
7
|
Liao X, Sun J, Li Q, Ding W, Zhao B, Wang B, Zhou S, Wang H. ZmSIZ1a and ZmSIZ1b play an indispensable role in resistance against Fusarium ear rot in maize. MOLECULAR PLANT PATHOLOGY 2023; 24:711-724. [PMID: 36683566 PMCID: PMC10257050 DOI: 10.1111/mpp.13297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/11/2023]
Abstract
Fusarium ear rot (FER) is a destructive fungal disease of maize caused by Fusarium verticillioides. FER resistance is a typical complex quantitative trait controlled by micro-effect genes, leading to difficulty in identifying the host resistance genes. SIZ1 encodes a SUMO E3 ligase regulating a wide range of plant developmental processes and stress responses. However, the function of ZmSIZ1 remains poorly understood. In this study, we demonstrate that ZmSIZ1a and ZmSIZ1b possess SUMO E3 ligase activity, and that the Zmsiz1a/1b double mutant, but not the Zmsiz1a or Zmsiz1b single mutants, exhibits severely impaired resistance to FER. Transcriptome analysis showed that differentially expressed genes were significantly enriched in plant disease resistance-related pathways, especially in plant-pathogen interaction, MAPK signalling, and plant hormone signal transduction. Thirty-five candidate genes were identified in these pathways. Furthermore, the integration of the transcriptome and metabolome data revealed that the flavonoid biosynthesis pathway was induced by F. verticillioides infection, and that accumulation of flavone and flavonol was significantly reduced in the Zmsiz1a/1b double mutant. Collectively, our findings demonstrate that ZmSIZ1a and ZmSIZ1b play a redundant, but indispensable role against FER, and provide potential new gene resources for molecular breeding of FER-resistant maize cultivars.
Collapse
Affiliation(s)
- Xinyang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- College of AgronomySichuan Agricultural UniversityChengduChina
| | - Juan Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Quanquan Li
- State Key Laboratory of Crop Biology, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Wenyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Binbin Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Baobao Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Hainan Yazhou Bay Seed LabSanyaChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaChina
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Hainan Yazhou Bay Seed LabSanyaChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
8
|
Elakhdar A, Slaski JJ, Kubo T, Hamwieh A, Hernandez Ramirez G, Beattie AD, Capo-chichi LJ. Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1159016. [PMID: 37346141 PMCID: PMC10279893 DOI: 10.3389/fpls.2023.1159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Jan J. Slaski
- Bio Industrial Services Division, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ludovic J.A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Abu-Ria M, Shukry W, Abo-Hamed S, Albaqami M, Almuqadam L, Ibraheem F. Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091834. [PMID: 37176891 PMCID: PMC10180778 DOI: 10.3390/plants12091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The sensitivity of rice plants to salinity is a major challenge for rice growth and productivity in the salt-affected lands. Priming rice seeds in biostimulants with stress-alleviating potential is an effective strategy to improve salinity tolerance in rice. However, the mechanisms of action of these compounds are not fully understood. Herein, the impact of priming rice seeds (cv. Giza 179) with 100 mg/L of humic acid on growth and its underlaying physiological processes under increased magnitudes of salinity (EC = 0.55, 3.40, 6.77, 8.00 mS/cm) during the critical reproductive stage was investigated. Our results indicated that salinity significantly reduced Giza 179 growth indices, which were associated with the accumulation of toxic levels of Na+ in shoots and roots, a reduction in the K+ and K+/Na+ ratio in shoots and roots, induced buildup of malondialdehyde, electrolyte leakage, and an accumulation of total soluble sugars, sucrose, proline, and enzymic and non-enzymic antioxidants. Humic acid application significantly increased growth of the Giza 179 plants under non-saline conditions. It also substantially enhanced growth of the salinity-stressed Giza 179 plants even at 8.00 mS/cm. Such humic acid ameliorating effects were associated with maintaining ionic homeostasis, appropriate osmolytes content, and an efficient antioxidant defense system. Our results highlight the potential role of humic acid in enhancing salt tolerance in Giza 179.
Collapse
Affiliation(s)
- Mohamed Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Samy Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed Albaqami
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lolwah Almuqadam
- Biology Department, College of Science, Imam Abdul Rahman Bin Faisal University, Damam 31441, Saudi Arabia
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah 21912, Saudi Arabia
| |
Collapse
|
10
|
Liu W, Zhang Y, Zhang B, Zou H. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107719. [PMID: 37148659 DOI: 10.1016/j.plaphy.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.
Collapse
Affiliation(s)
- Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Yan Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Binglin Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Huawen Zou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
11
|
Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, Sharif R, Anand A, Corpas FJ, Jin W, Varshney RK. Assessment of proline function in higher plants under extreme temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:379-395. [PMID: 36748909 DOI: 10.1111/plb.13510] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid 'proline' in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop 'temperature-smart' plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing 'temperature-smart' future crop plants.
Collapse
Affiliation(s)
- A Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - S Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - S Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - M U Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - F Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - S Haider
- Plant Biochemistry and Molecular Biology Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - R Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - A Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - W Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - R K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
12
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
14
|
Ikram M, Chen J, Xia Y, Li R, Siddique KHM, Guo P. Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage ( Brassica campestris L. ssp. chinensis) using RNA sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1077920. [PMID: 36531374 PMCID: PMC9755508 DOI: 10.3389/fpls.2022.1077920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee, 2n=20, AA) is a vegetable species in southern parts of China that faces high temperatures in the summer and winter seasons. While heat stress adversely impacts plant productivity and survival, the underlying molecular and biochemical causes are poorly understood. This study investigated the gene expression profiles of heat-sensitive (HS) '3T-6' and heat-tolerant (HT) 'Youlu-501' varieties of flowering Chinese cabbage in response to heat stress using RNA sequencing. Among the 37,958 genes expressed in leaves, 20,680 were differentially expressed genes (DEGs) at 1, 6, and 12 h, with 1,078 simultaneously expressed at all time points in both varieties. Hierarchical clustering analysis identified three clusters comprising 1,958, 556, and 591 down-regulated, up-regulated, and up- and/or down-regulated DEGs (3205 DEGs; 8.44%), which were significantly enriched in MAPK signaling, plant-pathogen interactions, plant hormone signal transduction, and brassinosteroid biosynthesis pathways and involved in stimulus, stress, growth, reproductive, and defense responses. Transcription factors, including MYB (12), NAC (13), WRKY (11), ERF (31), HSF (17), bHLH (16), and regulatory proteins such as PAL, CYP450, and photosystem II, played an essential role as effectors of homeostasis, kinases/phosphatases, and photosynthesis. Among 3205 DEGs, many previously reported genes underlying heat stress were also identified, e.g., BraWRKY25, BraHSP70, BraHSPB27, BraCYP71A23, BraPYL9, and BraA05g032350.3C. The genome-wide comparison of HS and HT provides a solid foundation for understanding the molecular mechanisms of heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jingfang Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture & Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
15
|
Kahraman N, Pehlivan N. Harboured cation/proton antiporters modulate stress response to integrated heat and salt via up-regulating KIN1 and GOLS1 in double transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1070-1084. [PMID: 36031594 DOI: 10.1071/fp21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Recent research has pointed to improved salt tolerance by co-overexpression of Arabidopsis thaliana NHX1 (Na+ /H+ antiporter) and SOS1 (Salt Overly Sensitive1). However, functionality under salt stress accompanying heat is less understood in double transgenics. To further advance possible co-operational interactions of AtNHX1 (N) and AtSOS1 (S) under combined stress, modulation of osmolyte, redox, energy, and abscisic acid metabolism genes was analysed. The expression of the target BIP3 , KIN1 , GOLS1 , OHP2 , and CYCA3;2 in transgenic Arabidopsis seedlings were significantly regulated towards a dramatic suppression by ionic, osmotic, and heat stresses. AtNHX1 and AtSOS1 co-overexpression (NS) outpaced the single transgenics and control in terms of membrane disorganisation and the electrolyte leakage of the cell damage caused by heat and salt stress in seedlings. While NaCl slightly induced CYCA3;2 in transgenics, combined stress up-regulated KIN1 and GOLS1 , not other genes. Single N and S transgenics overexpressing AtNHX1 and AtSOS1 only appeared similar in their growth and development; however, different to WT and NS dual transgenics under heat+salt stress. Seed germination, cotyledon survival, and hypocotyl length were less influenced by combined stress in NS double transgenic lines than in single N and S and wild type. Stress combination caused significant reprogramming of gene expression profiles, mainly towards downregulation, possibly as a trade-off strategy. Analysing phenotypic, cellular, and transcriptional responses regulating growth facets of tolerant transgenic genotypes may support the ongoing efforts to achieve combined salt and heat tolerance.
Collapse
Affiliation(s)
- Nihal Kahraman
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey
| | - Necla Pehlivan
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey
| |
Collapse
|
16
|
Joo H, Lim CW, Lee SC. Pepper SUMO E3 ligase CaDSIZ1 enhances drought tolerance by stabilizing the transcription factor CaDRHB1. THE NEW PHYTOLOGIST 2022; 235:2313-2330. [PMID: 35672943 DOI: 10.1111/nph.18300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a reversible post-translational modification associated with protein stability and activity, and modulates hormone signaling and stress responses in plants. Previously, we reported that the pepper dehydration-responsive homeobox domain transcription factor CaDRHB1 acts as a positive modulator of drought response. Here, we show that CaDRHB1 protein stability is enhanced by SUMO E3 ligase Capsicum annuum DRHB1-interacting SAP and Miz domain (SIZ1) (CaDSIZ1)-mediated SUMOylation in response to drought, thereby positively modulating abscisic acid (ABA) signaling and drought responses. Substituting lysine (K) 138 of CaDRHB1 with arginine reduced CaDSIZ1-mediated SUMOylation, indicating that K138 is the principal site for SUMO conjugation. Virus-induced silencing of CaDSIZ1 promoted CaDRHB1 degradation, suggesting that CaDSIZ1 is involved in drought-induced SUMOylation of CaDRHB1. CaDSIZ1 interacted with and facilitated SUMO conjugation of CaDRHB1. CaDRHB1, mainly localized in the nucleus, but also in the cytoplasm in the SUMOylation mimic state, suggesting that SUMOylation of CaDRHB1 promotes its nuclear export, leading to cytoplasmic accumulation. Moreover, CaDSIZ1-silenced pepper plants were less sensitive to ABA and considerably sensitive to drought stress, whereas CaDSIZ1-overexpressing plants displayed ABA-hypersensitive and drought-tolerant phenotypes. Collectively, our data indicate that CaDSIZ1-mediated SUMOylation of CaDRHB1 functions in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| |
Collapse
|
17
|
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity. Essays Biochem 2022; 66:155-168. [PMID: 35920279 PMCID: PMC9400072 DOI: 10.1042/ebc20210068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
The response to abiotic and biotic stresses in plants and crops is considered a multifaceted process. Due to their sessile nature, plants have evolved unique mechanisms to ensure that developmental plasticity remains during their life cycle. Among these mechanisms, post-translational modifications (PTMs) are crucial components of adaptive responses in plants and transduce environmental stimuli into cellular signalling through the modulation of proteins. SUMOylation is an emerging PTM that has received recent attention due to its dynamic role in protein modification and has quickly been considered a significant component of adaptive mechanisms in plants during stress with great potential for agricultural improvement programs. In the present review, we outline the concept that small ubiquitin-like modifier (SUMO)-mediated response in plants and crops to abiotic and biotic stresses is a multifaceted process with each component of the SUMO cycle facilitating tolerance to several different environmental stresses. We also highlight the clear increase in SUMO genes in crops when compared with Arabidopsis thaliana. The SUMO system is understudied in crops, given the importance of SUMO for stress responses, and for some SUMO genes, the apparent expansion provides new avenues to discover SUMO-conjugated targets that could regulate beneficial agronomical traits.
Collapse
|
18
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
19
|
Post-translational modification: a strategic response to high temperature in plants. ABIOTECH 2022; 3:49-64. [PMID: 36304199 PMCID: PMC9590526 DOI: 10.1007/s42994-021-00067-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
With the increasing global warming, high-temperature stress is affecting plant growth and development with greater frequency. Therefore, an increasing number of studies examining the mechanism of temperature response contribute to a more optimal understanding of plant growth under environmental pressure. Post-translational modification (PTM) provides the rapid reconnection of transcriptional programs including transcription factors and signaling proteins. It is vital that plants quickly respond to changes in the environment in order to survive under stressful situations. Herein, we discuss several types of PTMs that occur in response to warm-temperature and high-temperature stress, including ubiquitination, SUMOylation, phosphorylation, histone methylation, and acetylation. This review provides a valuable resolution to this issue to enable increased crop productivity at high temperatures.
Collapse
|
20
|
Lai R, Jiang J, Wang J, Du J, Lai J, Yang C. Functional characterization of three maize SIZ/PIAS-type SUMO E3 ligases. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153588. [PMID: 34906794 DOI: 10.1016/j.jplph.2021.153588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
SUMOylation is a critical post-translational modification that regulates the nature and activity of protein substrates. The reaction is usually enhanced by a SIZ/PIAS-type of SUMO E3 ligase, but the functions of its homologs in maize have not yet been reported. In this study, we functionally characterized three members of this family of SUMO ligases, ZmSIZ1a, ZmSIZ1b, and ZmSIZ1c, from Zea mays. These maize SIZ1 homologs harbor conserved domains and structures with AtSIZ1, suggesting that they are potential functional SUMO ligases, which is supported by further biochemical data. The expression of these maize SIZ1 genes was detectable ubiquitously in different maize tissues and was usually induced by abiotic stresses. Expression of ZmSIZ1 members complements the leaf developmental defects of the AtSIZ1 mutant, suggesting their conserved function in development regulation. Interestingly, overexpression of ZmSIZ1c, but not ZmSIZ1a or ZmSIZ1b, in the wild-type Arabidopsis resulted in early flowering, implying that these members differ in terms of flowering control. Besides, overexpression of these ZmSIZ1 genes also improved salt tolerance in Arabidopsis. Collectively, our functional characterization of the ZmSIZ1 members provides hints for further investigation on the functions of SUMOylation in the development and stress responses in maize.
Collapse
Affiliation(s)
- Ruiqiang Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
21
|
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2421-2431. [PMID: 34744375 PMCID: PMC8526628 DOI: 10.1007/s12298-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
22
|
Jiang J, Xie Y, Du J, Yang C, Lai J. A SUMO ligase OsMMS21 regulates rice development and auxin response. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153447. [PMID: 34098413 DOI: 10.1016/j.jplph.2021.153447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 05/27/2023]
Abstract
SUMOylation, which transfers the Small Ubiquitin-related Modifier (SUMO) polypeptides to target proteins, regulates diverse cellular processes in eukaryotes. The SUMO conjugation reaction is usually promoted by SUMO E3 ligases, but the molecular functions of this type of enzymes remain unclear in cereal crops. Here, OsMMS21, a SUMO E3 ligase, was functionally characterized in rice (Oryza sativa). Bioinformatics analysis showed that OsMMS21 harbors a conserved SP-RING domain that is essential for the activity of SUMO ligases. Biochemical data indicated that this protein is auto-SUMOylated. Besides, overexpression of OsMMS21 rescued the developmental defects of the AtMMS21 mutant, supporting that OsMMS21 is a functional homolog of the Arabidopsis SUMO ligase AtMMS21. The OsMMS21 rice T-DNA mutant displays a short-root and dwarfism phenotype. RNA-seq data revealed that the expression levels of many genes involved in signaling transduction of hormones, including auxin, are altered in the OsMMS21 mutant. Further results under the auxin treatment showed that the OsMMS21 mutant is insensitive to auxin. Collectively, our results demonstrated the molecular features of OsMMS21 and uncovered the roles of this SUMO ligase in development and auxin response, providing hints for further studies on protein SUMOylation in rice.
Collapse
Affiliation(s)
- Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
23
|
Park SI, Kwon HJ, Cho MH, Song JS, Kim BG, Baek J, Kim SL, Ji H, Kwon TR, Kim KH, Yoon IS. The OsERF115/AP2EREBP110 Transcription Factor Is Involved in the Multiple Stress Tolerance to Heat and Drought in Rice Plants. Int J Mol Sci 2021; 22:ijms22137181. [PMID: 34281241 PMCID: PMC8269390 DOI: 10.3390/ijms22137181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023] Open
Abstract
The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice ERF gene was isolated and functionally characterized. The OsERF115/AP2EREBP110 was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment. The OsERF115/AP2EREBP110 protein targeted to nuclei and suppressed the ABA-induced transcriptional activation of Rab16A promoter in rice protoplasts. Overexpression of OsERF115/AP2EREBP110 enhanced thermotolerance of seeds and vegetative growth stage plants. The OsERF115/AP2EREBP110 overexpressing (OE) plants exhibited higher proline level and increased expression of a proline biosynthesis P5CS1 gene. Phenotyping of water use dynamics of the individual plant indicates that the OsERF115/AP2EREBP110-OE plant exhibited better water saving traits under heat and drought combined stress. Our combined results suggest the potential use of OsERF115/AP2EREBP110 as a candidate gene for genetic engineering approaches to develop heat and drought stress-tolerant crops.
Collapse
Affiliation(s)
- Seong-Im Park
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Hyeok Jin Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Mi Hyeon Cho
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Ji Sun Song
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea;
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Song Lim Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - HyeonSo Ji
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Taek-Ryoun Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Kyung-Hwan Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
- Correspondence:
| |
Collapse
|
24
|
Esmaeili N, Cai Y, Tang F, Zhu X, Smith J, Mishra N, Hequet E, Ritchie G, Jones D, Shen G, Payton P, Zhang H. Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:462-476. [PMID: 32902115 PMCID: PMC7955890 DOI: 10.1111/pbi.13476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 05/15/2023]
Abstract
Abiotic stresses such as extreme temperatures, water-deficit and salinity negatively affect plant growth and development, and cause significant yield losses. It was previously shown that co-overexpression of the Arabidopsis vacuolar pyrophosphatase gene AVP1 and the rice SUMO E3 ligase gene OsSIZ1 in Arabidopsis significantly increased tolerance to multiple abiotic stresses and led to increased seed yield for plants grown under single or multiple abiotic stress conditions. It was hypothesized that there might be synergistic effects between AVP1 overexpression and OsSIZ1 overexpression, which could lead to substantially increased yields if these two genes are co-overexpressed in real crops. To test this hypothesis, AVP1 and OsSIZ1 were co-overexpressed in cotton, and the impact of OsSIZ1/AVP1 co-overexpression on cotton's performance under normal growth and multiple stress conditions were analysed. It was found that OsSIZ1/AVP1 co-overexpressing plants performed significantly better than AVP1-overexpressing, OsSIZ1-overexpressing and wild-type cotton plants under single, as well as under multiple stress conditions in laboratory and field conditions. Two field studies showed that OsSIZ1/AVP1 co-overexpressing plants produced 133% and 81% more fibre than wild-type cotton in the dryland conditions of West Texas. This research illustrates that co-overexpression of AVP1 and OsSIZ1 is a viable strategy for engineering abiotic stress-tolerant crops and could substantially improve crop yields in low input or marginal environments, providing a solution for food security for countries in arid and semiarid regions of the world.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Yifan Cai
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Feiyu Tang
- College of AgronomyJiangxi Agricultural UniversityNanchangChina
| | - Xunlu Zhu
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Jennifer Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Neelam Mishra
- St. Joseph's College AutonomousBengaluruKarnatakaIndia
| | - Eric Hequet
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTXUSA
| | - Glen Ritchie
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTXUSA
| | | | - Guoxin Shen
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Paxton Payton
- USDA‐ARS Cropping Systems Research LaboratoryLubbockTXUSA
| | - Hong Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| |
Collapse
|
25
|
Waziri A, Singh DK, Sharma T, Chatterjee S, Purty RS. Genome-wide analysis of PHD finger gene family and identification of potential miRNA and their PHD finger gene specific targets in Oryza sativa indica. Noncoding RNA Res 2020; 5:191-200. [PMID: 33163736 PMCID: PMC7610035 DOI: 10.1016/j.ncrna.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important cereal crops for one third of the world population. However, the grain quality as well as yield of rice is severely affected by various abiotic stresses. Environmental stresses affect the expression of various microRNAs (miRNAs) which in turn negatively regulate gene expression at the post-transcriptional level either by degrading the target mRNA genes or suppressing translation in plants. Plant homeo-domain (PHD) finger proteins are known to be involved in the plant response to salinity stress. In the present study, we identified 44 putative OsPHD finger genes in Oryza sativa Indica, using Ensembl Plants Database. Using computational approach, potential miRNAs that target OsPHD finger genes were identified. Out of the 44 OsPHD finger genes only three OsPHD finger genes i.e., OsPHD2, OsPHD35 and OsPHD11, were found to be targeted by five newly identified putative miRNAs i.e., ath-miRf10010-akr, ath-miRf10110-akr, osa-miR1857–3p, osa-miRf10863-akr, and osa-miRf11806-akr. This is the first report of these five identified miRNAs on targeting PHD finger in Oryza sativa Indica. Further, expression analysis of 44 PHD finger genes under salinity was also performed using quantitative Real-Time PCR. The expression profile of 8 genes were found to be differentially regulated, among them two genes were significantly up regulated i.e., OsPHD6 and OsPHD12. In silico protein-protein interaction analysis using STRING database showed interaction of the OsPHD finger proteins with other protein partners that are directly or indirectly involved in development and abiotic stress tolerance. Total of 44 Plant homeo-domain (PHD) finger proteins were identified & classified into 10 groups in Oryza sativa Indica. This is the first report showing 5 newly identified putative miRNAs targeting three OsPHD genes i.e., OsPHD2, 11 and 35. Expression analysis of PHD finger genes showed up-regulation of the 2 genes OsPHD 6 & 12 under salinity stress treatment. Protein-protein network of OsPHDs showed protein partners that are involved in plant growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Deepak Kumar Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Tarun Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| |
Collapse
|
26
|
Sega P, Pacak A. Plant PHR Transcription Factors: Put on A Map. Genes (Basel) 2019; 10:E1018. [PMID: 31817743 PMCID: PMC6947268 DOI: 10.3390/genes10121018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphate starvation response (PHR) protein family exhibits the MYB and coiled-coil domains. In plants, within the either 5' untranslated regions (UTRs) or promoter regions of phosphate starvation-induced (PSI) genes are characteristic cis-regulatory elements, namely PHR1 binding sequence (P1BS). The most widely studied PHR protein family members, such as AtPHR1 in Arabidopsis thaliana (L.) and OsPHR2 in Oryza sativa (L.), may activate the gene expression of a broad range of PSI genes by binding to such elements in a phosphate (Pi) dependent manner. In Pi signaling, PHR transcription factors (TFs) can be selectively activated or deactivated by other proteins to execute the final step of signal transduction. Several new proteins have been associated with the AtPHR1/OsPHR2 signaling cascade in the last few years. While the PHR TF transcriptional role has been studied intensively, here we highlight the recent findings of upstream molecular components and other signaling pathways that may interfere with the PHR final mode of action in plants. Detailed information about transcriptional regulation of the AtPHR1 gene itself and its upstream molecular events has been reviewed.
Collapse
Affiliation(s)
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
27
|
Liu S, Hu ZM, Zhang Q, Yang X, Critchley AT, Duan D. PI signal transduction and ubiquitination respond to dehydration stress in the red seaweed Gloiopeltis furcata under successive tidal cycles. BMC PLANT BIOLOGY 2019; 19:516. [PMID: 31771523 PMCID: PMC6880600 DOI: 10.1186/s12870-019-2125-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Intermittent dehydration caused by tidal changes is one of the most important abiotic factors that intertidal seaweeds must cope with in order to retain normal growth and reproduction. However, the underlying molecular mechanisms for the adaptation of red seaweeds to repeated dehydration-rehydration cycles remain poorly understood. RESULTS We chose the red seaweed Gloiopeltis furcata as a model and simulated natural tidal changes with two consecutive dehydration-rehydration cycles occurring over 24 h in order to gain insight into key molecular pathways and regulation of genes which are associated with dehydration tolerance. Transcription sequencing assembled 32,681 uni-genes (GC content = 55.32%), of which 12,813 were annotated. Weighted gene co-expression network analysis (WGCNA) divided all transcripts into 20 modules, with Coral2 identified as the key module anchoring dehydration-induced genes. Pathways enriched analysis indicated that the ubiquitin-mediated proteolysis pathway (UPP) and phosphatidylinositol (PI) signaling system were crucial for a successful response in G. furcata. Network-establishing and quantitative reverse transcription PCR (qRT-PCR) suggested that genes encoding ubiquitin-protein ligase E3 (E3-1), SUMO-activating enzyme sub-unit 2 (SAE2), calmodulin (CaM) and inositol-1,3,4-trisphosphate 5/6-kinase (ITPK) were the hub genes which responded positively to two successive dehydration treatments. Network-based interactions with hub genes indicated that transcription factor (e.g. TFIID), RNA modification (e.g. DEAH) and osmotic adjustment (e.g. MIP, ABC1, Bam1) were related to these two pathways. CONCLUSIONS RNA sequencing-based evidence from G. furcata enriched the informational database for intertidal red seaweeds which face periodic dehydration stress during the low tide period. This provided insights into an increased understanding of how ubiquitin-mediated proteolysis and the phosphatidylinositol signaling system help seaweeds responding to dehydration-rehydration cycles.
Collapse
Affiliation(s)
- Shun Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Quansheng Zhang
- Ocean School, Yantai University, Yantai, 264005 People’s Republic of China
| | - Xiaoqi Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, University of Cape Breton, Sydney, Nova Scotia Canada
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| |
Collapse
|
28
|
Rosa MT, Abreu IA. Exploring the regulatory levels of SUMOylation to increase crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:43-51. [PMID: 31177030 DOI: 10.1016/j.pbi.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
SUMOylation is an essential post-translational modification that affects several cellular processes, from gene replication to stress response. Studies using the SUMO (de)conjugation machinery have provided evidence regarding its potential to improve crop performance and productivity under normal and adverse conditions. However, the pleiotropic effect of SUMOylation can be a disadvantage in both situations, especially when considering unpredictable environmental conditions caused by climate changes. Here, we discuss the pleiotropic effects caused by disrupting the SUMOylation machinery, and new strategies that may help to overcome pleiotropy. We propose exploring the several regulatory levels of SUMOylation recently revealed, including transcriptional, post-transcriptional regulation by alternative splicing, and post-translational modifications. These new findings may provide valuable tools to increase crop productivity.
Collapse
Affiliation(s)
- Margarida Tg Rosa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
29
|
Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses. Sci Rep 2019; 9:7642. [PMID: 31113977 PMCID: PMC6529626 DOI: 10.1038/s41598-019-44062-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
Abiotic stresses such as water deficit, salt, and heat are major environmental factors that negatively affect plant growth, development, and productivity. Previous studies showed that overexpression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 increases salt and water deficit stress tolerance and overexpression of the rice SUMO E3 ligase gene OsSIZ1 improves heat and water deficit stress tolerance in transgenic plants. In this report, the effects of co-overexpression of AVP1 and OsSIZ1 in Arabidopsis on abiotic stress tolerance were studied. It was found that AVP1/OsSIZ1 co-overexpressing plants performed significantly better than AVP1-overexpressing plants and OsSIZ1-overexpressing plants, and produced 100% more seed than wild-type plants under single stress or multiple stress conditions. The increased stress tolerance in AVP1/OsSIZ1 co-overexpressing plants was substantially larger than the increased stress tolerance in AVP1-overexpressing plants and OsSIZ1-overexpressing plants under every abiotic stress condition tested. This research provides the proof-of-concept that crop yields might be substantially improved using this approach.
Collapse
|