1
|
Pesce E, Benitez-Gonzalez J, Tindall AJ, Lemkine GF, Robin-Duchesne B, Sachs LM, Pasquier EDD. Testing the sensitivity of the medaka Transgenic Eleuthero-embryonic THYroid-Specific assay (TETHYS) to different mechanisms of action. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107081. [PMID: 39305711 DOI: 10.1016/j.aquatox.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 11/12/2024]
Abstract
There are many concerns about the impacts of Endocrine-Disrupting Chemicals on both wildlife and human populations. A plethora of chemicals have been shown to interfere with the Hypothalamic-Pituitary-Thyroid (HPT) axis in vertebrates. Disruption of the HPT axis is one of main endocrine criteria considered for the regulation of chemicals, along with the estrogen axis, androgen axis and steroidogenesis (EATS). In response to these concerns, the Organization for Economic Cooperation and Development (OECD) initiated the validation of test guidelines (TGs) covering the EATS modalities. Regarding thyroid activity and/or disruption assessment, three OECD TGs are validated, all of them using amphibians. To date, no OECD TGs based on fish are available for the detection of Thyroid Active Chemicals (TACs). To fill this gap, we developed a new test for the detection of TACs, the TETHYS assay (Transgenic Eleuthero-embryonic THYroid-Specific assay). This assay uses a medaka (Oryzias latipes) transgenic line Tg(tg:eGFP) expressing Green Fluorescent Protein in the thyroid follicles, under the control of the thyroglobulin promoter. This assay is performed at eleuthero-embryonic life-stages with an exposure length of 72 h. In the present study, the following reference chemicals with known thyroid hormone system mechanism of action have been tested: methimazole, sodium perchlorate, sodium tetrafluoroborate, diclofenac, iopanoic acid, sobetirome, NH-3 and 1-850. Except for the thyroid receptor antagonists, all chemicals tested were identified as thyroid active, modifying the total fluorescence and the size of the thyroid follicles. To investigate the test specificity, we tested three chemicals presumed to be inert on the HPT axis: cefuroxime, abamectin and 17α-ethinylestradiol. All were found to be inactive in the TETHYS assay. This promising New Approach Methodology can serve as a foundation for the development of a new OECD TG in the frame of regulatory assessment of chemicals for thyroid activity.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France; UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | | - Andrew J Tindall
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | - Gregory F Lemkine
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | | | - Laurent M Sachs
- UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | |
Collapse
|
2
|
Van Dingenen I, Andersen E, Volz S, Christiansen M, Novák J, Haigis AC, Stacy E, Blackwell BR, Villeneuve DL, Vergauwen L, Hilscherová K, Holbech H, Knapen D. The thyroid hormone system disrupting potential of resorcinol in fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116995. [PMID: 39236656 DOI: 10.1016/j.ecoenv.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Environmental pollutants capable of interfering with the thyroid hormone (TH) system increasingly raise concern for both human and environmental health. Recently, resorcinol has received attention as a compound of concern due to its endocrine disrupting properties. It is a known inhibitor of thyroperoxidase (TPO), an enzyme required in TH synthesis, and therapeutic use of resorcinol exposure has led to hypothyroidism in humans. There is limited evidence concerning ecotoxicologically relevant effects of resorcinol in fish. A set of adverse outcome pathways (AOPs) has recently been developed linking thyroid hormone system disruption (THSD) to impaired swim bladder inflation and eye development in fish. In the present study, these AOPs were used to provide the background for testing potential THSD effects of resorcinol in zebrafish eleutheroembryos. We exposed zebrafish eleutheroembryos to resorcinol and assessed TH levels, swim bladder inflation and eye morphology. As a TPO inhibitor, resorcinol is expected to affect TH levels and eye morphology but not swim bladder inflation during embryonic development. Indeed, thyroxine (T4) levels were significantly decreased following resorcinol exposure. In contrast to our hypothesis, swim bladder inflation was impaired at 5 days post fertilization (dpf) and no effects on eye morphology were detected. Therefore, in vitro assays were performed to identify potential additional thyroid hormone system disruption-related mechanisms through which resorcinol may act. Two new mechanisms were identified: TH receptor (TR) antagonism and transthyretin (TTR) binding inhibition. Both of these mechanisms can plausibly be linked to impaired swim bladder inflation and could, therefore, explain the observed effect. Overall, our study contributes to the knowledge of the THSD potential of resorcinol both in vivo in the zebrafish model as well as in vitro.
Collapse
Affiliation(s)
- Imke Van Dingenen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Emma Andersen
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Sina Volz
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Monica Christiansen
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Emma Stacy
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
3
|
Edzie EKM, Dzefi‐Tettey K, Brakohiapa EK, Nimo O, Appiah‐Thompson P, Amedi MK, Bockarie A, Quarshie F, Onimole E, Akorli E, Anthony R, Edzie RA, Amankwa NA, Amartey A, Osei B, Oppong B, Asemah AR, Gorleku PN. Evaluation of the ultrasound findings of thyroid gland enlargement in Cape Coast Teaching Hospital, Ghana: A retrospective cross-sectional study. Health Sci Rep 2024; 7:e2090. [PMID: 38736473 PMCID: PMC11082088 DOI: 10.1002/hsr2.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/14/2024] Open
Abstract
Background and Aim Goiter is a major source of morbidity in the world, especially in the developing world, where dietary iodine deficiency, a known cause of this condition, is endemic. The diagnosis is mostly by ultrasonography (USG) scan, which can give anatomical, pathological, and functional information for the management of goiter. This study aimed to determine the commonest ultrasound findings of goiter in Ghana. Method The records of all 213 patients with goiter diagnosed by USG scan over a 5-year period were retrieved. Data collected were sociodemographics, ultrasound features, thyroid nodules diameter, and Thyroid Imaging Reporting and Data System (TI-RADS) scores, which were analyzed using GNU PSPP, version 1.2.0-3. χ 2 and two-tailed independent samples t-test were also employed, with p ≤ 0.05. Results A total of 213 patients with goiter diagnosed by USG scan were obtained over the study period. The mean age of the participants was 50.01 ± 17.27 years, with an age range of 16-92 years and females constituting the majority (82.16%). The commonest ultrasound features were well-defined solid nodules. The lesion sites for most patients were the whole thyroid (28.17%), both lobes (24.41%), and the right lobe (20.19%). The mean difference in sizes of cysts and solid nodules among genders was 0.26 (CI: -0.14 to 0.67, p = 0.20) and 0.12 (CI: -0.43 to 0.66, p = 0.67), respectively. The TI-RADS score featured TI-RADS 4 (36.62%), TI-RADS 1 (28.17%), TI-RADS 3 (25.82%), TI-RADS 5 (5.16%), and TI-RADS 2 (4.23%). Solid nodules (49.32%, p = 0.001) and cysts (35.71%, p = 0.003) were more common within 41-60 years and less frequent in those <21 years. A p ≤ 0.05 was considered significant in this study. Conclusion The predominant ultrasound features were well-defined solid nodules, simple cysts, and solid nodules with cystic changes, mostly located in the entire thyroid gland and least located in the isthmus only. Cysts and solid nodules were mostly seen in the 41-60 years age group.
Collapse
Affiliation(s)
- Emmanuel Kobina Mesi Edzie
- Department of Medical ImagingSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
- Ghana College of Physicians and Surgeons, Faculty of RadiologyAccraGhana
| | - Klenam Dzefi‐Tettey
- Ghana College of Physicians and Surgeons, Faculty of RadiologyAccraGhana
- Department of RadiologyKorle Bu Teaching HospitalAccraGhana
| | | | - Obed Nimo
- Department of Imaging Technology and SonographyCollege of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Peter Appiah‐Thompson
- Department of Ear Nose and ThroatSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Michael Kofi Amedi
- Ghana College of Physicians and Surgeons, Faculty of RadiologyAccraGhana
- Ghana College of Physicians and Surgeons, Faculty Board of RadiologyAccraGhana
| | - Ansumana Bockarie
- Department of Internal MedicineSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Frank Quarshie
- African Institute for Mathematical Sciences (AIMS)SantoeGhana
| | - Emmanuel Onimole
- Department of Family MedicineSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Emmanuel Akorli
- Department of Family MedicineSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Richard Anthony
- Department of Internal MedicineTema General Hospital, Ghana Health ServiceTemaGhana
| | - Richard Ato Edzie
- Department of Medical ImagingSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Nana Ama Amankwa
- Ghana College of Physicians and Surgeons, Faculty of Internal MedicineAccraGhana
| | - Aaron Amartey
- Ghana College of Physicians and Surgeons, Faculty of HematologyAccraGhana
| | - Bernard Osei
- African Institute for Mathematical Sciences (AIMS)SantoeGhana
| | - Bright Oppong
- Department of Medical ImagingSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Abdul Raman Asemah
- Department of Medical ImagingSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| | - Philip Narteh Gorleku
- Department of Medical ImagingSchool of Medical Sciences, College of Health and Allied Sciences, University of Cape CoastCape CoastGhana
| |
Collapse
|
4
|
Wang J, Yu Z, Wang Y, Chen Y, Xiao L, Zong Y, Feng Q, Peng L, Zhang H, Liu C. Ethylene thiourea exposure induces neurobehavioral toxicity in zebrafish by disrupting axon growth and neuromuscular junctions. J Environ Sci (China) 2024; 137:108-119. [PMID: 37980000 DOI: 10.1016/j.jes.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/20/2023]
Abstract
Ethylene thiourea (ETU) converted from ethylene bisdithiocarbamate (EBDC) fungicides has aroused great concern because of its prevalence and harmful effects. Although ETU-induced neurotoxicity has been reported, the potential mechanisms remain unclear. This study provided insights into its neurotoxic effects at environmentally relevant concentrations in zebrafish. Our findings showed that embryonic exposure to ETU decreased the hatch rate and delayed somite development. Furthermore, ETU treatment significantly reduced the dark velocity in the locomotion assay. The upregulated tendency of the mitogen-activated protein kinases (MAPK) pathway (mknk1, atf4, mapkapk3) screened by transcriptome analysis implied motor neuron degeneration, which was validated by subsequent morphological observation, as axon length and branches were truncated in the 62.5 µg/L ETU group. However, although the rescue experiment with a p38 MAPK inhibitor (SB203580) successfully ameliorated axon degeneration, it failed to reverse the locomotion behaviors. Further exploration of transcriptome data revealed the varied expression of presynaptic scaffold protein-related genes (pcloa, pclob, bsna), whose downregulation might impair the neuromuscular junction (NMJ). Therefore, we reasonably suspected that ETU-induced neurobehavioral deficits might result from the combined effects of the MAPK pathway and presynaptic proteins. Considering this, we highlighted the necessity to take precautions and early interventions for susceptible ETU-exposed populations.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjun Zong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiyuan Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianqi Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Pesce E, Garde M, Rigolet M, Tindall AJ, Lemkine GF, Baumann LA, Sachs LM, Du Pasquier D. A Novel Transgenic Model to Study Thyroid Axis Activity in Early Life Stage Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:99-109. [PMID: 38117130 PMCID: PMC10786150 DOI: 10.1021/acs.est.3c05515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 μg/L, 1 μg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Marion Garde
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | - Muriel Rigolet
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Andrew J. Tindall
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | | | - Lisa A. Baumann
- University
of Heidelberg, Centre for Organismal
Studies, Aquatic Ecology and Toxicology, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
- Vrije
Universiteit Amsterdam, Amsterdam Institute
for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Laurent M. Sachs
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - David Du Pasquier
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| |
Collapse
|
6
|
Wilhelmi P, Giri V, Zickgraf FM, Haake V, Henkes S, Driemert P, Michaelis P, Busch W, Scholz S, Flick B, Barenys M, Birk B, Kamp H, Landsiedel R, Funk-Weyer D. A metabolomics approach to reveal the mechanism of developmental toxicity in zebrafish embryos exposed to 6-propyl-2-thiouracil. Chem Biol Interact 2023; 382:110565. [PMID: 37236578 DOI: 10.1016/j.cbi.2023.110565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
A crucial component of a substance registration and regulation is the evaluation of human prenatal developmental toxicity. Current toxicological tests are based on mammalian models, but these are costly, time consuming and may pose ethical concerns. The zebrafish embryo has evolved as a promising alternative model to study developmental toxicity. However, the implementation of the zebrafish embryotoxicity test is challenged by lacking information on the relevance of observed morphological alterations in fish for human developmental toxicity. Elucidating the mechanism of toxicity could help to overcome this limitation. Through LC-MS/MS and GC-MS metabolomics, we investigated whether changes to the endogenous metabolites can indicate pathways associated with developmental toxicity. To this aim, zebrafish embryos were exposed to different concentrations of 6-propyl-2-thiouracil (PTU), a compound known to induce developmental toxicity. The reproducibility and the concentration-dependence of the metabolome response and its association with morphological alterations were studied. Major morphological findings were reduced eye size, and other craniofacial anomalies; major metabolic changes included increased tyrosine, pipecolic acid and lysophosphatidylcholine levels, decreased methionine levels, and disturbance of the 'Phenylalanine, tyrosine and tryptophan biosynthesis' pathway. This pathway, and the changes in tyrosine and pipecolic acid levels could be linked to the mode of action of PTU, i.e., inhibition of thyroid peroxidase (TPO). The other findings suggested neurodevelopmental impairments. This proof-of-concept study demonstrated that metabolite changes in zebrafish embryos are robust and provide mechanistic information associated with the mode of action of PTU.
Collapse
Affiliation(s)
- Pia Wilhelmi
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany; University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain.
| | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany.
| | | | - Volker Haake
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | | | | | - Paul Michaelis
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Burkhard Flick
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | - Marta Barenys
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain; German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany; Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, 14195, Berlin, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
7
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kraft M, Gölz L, Rinderknecht M, Koegst J, Braunbeck T, Baumann L. Developmental exposure to triclosan and benzophenone-2 causes morphological alterations in zebrafish (Danio rerio) thyroid follicles and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33711-33724. [PMID: 36495432 PMCID: PMC9736712 DOI: 10.1007/s11356-022-24531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Thyroid hormones (THs) regulate a multitude of developmental and metabolic processes, which are responsible for vertebrate development, growth, and maintenance of homeostasis. THs also play a key role in neurogenesis of vertebrates and thus affect eye development, which is vital for foraging efficiency and for effective escape from predation. Currently, there are no validated test guidelines for the assessment of TH system-disrupting chemicals (THSDCs) in fish. Consequently, the present study was designed to demonstrate the suitability of novel thyroid-related endpoints in early life-stages of fish. Embryos of a transgenic zebrafish (Danio rerio) line expressing the reporter gene tg:mCherry in their thyrocytes were used to investigate the effects of the environmental THSDCs triclosan (TCS, antibacterial agent) and benzophenone-2 (BP-2, UV filter) on thyroid follicle and eye development. Both BP-2 and TCS caused thyroid follicle hyperplasia in transgenic zebrafish, thus confirming their role as THSDCs. The effect intensity on follicle size and fluorescence was comparable with a 1.7-fold increase for BP-2 and 1.6-fold for TCS. Alterations of the cellular structures of the retina indicate an impact of both substances on eye development, with a stronger impact of TCS. With respect to guideline development, results provide further evidence for the suitability of morphological changes in thyroid follicles and the eyes as novel endpoints for the sensitive assessment of THSD-related effects in fish.
Collapse
Affiliation(s)
- Maximilian Kraft
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Gölz
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Maximilian Rinderknecht
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Cooper JP, Ratzlaff DE, Woodland CLA, Ellis LD. The contribution of larval zebrafish transcriptomics to chemical risk assessment. Regul Toxicol Pharmacol 2023; 138:105336. [PMID: 36642323 DOI: 10.1016/j.yrtph.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In Canada, the Canadian Environmental Protection Act (1999) requires human health and environmental risk assessments be conducted for new substances prior to their manufacture or import. While this toxicity data is historically obtained using rodents, in response to the international effort to eliminate animal testing, Health Canada is collaborating with the National Research Council (NRC) of Canada to develop a New Approach Method by refining existing NRC zebrafish models. The embryo/larval zebrafish model evaluates systemic (whole body) general toxicity which is currently unachievable with cell-based testing. The model is strengthened using behavioral, toxicokinetic and transcriptomic responses to assess non-visible indicators of toxicity following chemical exposure at sub-phenotypic concentrations. In this paper, the predictive power of zebrafish transcriptomics is demonstrated using two chemicals; Raloxifene and Resorcinol. Raloxifene exposure produced darkening of the liver and malformation of the nose/mandible, while Resorcinol exposure produced increased locomotor activity. Transcriptomic analysis correlated differentially expressed genes with the phenotypic effects and benchmark dose calculations determined that the transcriptomic Point of Departure (POD) occurred at subphenotypic concentrations. Correlating gene expression with apical (phenotypic) effects strengthens confidence in evaluation of chemical toxicity, thereby demonstrating the significant advancement that the larval zebrafish transcriptomics model represents in chemical risk assessment.
Collapse
Affiliation(s)
- Michael G Morash
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada.
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada.
| | - J C Achenbach
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada.
| | - Ananda B Venkatachalam
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada.
| | | | - Deborah E Ratzlaff
- New Substances Assessment Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Cindy L A Woodland
- New Substances Assessment Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Lee D Ellis
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada.
| |
Collapse
|
10
|
Lempereur S, Machado E, Licata F, Simion M, Buzer L, Robineau I, Hémon J, Banerjee P, De Crozé N, Léonard M, Affaticati P, Talbot H, Joly JS. ZeBraInspector, a platform for the automated segmentation and analysis of body and brain volumes in whole 5 days post-fertilization zebrafish following simultaneous visualization with identical orientations. Dev Biol 2022; 490:86-99. [PMID: 35841952 DOI: 10.1016/j.ydbio.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
In recent years, the zebrafish has become a well-established laboratory model. We describe here the ZeBraInspector (ZBI) platform for high-content 3D imaging (HCI) of 5 days post-fertilization zebrafish eleuthero-embryos (EEs). This platform includes a mounting method based on 3D-printed stamps to create a grid of wells in an agarose cast, facilitating batch acquisitions with a fast-confocal laser scanning microscope. We describe reference labeling in cleared fish with a fluorescent lipophilic dye. Based on this labeling, the ZBI software registers. EE 3D images, making it possible to visualize numerous identically oriented EEs on a single screen, and to compare their morphologies and any fluorescent patterns at a glance. High-resolution 2D snapshots can be extracted. ZBI software is therefore useful for diverse high-content analyses (HCAs). Following automated segmentation of the lipophilic dye signal, the ZBI software performs volumetric analyses on whole EEs and their nervous system white matter. Through two examples, we illustrate the power of these analyses for obtaining statistically significant results from a small number of samples: the characterization of a phenotype associated with a neurodevelopmental mutation, and of the defects caused by treatments with a toxic anti-cancer compound.
Collapse
Affiliation(s)
- Sylvain Lempereur
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France; Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France.
| | - Elodie Machado
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Licata
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Matthieu Simion
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Lilian Buzer
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France
| | - Isabelle Robineau
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Julien Hémon
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Payel Banerjee
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Marc Léonard
- L'Oréal, Research & Innovation, Aulnay sous Bois, France
| | - Pierre Affaticati
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Hugues Talbot
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France; Université Paris-Saclay, Centrale Supélec, INRIA, 91190, Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
11
|
Ruiz OE, Samms KM, Eisenhoffer GT. A protocol to evaluate epithelial regeneration after inducing cell loss in zebrafish larvae. STAR Protoc 2022; 3:101073. [PMID: 35036954 PMCID: PMC8749296 DOI: 10.1016/j.xpro.2021.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Epithelial tissues sustain barrier function by removing and replacing aberrant or unfit cells. Here, we describe approaches to evaluate epithelial restorative capacity after inducing cell loss in zebrafish larvae. We provide details to quantify morphological changes to the tail fin epithelium after cell loss, and instructions to interrogate changes in gene expression and proliferation associated with replacement of the lost cells. Together, this approach establishes an in vivo vertebrate model for the rapid assessment of molecular pathways controlling epithelial regeneration. For complete details on the use and execution of this profile, please refer to Wurster et al. (2021). Evaluation of epithelial restorative capacity after cell loss in zebrafish larvae Quantification of morphological changes related to cell loss in the tail fin epithelium Instructions to interrogate changes in gene expression after induced cell loss Steps to assess proliferation associated with replacement of the lost cells
Collapse
Affiliation(s)
- Oscar E Ruiz
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krystin M Samms
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genetics and Epigenetics Graduate Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
13
|
Eser B, Tural R, Gunal AC, Sepici Dincel A. Does bisphenol A bioaccumulate on zebrafish? Determination of tissue bisphenol A level. Biomed Chromatogr 2021; 36:e5285. [PMID: 34826884 DOI: 10.1002/bmc.5285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a high-production-volume industrial chemical mainly used in the production of polycarbonates and epoxy resins utilized in the manufacture of containers, bottles, toys, and medical devices. It has systemic effects as an endocrine disruptor even at low doses. To analyze its quantity in biological materials, sensitive and reproducible methods have to be used. Different doses and duration (90 and 900 μg/L, 24 and 120 h, and 21 days) of BPA exposure to whole body zebrafish were analyzed after specific homogenization of tissue, and then a modified method HPLC was used. The mobile phase was acetonitrile and water using a gradient method of reversed-phase C18 column, and excitation = 227 nm/emission = 313 nm. The calibration curve for BPA using HPLC-fluorescence detection method was between a concentration range of 1 and 1000 ng/mL and linear, and r2 = 0.999. The mean and standard error of mean values were 4.29 ± 1.05, 2.50 ± 0.92, and 2.53 ± 0.68 for control; 10.43 ± 2.61, 11.46 ± 3.24, and 8.55 ± 3.11 for BPA-90 μg/L; and 17.78 ± 4.39, 21.55 ± 4.37, and 25.32 ± 3.25 for BPA-900 μg/L (24 h, 120 h, and 21 days, respectively). Although some statistical significance among dose/time was observed between two different dose-treated groups, statistical significance was not found in dose/time results within the group. However, the positive result of BPA in the control group can be explained by low-dose, chronic exposure or prevalence of endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Burcu Eser
- Research and Development Center, University of Health Sciences, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Rabia Tural
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aysel Caglan Gunal
- Department of Environmental Sciences, Institute of Natural and Applied Sciences, Gazi University, Ankara, Turkey
| | - Aylin Sepici Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
15
|
Nittoli V, Colella M, Porciello A, Reale C, Roberto L, Russo F, Russo NA, Porreca I, De Felice M, Mallardo M, Ambrosino C. Multi Species Analyses Reveal Testicular T3 Metabolism and Signalling as a Target of Environmental Pesticides. Cells 2021; 10:2187. [PMID: 34571837 PMCID: PMC8471965 DOI: 10.3390/cells10092187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormones (THs) regulate many biological processes in vertebrates, including reproduction. Testicular somatic and germ cells are equipped with the arrays of enzymes (deiodinases), transporters, and receptors necessary to locally maintain the optimal level of THs and their signalling, needed for their functions and spermatogenesis. Pesticides, as chlorpyrifos (CPF) and ethylene thiourea (ETU), impair the function of thyroid and testis, affecting male fertility. However, their ability to disarrange testicular T3 (t-T3) metabolism and signalling is poorly considered. Here, a multi-species analysis involving zebrafish and mouse suggests the damage of t-T3 metabolism and signalling as a mechanism of gonadic toxicity of low-doses CPF and ETU. Indeed, the developmental exposure to both compounds reduces Dio2 transcript in both models, as well as in ex-vivo cultures of murine seminiferous tubules, and it is linked to alteration of steroidogenesis and germ cell differentiation. A major impact on spermatogonia was confirmed molecularly by the expression of their markers and morphologically evidenced in zebrafish. The results reveal that in the adopted models, exposure to both pesticides alters the t-T3 metabolism and signalling, affecting the reproductive capability. Our data, together with previous reports suggest zebrafish as an evaluable model in assessing the action of compounds impairing locally T3 signalling.
Collapse
Affiliation(s)
- Valeria Nittoli
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Potenza, Italy
| | - Alfonsina Porciello
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Carla Reale
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Luca Roberto
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Filomena Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Nicola A. Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Immacalata Porreca
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 59100 Naples, Italy;
- IEOS-CNR, 80131 Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 59100 Naples, Italy;
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- IEOS-CNR, 80131 Naples, Italy
| |
Collapse
|
16
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
17
|
Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach. Sci Rep 2020; 10:11831. [PMID: 32678143 PMCID: PMC7367351 DOI: 10.1038/s41598-020-68567-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine—an open channel blocker of HCNs—for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).
Collapse
|
19
|
Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020; 508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) play critical roles in profound changes in many vertebrates, notably in mammalian neurodevelopment, although the precise molecular mechanisms of these fundamental biological processes are still being unravelled. Environmental and health concerns prompted the development of chemical safety testing and, in the context of endocrine disruption, identification of thyroid hormone axis disrupting chemicals (THADCs) remains particularly challenging. As various molecules are known to interfere with different levels of TH signalling, screening tests for THADCs may not rely solely on in vitro ligand/receptor binding to TH receptors. Therefore, alternatives to mammalian in vivo assays featuring TH-related endpoints that are more sensitive than circulatory THs and more rapid than thyroid histopathology are needed to fulfil the ambition of higher throughput screening of the myriad of environmental chemicals. After a detailed introduction of the context, we have listed current assays and parameters to assess thyroid disruption following a literature search of recent publications referring to non-mammalian models. Potential THADCs were mostly investigated in zebrafish and the frog Xenopus laevis, an amphibian model extensively used to study TH signalling.
Collapse
Affiliation(s)
- Stephan Couderq
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Michelle Leemans
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
20
|
Giusti N, Gillotay P, Trubiroha A, Opitz R, Dumont JE, Costagliola S, De Deken X. Inhibition of the thyroid hormonogenic H 2O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 2020; 500:110635. [PMID: 31678421 DOI: 10.1016/j.mce.2019.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.
Collapse
Affiliation(s)
- Nicoletta Giusti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Achim Trubiroha
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Present Address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Robert Opitz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
21
|
Keramaris KE, Konstantopoulos K, Margaritis LH, Velentzas AD, Papassideri IS, Stravopodis DJ. Exploitation of Drosophila Choriogenesis Process as a Model Cellular System for Assessment of Compound Toxicity: the Phloroglucinol Paradigm. Sci Rep 2020; 10:242. [PMID: 31937877 PMCID: PMC6959335 DOI: 10.1038/s41598-019-57113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinol (1,3,5 tri-hydroxy-benzene) (PGL), a natural phenolic substance, is a peroxidase inhibitor and has anti-oxidant, anti-diabetic, anti-inflammatory, anti-thrombotic, radio-protective, spasmolytic and anti-cancer activities. PGL, as a medicine, is administered to patients to control the symptoms of irritable bowel syndrome and acute renal colic, in clinical trials. PGL, as a phenolic substance, can cause cytotoxic effects. Administration of PGL up to 300 mg/kg (bw) is well tolerated by animals, while in cell lines its toxicity is developed at concentrations above the dose of 10 μg/ml. Furthermore, it seems that tumor or immortalized cells are more susceptible to the toxic power of PGL, than normal cells. However, studies of its cytotoxic potency, at the cellular level, in complex, differentiated and meta-mitotic biological systems, are still missing. In the present work, we have investigated the toxic activity of PGL in somatic epithelial cells, constituting the follicular compartment of a developing egg-chamber (or, follicle), which directs the choriogenesis (i.e. chorion assembly) process, during late oogenesis of Drosophila melanogaster. Our results reveal that treatment of in vitro growing Drosophila follicles with PGL, at a concentration of 0.2 mM (or, 25.2 μg/ml), does not lead to follicle-cell toxicity, since the protein-synthesis program and developmental pattern of choriogenesis are normally completed. Likewise, the 1 mM dose of PGL was also characterized by lack of toxicity, since the chorionic proteins were physiologically synthesized and the chorion structure appeared unaffected, except for a short developmental delay, being observed. In contrast, concentrations of 10, 20 or 40 mM of PGL unveiled a dose-dependent, increasing, toxic effect, being initiated by interruption of protein synthesis and disassembly of cell-secretory machinery, and, next, followed by fragmentation of the granular endoplasmic reticulum (ER) into vesicles, and formation of autophagic vacuoles. Follicle cells enter into an apoptotic process, with autophagosomes and large vacuoles being formed in the cytoplasm, and nucleus showing protrusions, granular nucleolus and condensed chromatin. PGL, also, proved able to induce disruption of nuclear envelope, activation of nucleus autophagy (nucleophagy) and formation of a syncytium-like pattern being produced by fusion of plasma membranes of two or more individual follicle cells. Altogether, follicle cell-dependent choriogenesis in Drosophila has been herein presented as an excellent, powerful and reliable multi-cellular, differentiated, model biological (animal) system for drug-cytotoxicity assessment, with the versatile compound PGL serving as a characteristic paradigm. In conclusion, PGL is a substance that may act beneficially for a variety of pathological conditions and can be safely used for differentiated somatic -epithelial- cells at clinically low concentrations. At relatively high doses, it could potentially induce apoptotic and autophagic cell death, thus being likely exploited as a therapeutic agent against a number of pathologies, including human malignancies.
Collapse
Affiliation(s)
- Konstantinos E Keramaris
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantinos Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lukas H Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
22
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
23
|
Multiplex Analysis Platform for Endocrine Disruption Prediction Using Zebrafish. Int J Mol Sci 2019; 20:ijms20071739. [PMID: 30965663 PMCID: PMC6479714 DOI: 10.3390/ijms20071739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 02/01/2023] Open
Abstract
Small fish are an excellent experimental model to screen endocrine-disrupting compounds, but current fish-based assays to detect endocrine disruption have not been standardized yet, meaning that there is not consensus on endpoints and biomarkers to be measured. Moreover, exposure conditions may vary depending on the species used as the experimental model and the endocrine pathway evaluated. At present, a battery of a wide range of assays is usually needed for the complete assessment of endocrine activities. With the aim of providing a simple, robust, and fast assay to assess endocrine-disrupting potencies for the three major endocrine axes, i.e., estrogens, androgens, and thyroid, we propose the use of a panel of eight gene expression biomarkers in zebrafish larvae. This includes brain aromatase (cyp19a1b) and vitellogenin 1 (vtg1) for estrogens, cytosolic sulfotransferase 2 family 2 (sult2st3) and cytochrome P450 2k22 (cyp2k22) for androgens, and thyroid peroxidase (tpo), transthyretin (ttr), thyroid receptor α (trα), and iodothyronine deiodinase 2 (dio2) for thyroid metabolism. All of them were selected according to their responses after exposure to the natural ligands 17β-estradiol, testosterone, and 3,3',5-triiodo-L-thyronine (T3), respectively, and subsequently validated using compounds reported as endocrine disruptors in previous studies. Cross-talk effects were also evaluated for all compounds.
Collapse
|
24
|
Pandey G, Westhoff JH, Schaefer F, Gehrig J. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model. Int J Mol Sci 2019; 20:ijms20061290. [PMID: 30875791 PMCID: PMC6471943 DOI: 10.3390/ijms20061290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is being increasingly used in biomedical research and drug discovery to conduct large-scale compound screening. However, there is a lack of accessible methodologies to enable automated imaging and scoring of tissue-specific phenotypes at enhanced resolution. Here, we present the development of an automated imaging pipeline to identify chemical modifiers of glomerular cyst formation in a zebrafish model for human cystic kidney disease. Morpholino-mediated knockdown of intraflagellar transport protein Ift172 in Tg(wt1b:EGFP) embryos was used to induce large glomerular cysts representing a robustly scorable phenotypic readout. Compound-treated embryos were consistently aligned within the cavities of agarose-filled microplates. By interfacing feature detection algorithms with automated microscopy, a smart imaging workflow for detection, centring and zooming in on regions of interests was established, which enabled the automated capturing of standardised higher resolution datasets of pronephric areas. High-content screening datasets were processed and analysed using custom-developed heuristic algorithms implemented in common open-source image analysis software. The workflow enables highly efficient profiling of entire compound libraries and scoring of kidney-specific morphological phenotypes in thousands of zebrafish embryos. The demonstrated toolset covers all the aspects of a complex whole organism screening assay and can be adapted to other organs, specimens or applications.
Collapse
Affiliation(s)
- Gunjan Pandey
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
| |
Collapse
|