1
|
Chang C, Lee JE, Waters KM, Larson BK. GI Polyps and Polyposis in Individuals Harboring Germline CHEK2 Mutations. Dis Colon Rectum 2024; 67:1291-1303. [PMID: 38959470 DOI: 10.1097/dcr.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Checkpoint kinase 2 is a tumor suppressor gene in the DNA damage checkpoint system that may be mutated in several cancers. Patients with germline checkpoint kinase 2 mutations and multiple colon polyps were noted during routine care, and genetic testing is recommended for patients with as few as 10 lifetime polyps. OBJECTIVE This study assessed whether checkpoint kinase 2 is associated with attenuated or oligopolyposis and characterized the GI clinicopathologic profile. DESIGN Retrospective observational study. SETTINGS Records from patients harboring germline checkpoint kinase 2 mutations from 1999 to 2020 were reviewed. PATIENTS A total of 45 patients with germline checkpoint kinase 2 mutations with endoscopic examinations. MAIN OUTCOME MEASURES Description of clinicopathologic variables. RESULTS Twenty-five of 45 patients had polyps: 3 with only upper GI polyps, 17 with only lower GI polyps, and 5 with both upper and lower GI polyps. The most common germline checkpoint kinase 2 mutations in patients with polyps were p.S428F (n = 10), p.I157T (n = 4), and p.T476M (n = 2), with other mutations present in 1 patient each. Among patients with lower GI polyps, 9 had adenomas, 6 had serrated polyps, 1 had an inflammatory polyp, and 6 had both adenomatous and serrated polyps. Three patients (p.I157T, n = 2; p.R117G, n = 1) had more than 10 adenomas and 1 (p.G259fs) had 18 serrated polyps. Five patients (11.1%) developed colorectal adenocarcinoma, including 2 with more than 10 adenomas. Five patients with p.S428F (50%) exclusively had right-sided adenomas. LIMITATIONS Single-center descriptive study. CONCLUSIONS Germline checkpoint kinase 2 mutations should be considered in patients with polyposis. The preponderance of right-sided adenomas in patients with p.S428F mutations suggests the importance of right-sided colonoscopy in these patients. See Video Abstract . PLIPOS Y POLIPOSIS GASTROINTESTINALES EN INDIVIDUOS QUE ALBERGAN MUTACIONES EN LA LNEA GERMINAL DEL GEN CHEK ANTECEDENTES:El punto de control quinasa 2 (CHEK2) es un gen supresor de tumores en el sistema de puntos de control de daño del ácido desoxirribonucleico (ADN) que puede mutar en varios cánceres. Durante la atención de rutina se observaron pacientes con mutaciones de la línea germinal CHEK2 y múltiples pólipos en el colon, y se recomiendan pruebas genéticas para pacientes con al menos 10 pólipos en su vida.OBJETIVO:Este estudio evaluó si CHEK2 está asociado con poliposis atenuada u oligopoliposis y caracterizó el perfil clínico-patológico gastrointestinal (GI).DISEÑO:Estudio observacional retrospectivo.ESCENARIO:Se revisaron los registros de pacientes que albergaban mutaciones de la línea germinal CHEK2 de 1999 a 2020.PACIENTES:45 pacientes con mutaciones de la línea germinal CHEK2 con exámenes endoscópicos.PRINCIPALES MEDIDAS DE RESULTADO:Descripción de variables clínico-patológicas.RESULTADOS:25 de 45 pacientes tenían pólipos: 3 sólo con pólipos GI superiores, 17 sólo con pólipos GI inferiores y 5 con pólipos GI superiores e inferiores. Las mutaciones de la línea germinal CHEK2 más comunes en pacientes con pólipos fueron p.S428F (n = 10), p.I157T (n = 4) y p.T476M (n = 2), con otras mutaciones presentes en 1 paciente cada una. Entre los pacientes con pólipos gastrointestinales inferiores, 9 tenían adenomas, 6 tenían pólipos serrados, 1 tenía un pólipo inflamatorio y 6 tenían pólipos tanto adenomatosos como serrados. Tres pacientes (p.I157T, n=2; p.R117G, n = 1) tenían >10 adenomas y 1 (p.G259fs) tenía 18 pólipos serrados. Cinco pacientes (11,1%) desarrollaron adenocarcinoma colorrectal, incluidos 2 con >10 adenomas. Cinco pacientes con p.S428F (50%) tenían exclusivamente adenomas del lado derecho.LIMITACIONES:Estudio descriptivo unicéntrico.CONCLUSIONES:Las mutaciones de la línea germinal CHEK2 deben considerarse en pacientes con poliposis. La preponderancia de adenomas del lado derecho en pacientes con mutaciones p.S428F sugiere la importancia de la colonoscopia del lado derecho en estos pacientes. (Traducción-Dr. Felipe Bellolio ).
Collapse
Affiliation(s)
- Corey Chang
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Northwell Health, Greenvale, New York
| | - John E Lee
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kevin M Waters
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brent K Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
2
|
Watanabe D, Yagasaki H, Narusawa H, Inukai T. Coinheritance of HNF1A and glucokinase variants in maturity-onset diabetes of the young. Endocrinol Diabetes Metab Case Rep 2024; 2024:23-0100. [PMID: 39089324 DOI: 10.1530/edm-23-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/10/2024] [Indexed: 08/03/2024] Open
Abstract
Summary Maturity-onset diabetes of the young (MODY) is a group of monogenic forms of diabetes mellitus characterized by early-onset diabetes with dominant inheritance of beta-cell dysfunction. There are few reports of the coinheritance of glucokinase (GCK) and hepatocyte nuclear factor 1 alpha gene (HNF1A) variants underlying MODY in patients. Herein, we describe a case involving combinations of monoallelic GCK and HNF1A variants associated with MODY. A 10-year-old Japanese girl with a three-generation family history of diabetes without obesity showed high levels of urinary glucose during a school screening test. Her glucose metabolism profile revealed 124 mg/dL of fasting glucose, 6.9% glycated hemoglobin (HbA1c), and 2.78 ng/mL of C-peptide immunoreactivity levels. In a 75-g oral glucose tolerance test, her base glucose, peak glucose, insulin resistance, and homeostasis model assessment of beta cell function levels were 124 mg/dL, 210 mg/dL (120 min), 1.71, and 33%, respectively. Based on the clinical phenotype of GCK-MODY, alimentary and exercise therapy without oral hypoglycemic agents were used to maintain her fasting glucose and HbA1c levels. We explored the coinheritance of MODY with GCK and HNF1A variants in this and past cases and found that careful clinical follow-up is required to firmly establish phenotypic features. Moreover, the accumulation of data on genetically confirmed MODY associated with the coinheritance of GCK and HNF1A variants will be useful for understanding genotype-phenotype correlations. Learning points MODY is a group of monogenic forms of diabetes mellitus characterized by early-onset diabetes with the dominant inheritance of beta-cell dysfunction. MODY2 and MODY3 caused by heterozygous loss-of-function variants in the glucokinase (GCK) and hepatocyte nuclear factor 1 alpha (HNF1A) genes, respectively, are the most common forms of the disease. Few cases of MODY have previously been reported as being associated with the coinheritance of GCK and HNF1A variants. Careful clinical follow-up is required to firmly establish phenotypic features in the coinheritance of MODY with GCK and HNF1A variants. The accumulation of data on genetically confirmed MODY associated with the coinheritance of GCK and HNF1A variants will be useful for understanding genotype-phenotype correlations.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiromune Narusawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
3
|
Nolano A, Rossi GB, D'Angelo V, Liccardo R, Rosa MD, Izzo P, Duraturo F. Germline Variants in MLH1 and ATM Genes in a Young Patient with MSI-H in a Precancerous Colonic Lesion. Int J Mol Sci 2023; 24:ijms24065970. [PMID: 36983044 PMCID: PMC10051096 DOI: 10.3390/ijms24065970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited disorder that primarily predisposes individuals to colorectal and endometrial cancer. It is associated with pathogenic variants in DNA mismatch repair (MMR) genes. In this study, we report the case of a 16-year-old boy who developed a precancerous colonic lesion and had a clinical suspicion of LS. The proband was found to have a somatic MSI-H status. Analysis of the coding sequences and flanking introns of the MLH1 and MSH2 genes by Sanger sequencing led to the identification of the variant of uncertain significance, namely, c.589-9_589-6delGTTT in the MLH1 gene. Further investigation revealed that this variant was likely pathogenetic. Subsequent next-generation sequencing panel analysis revealed the presence of two variants of uncertain significance in the ATM gene. We conclude that the phenotype of our index case is likely the result of a synergistic effect of these identified variants. Future studies will allow us to understand how risk alleles in different colorectal-cancer-prone genes interact with each other to increase an individual's risk of developing cancer.
Collapse
Affiliation(s)
- Antonio Nolano
- Department of Molecular Medicine and Medical Biotechnologies and CEINGE Advanced Biotechnologies Scarl, "Francesco Salvatore" Napoli, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Battista Rossi
- Endoscopy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semola, 80131 Naples, Italy
| | - Valentina D'Angelo
- Endoscopy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semola, 80131 Naples, Italy
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnologies and CEINGE Advanced Biotechnologies Scarl, "Francesco Salvatore" Napoli, University of Naples Federico II, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnologies and CEINGE Advanced Biotechnologies Scarl, "Francesco Salvatore" Napoli, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnologies and CEINGE Advanced Biotechnologies Scarl, "Francesco Salvatore" Napoli, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnologies and CEINGE Advanced Biotechnologies Scarl, "Francesco Salvatore" Napoli, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Le J, Min JH. Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein. J Biomol Struct Dyn 2023; 41:13535-13562. [PMID: 36890638 PMCID: PMC10485178 DOI: 10.1080/07391102.2023.2177349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Xeroderma pigmentosum C (XPC) is a key initiator in the global genome nucleotide excision repair pathway in mammalian cells. Inherited mutations in the XPC gene can cause xeroderma pigmentosum (XP) cancer predisposition syndrome that dramatically increases the susceptibility to sunlight-induced cancers. Various genetic variants and mutations of the protein have been reported in cancer databases and literature. The current lack of a high-resolution 3-D structure of human XPC makes it difficult to assess the structural impact of the mutations/genetic variations. Using the available high-resolution crystal structure of its yeast ortholog, Rad4, we built a homology model of human XPC protein and compared it with a model generated by AlphaFold. The two models are largely consistent with each other in the structured domains. We have also assessed the degree of conservation for each residue using 966 sequences of XPC orthologs. Our structure- and sequence conservation-based assessments largely agree with the variant's impact on the protein's structural stability, computed by FoldX and SDM. Known XP missense mutations such as Y585C, W690S, and C771Y are consistently predicted to destabilize the protein's structure. Our analyses also reveal several highly conserved hydrophobic regions that are surface-exposed, which may indicate novel intermolecular interfaces that are yet to be characterized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jennifer Le
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
5
|
Eikenboom EL, Moen S, van Leeuwen L, Geurts-Giele WR, Tops CM, van Ham TJ, Dinjens WN, Dubbink HJ, Spaander MC, Wagner A. Unexplained mismatch repair deficiency: Case closed. HGG ADVANCES 2022; 4:100167. [PMID: 36624813 PMCID: PMC9823207 DOI: 10.1016/j.xhgg.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.
Collapse
Affiliation(s)
- Ellis L. Eikenboom
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands,Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Sarah Moen
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Lotte van Leeuwen
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Willemina R.R. Geurts-Giele
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Carli M.J. Tops
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Winand N.M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Hendrikus J. Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Manon C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands,Corresponding author
| |
Collapse
|
6
|
Poliani L, Greco L, Barile M, Dal Buono A, Bianchi P, Basso G, Giatti V, Genuardi M, Malesci A, Laghi L. Canonical and uncanonical pathogenic germline variants in colorectal cancer patients by next-generation sequencing in a European referral center. ESMO Open 2022; 7:100607. [PMID: 36356413 PMCID: PMC9808471 DOI: 10.1016/j.esmoop.2022.100607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite increasing use of next-generation sequencing (NGS), data concerning the gain in germline pathogenic variants (PVs) remain scanty, especially with respect to uncanonical ones. We aimed to verify the impact of different cancer predisposition genes (CPGs) on colorectal cancer (CRC) in patients referred for genetic evaluation. MATERIALS AND METHODS We enrolled for NGS, by Illumina TruSight Cancer panel comprising 94 CPGs, 190 consecutive subjects referred for microsatellite instability (MSI) CRC, polyposis, and/or family history. RESULTS Overall, 51 (26.8%) subjects carried 64 PVs; PVs coexisted in 4 (7.8%) carriers. PVs in mismatch repair (MMR) genes accounted for one-third of variant burden (31.3%). Four Lynch syndrome patients (20%) harbored additional PVs (HOXB13, CHEK2, BRCA1, NF1 plus BRIP1); such multiple PVs occurred only in subjects with PVs in mismatch syndrome genes (4/20 versus 0/31; P = 0.02). Five of 22 (22.7%) patients with MSI cancers but wild-type MMR genes harbored PVs in unconventional genes (FANCL, FANCA, ATM, PTCH1, BAP1). In 10/63 patients (15.9%) with microsatellite stable CRC, 6 had MUTYH PVs (2 being homozygous) and 4 exhibited uncanonical PVs (BRCA2, BRIP1, MC1R, ATM). In polyposis, we detected PVs in 13 (25.5%) cases: 5 (9.8%) in APC, 6 (11.8%) with biallelic PVs in MUTYH, and 2 (3.9%) in uncanonical genes (FANCM, XPC). In subjects tested for family history only, we detected two carriers (18.2%) with PVs (ATM, MUTYH). CONCLUSION Uncanonical variants may account for up to one-third of PVs, underlining the urgent need of consensus on clinical advice for incidental findings in cancer-predisposing genes not related to patient phenotype.
Collapse
Affiliation(s)
- L. Poliani
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale San Raffaele, UO Gastroenterologia ed Endoscopia Digestiva, Milan, Italy
| | - L. Greco
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - M. Barile
- Hereditary Cancer Genetic Clinic, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - A. Dal Buono
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - P. Bianchi
- Medical Analysis Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - G. Basso
- Genomic Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - V. Giatti
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - M. Genuardi
- Genomic Unit—Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - A. Malesci
- Università Vita-Salute San Raffaele, Milan, Italy
| | - L. Laghi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Medicine and Surgery, University of Parma, Parma, Italy,Correspondence to: Prof. Luigi Laghi, Department of Medicine and Surgery, University of Parma, Medicine Tower, Floor 1, via A. Gramsci 14, 43126 Parma, Italy. Tel: +39(0)521-703749
| | | |
Collapse
|
7
|
Forgacova N, Gazdarica J, Budis J, Radvanszky J, Szemes T. Repurposing non-invasive prenatal testing data: Population study of single nucleotide variants associated with colorectal cancer and Lynch syndrome. Oncol Lett 2021; 22:779. [PMID: 34594420 PMCID: PMC8456492 DOI: 10.3892/ol.2021.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
In our previous work, genomic data generated through non-invasive prenatal testing (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA of pregnant women in Slovakia was described as a valuable source of population specific data. In the present study, these data were used to determine the population allele frequency of common risk variants located in genes associated with colorectal cancer (CRC) and Lynch syndrome (LS). Allele frequencies of identified variants were compared with six world populations to detect significant differences between populations. Finally, variants were interpreted, functional consequences were searched for and clinical significance of variants was investigated using publicly available databases. Although the present study did not identify any pathogenic variants associated with CRC or LS in the Slovak population using NIPT data, significant differences were observed in the allelic frequency of risk CRC variants previously reported in genome-wide association studies and common variants located in genes associated with LS. As Slovakia is one of the leading countries with the highest incidence of CRC among male patients in the world, there is a need for studies dedicated to investigating the cause of such a high incidence of CRC in Slovakia. The present study also assumed that extensive cross-country data aggregation of NIPT results would represent an unprecedented source of information concerning human genome variation in cancer research.
Collapse
Affiliation(s)
- Natalia Forgacova
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| |
Collapse
|
8
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Terradas M, Mur P, Belhadj S, Woodward ER, Burghel GJ, Munoz-Torres PM, Quintana I, Navarro M, Brunet J, Lazaro C, Pineda M, Moreno V, Capella G, Evans DGR, Valle L. TP53, a gene for colorectal cancer predisposition in the absence of Li-Fraumeni-associated phenotypes. Gut 2021; 70:1139-1146. [PMID: 32998877 DOI: 10.1136/gutjnl-2020-321825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Germline TP53 pathogenic (P) variants cause Li-Fraumeni syndrome (LFS), an aggressive multitumor-predisposing condition. Due to the implementation of multigene panel testing, TP53 variants have been detected in individuals without LFS suspicion, for example, patients with colorectal cancer (CRC). We aimed to decipher whether these findings are the result of detecting the background population prevalence or the aetiological basis of CRC. DESIGN We analysed TP53 in 473 familial/early-onset CRC cases and evaluated the results together with five additional studies performed in patients with CRC (total n=6200). Control population and LFS data were obtained from Genome Aggregation Database (gnomAD V.2.1.1) and the International Agency for Research on Cancer (IARC) TP53 database, respectively. All variants were reclassified according to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following the ClinGen TP53 Expert Panel specifications. RESULTS P or likely pathogenic (LP) variants were identified in 0.05% of controls (n=27/59 095) and 0.26% of patients with CRC (n=16/6200) (p<0.0001) (OR=5.7, 95% CI 2.8 to 10.9), none of whom fulfilled the clinical criteria established for TP53 testing. This association was still detected when patients with CRC diagnosed at more advanced ages (>50 and>60 years) were excluded from the analysis to minimise the inclusion of variants caused by clonal haematopoiesis. Loss-of-function and missense variants were strongly associated with CRC as compared with controls (OR=25.44, 95% CI 6.10 to 149.03, for loss of function and splice-site alleles, and OR=3.58, 95% CI 1.46 to 7.98, for missense P or LP variants). CONCLUSION TP53 P variants should not be unequivocally associated with LFS. Prospective follow-up of carriers of germline TP53 P variants in the absence of LFS phenotypes will define how surveillance and clinical management of these individuals should be performed.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Victor Moreno
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - D Gareth R Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain .,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 2021; 140:111717. [PMID: 34044280 DOI: 10.1016/j.biopha.2021.111717] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS (kirsten rat sarcoma viral oncogene) is a member of the RAS family. KRAS mutations are one of most dominant mutations in colorectal cancer (CRC). The impact of KRAS mutations on the prognosis and survival of CRC patients drives many research studies to explore potential therapeutics or target therapy for the KRAS mutant CRC. This review summarizes the current understanding of the pathological consequences of the KRAS mutations in the development of CRC; and the impact of the mutations on the response and the sensitivity to the current front-line chemotherapy. The current therapeutic strategies for treating KRAS mutant CRC, the difficulties and challenges will also be discussed.
Collapse
Affiliation(s)
- Mingjing Meng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Keying Zhong
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ting Jiang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Tao Su
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Mannucci A, Furniss CS, Ukaegbu C, Horiguchi M, Fehlmann T, Uno H, Yurgelun MB, Syngal S. Comparison of Colorectal and Endometrial Microsatellite Instability Tumor Analysis and Premm 5 Risk Assessment for Predicting Pathogenic Germline Variants on Multigene Panel Testing. J Clin Oncol 2020; 38:4086-4094. [PMID: 32997573 PMCID: PMC7768341 DOI: 10.1200/jco.20.01470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Tumor testing for microsatellite instability and/or mismatch repair-deficiency (MSI/IHC) and clinical prediction models effectively screen for Lynch syndrome (LS)-associated colorectal cancer (CRC) and endometrial cancer (EC), but they have not been assessed for their ability to identify non-LS forms of inherited risk. The aim of this study was to compare MSI/IHC and the PREMM5 prediction model to identify carriers of LS and non-LS pathogenic variants (PVs) among patients with CRC and EC. PATIENTS AND METHODS Data were retrospectively analyzed from two single-institution cohorts: 706 patients with CRC and/or EC referred for genetic evaluation/testing (high-risk cohort) and 1,058 consecutively ascertained patients with CRC (oncology clinic cohort), unselected for familial risk. All participants underwent germline multigene panel testing. PREMM5 scores were calculated from personal/family cancer history. The primary outcome was the proportion of individuals with germline PVs (LS PVs, high-penetrance PVs, and any PVs) who had abnormal MSI/IHC testing and/or PREMM5 score ≥ 2.5%. RESULTS MSI/IHC and PREMM5 had comparable sensitivity for identifying LS carriers in high-risk (89.3% v 85.7%; P = .712) and oncology clinic patients (96.6% v 96.6%; P = 1.000), although MSI/IHC had significantly superior specificity for LS (81.3% v 20.1%; P < .001; 92.3% v 24.3%; P < .001). In both cohorts, PREMM5 had superior sensitivity to MSI/IHC at identifying patients with any high-penetrance PVs and any low-, moderate-, and high-penetrance PVs. Among patients with normal MSI/IHC, PREMM5 identified 84.2% and 83.3% of high-risk patients with CRC/EC and oncology clinic CRC patients with high-penetrance PVs, respectively. CONCLUSION MSI/IHC and PREMM5 effectively identify patients with CRC and/or EC with LS, although MSI/IHC has better specificity for LS. Because PREMM5 identifies non-LS, high-penetrance germline PVs, patients with CRC and/or EC with PREMM5 score ≥ 2.5%, including those with normal MSI/IHC, should be offered multigene panel testing.
Collapse
Affiliation(s)
- Alessandro Mannucci
- IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Dana-Farber Cancer Institute, Boston, MA
| | - C. Sloane Furniss
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Miki Horiguchi
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Hajime Uno
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Matthew B. Yurgelun
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Brigham and Women’s Hospital, Boston, MA
| | - Sapna Syngal
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
12
|
Martín-Morales L, Garre P, Lorca V, Cazorla M, Llovet P, Bando I, García-Barberan V, González-Morales ML, Esteban-Jurado C, de la Hoya M, Castellví-Bel S, Caldés T. BRIP1, a Gene Potentially Implicated in Familial Colorectal Cancer Type X. Cancer Prev Res (Phila) 2020; 14:185-194. [PMID: 33115781 DOI: 10.1158/1940-6207.capr-20-0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Familial colorectal cancer Type X (FCCTX) comprises a heterogeneous group of families with an increased risk of developing colorectal cancer and other related tumors, but with mismatch repair-proficient, microsatellite-stable (MSS) tumors. Unfortunately, the genetic basis underlying their cancer predisposition remains unknown. Although pathogenic germline variants in BRIP1 increase the risk of developing hereditary ovarian cancer, the involvement of BRIP1 in hereditary colorectal cancer is still not well known. In order to identify new BRIP1 variants associated with inherited colorectal cancer, affected and nonaffected individuals from 18 FCCTX or high-risk MSS colorectal cancer families were evaluated by whole-exome sequencing, and another 62 colorectal cancer patients from FCCTX or high-risk MSS colorectal cancer families were screened by a next-generation sequencing (NGS) multigene panel. The families were recruited at the Genetic Counseling Unit of Hospital Clínico San Carlos of Madrid. A total of three different BRIP1 mutations in three unrelated families were identified. Among them, there were two frameshift variants [c.1702_1703del, p.(Asn568TrpfsTer9) and c.903del, p.(Leu301PhefsTer2)] that result in the truncation of the protein and are thus classified as pathogenic (class 5). The remaining was a missense variant [c.2220G>T, p.(Gln740His)] considered a variant of uncertain significance (class 3). The segregation and loss-of-heterozygosity studies provide evidence linking the two BRIP1 frameshift variants to colorectal cancer risk, with suggestive but not definitive evidence that the third variant may be benign. The results here presented suggest that germline BRIP1 pathogenic variants could be associated with hereditary colorectal cancer predisposition.Prevention Relevance: We suggest that BRIP1 pathogenic germline variants may have a causal role in CRC as moderate cancer susceptibility alleles and be associated with hereditary CRC predisposition. A better understanding of hereditary CRC may provide important clues to disease predisposition and could contribute to molecular diagnostics, improved risk stratification, and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorena Martín-Morales
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Marta Cazorla
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Patricia Llovet
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Inmaculada Bando
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Vanesa García-Barberan
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | | | - Clara Esteban-Jurado
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
13
|
Djursby M, Madsen MB, Frederiksen JH, Berchtold LA, Therkildsen C, Willemoe GL, Hasselby JP, Wikman F, Okkels H, Skytte AB, Nilbert M, Wadt K, Gerdes AM, van Overeem Hansen T. New Pathogenic Germline Variants in Very Early Onset and Familial Colorectal Cancer Patients. Front Genet 2020; 11:566266. [PMID: 33193653 PMCID: PMC7541943 DOI: 10.3389/fgene.2020.566266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
A genetic diagnosis facilitates personalized cancer treatment and clinical care of relatives at risk, however, although 25% of colorectal cancer cases are familial, around 95% of the families are genetically unresolved. In this study, we performed gene panel analysis on germline DNA of 32 established or candidate colorectal cancer predisposing genes in 149 individuals from either families with an accumulation of colorectal cancers or families with only one sporadic case of very early onset colorectal cancer (≤40 years at diagnosis). We identified pathogenic or likely pathogenic genetic variants in 10.1% of the participants in genes such as APC, POLE, MSH2 or PMS2. The MSH2 variant, c.2168C>T, p.(Ser723Phe) was previously described as a variant of unknown significance, but we have now reclassified it to be likely pathogenic. The POLE variant, c.1089C>A, p.(Asn363Lys) was identified in a patient with three metachronous colorectal cancers from age 28 and turned out to be de novo. One pathogenic PMS2 variant was novel. We also identified a number of highly interesting variants of unknown significance in APC, BUB1, TP53 and RPS20. The RPS20 variant is novel and was found in a large Amsterdam I positive family with a multi tumor phenotype including 12 cases of CRC from as early as age 24. This variant was found to segregate with cancer in the family and multiple in silico tools predict it to be pathogenic. Our data further support the shift from phenotypic-based cancer panels to large panels including all established genes involved in hereditary cancer syndromes or (targeted) whole genome sequencing. Additionally, identification of a likely disease-predisposing variant in RPS20 expands the phenotypic spectrum of RPS20-related cancers and emphasize that this gene is relevant to include in colorectal cancer gene panels.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Majbritt B Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane H Frederiksen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas A Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Gro L Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Friedrik Wikman
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mef Nilbert
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
16
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
17
|
Zhunussova G, Afonin G, Abdikerim S, Jumanov A, Perfilyeva A, Kaidarova D, Djansugurova L. Mutation Spectrum of Cancer-Associated Genes in Patients With Early Onset of Colorectal Cancer. Front Oncol 2019; 9:673. [PMID: 31428572 PMCID: PMC6688539 DOI: 10.3389/fonc.2019.00673] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) incidence is rising worldwide, as well as in the Republic of Kazakhstan, while its occurrence is also increasing in the younger population. Hereditary forms associated with the development of colon and rectal cancer and early-onset CRC have never been studied in the population of Kazakhstan. The aim of this research was to investigate the spectrum of CRC-related gene mutations to determine which mutations cause early onset of CRC in the Kazakhstan population. Methods: The study included 125 unrelated patients from Kazakhstan (range 17–50 years in age) with early onset CRC. Genomic DNA was obtained from peripheral blood of the patients. Next-generation sequencing was performed using the TruSightCancer Kit on the MiSeq platform. The Studio Variant was used to annotate and interpret genetic variants. Results: Bioinformatics analysis of Next-generation sequencing data revealed 11,152 variants from 85 genes, of them, 3,790 missense, 6,254 synonymous variants, 44 3′UTR variants, 10 frameshift variants, five stop-gain variants, four in-frame deletions, two splice donors, one splice acceptor variant, and 1,042 intron or non-coding variants. APC, BRCA2/1, ALK, BRIP1, EGFR, FANCA, FANCD2, FANCI, HNF1A, MEN1, NSD1, PMS2, RECQL4, RET, SLX4, WRN, and XPC genes mutated most often. According to the ACMG guidelines and LOVD/ClinVar databases, 24 variants were pathogenic (10 frameshifts, five missenses, five stop-gain, one in-frame deletion, and three splice-site mutations), and 289 were VUS with population frequency <1%, 131 of them were attributed as deleterious. In the study, 50% of all pathogenic mutations found in Kazakhstani patients with early CRC onset were identified in the subgroups with a family history of CRC and primary multiple tumors. In APC, pathogenic mutations were most often (21%). Conclusion: Pathogenic and likely pathogenic mutations were found in 20 (16%) out of 125 patients. Eight novel pathogenic mutations detected in FANCI, APC, BMPR1, ATM, and DICER1 genes have not been reported in previous literature. Given the high frequency and wide spectrum of mutations, NGS analysis must be carried out in families with a history of CRC/CRC-related cancers with the purpose to identify cause-effective mutations, clarify the clinical diagnosis, and prevent the development of the disease in other family members.
Collapse
Affiliation(s)
- Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty, Kazakhstan.,Center of Thoracic and Abdominal Oncology, Kazakh Institute of Oncology and Radiology, Almaty, Kazakhstan.,Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Georgiy Afonin
- Center of Thoracic and Abdominal Oncology, Kazakh Institute of Oncology and Radiology, Almaty, Kazakhstan.,Department of Oncology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Saltanat Abdikerim
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Abai Jumanov
- Center of Thoracic and Abdominal Oncology, Kazakh Institute of Oncology and Radiology, Almaty, Kazakhstan.,Department of Oncology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Anastassiya Perfilyeva
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Dilyara Kaidarova
- Center of Thoracic and Abdominal Oncology, Kazakh Institute of Oncology and Radiology, Almaty, Kazakhstan.,Department of Oncology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty, Kazakhstan.,Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
18
|
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, Castellvi-Bel S, Hemminki K. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69:10-26. [PMID: 30862463 DOI: 10.1016/j.mam.2019.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Trinidad Caldés
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Garré
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Margareta Nordling
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Gastrointestinal Cancer Group, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Thutkawkorapin J, Lindblom A, Tham E. Exome sequencing in 51 early onset non-familial CRC cases. Mol Genet Genomic Med 2019; 7:e605. [PMID: 30809968 PMCID: PMC6503031 DOI: 10.1002/mgg3.605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi‐allelic autosomal recessive pathogenic variants. Methods The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant‐ and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young‐onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss‐of‐function) or allele frequency. Results We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A,BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN,SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B,PKHD1,UGGT2,MYH13,TFF3. Conclusion Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.
Collapse
Affiliation(s)
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|