1
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03527-4. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dong Y, Li Y, Ma L, Shu S, Ren J, Yu X, Luo D, Duan Z, Yu Y. Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones. TOXICS 2024; 12:600. [PMID: 39195702 PMCID: PMC11359564 DOI: 10.3390/toxics12080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Widespread glyphosate contamination in the environment and its endocrine-disrupting potential are concerning. However, evidence of glyphosate's effects on glycemic health is limited. To examine the association between glyphosate and glucose homeostasis in the general US population, a total of 3038 individuals were enrolled from the 2013-2016 cycles of the National Health and Nutrition Examination Survey (NHANES). Survey-weighted linear regression and restricted cubic spline curves were used to detect the associations between glyphosate and glycemic disorders. The effects of interactions between sex hormones and glyphosate on glycemic outcomes were evaluated. The results showed that glyphosate was significantly linked to increased glycated hemoglobin A1c (HbA1c) levels (β = 0.01; 95%CI, 0.01 to 0.02; p = 0.001) and the compromised homeostatic model assessment of beta-cell function (HOMA-beta) scores (β = -0.09; 95%CI, -0.17 to -0.01; p = 0.024). More importantly, these "glyphosate-glycemic disorder" associations were significantly modified by sex hormone-binding globulin (SHBG; P for interaction < 0.05), with more pronounced relationships being identified in individuals with low SHBG levels. Our findings indicate that glyphosate is correlated with glucose dyshomeostasis. Individuals with low SHBG levels exhibited susceptibility to glyphosate-related glycemic toxicity; therefore, it might be prudent to determine glycemic health in those subjects with glyphosate exposure.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (Y.D.); (S.S.); (J.R.); (X.Y.)
| | - Yuan Li
- Department of Cosmetic Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou 570000, China;
| | - Liwen Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.M.); (D.L.)
| | - Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (Y.D.); (S.S.); (J.R.); (X.Y.)
| | - Jiawen Ren
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (Y.D.); (S.S.); (J.R.); (X.Y.)
| | - Xiangyu Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (Y.D.); (S.S.); (J.R.); (X.Y.)
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.M.); (D.L.)
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (Y.D.); (S.S.); (J.R.); (X.Y.)
| |
Collapse
|
3
|
Xu L, Zhang C, Bao J, Han G, Wang C, Cai Y, Xu G, Sun H, Liu M. Alpha-lipoic Acid Prevents Bone Loss in Type 2 Diabetes and Postmenopausal Osteoporosis Coexisting Conditions by Modulating the YAP/Glut4 Pathway. Cell Biochem Biophys 2024; 82:669-685. [PMID: 38261247 DOI: 10.1007/s12013-024-01216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
This study aims to characterize the bone-protecting effects of Alpha-lipoic acid (ALA), a potent antioxidant, against the detrimental effects of the coexistence of type 2 diabetes mellitus (T2DM) and postmenopausal osteoporosis (POP) and identify the possible mechanisms with particular reference to its modulation of YAP/Glut4 pathway. The T2DM and POP coexisting model was induced in mice by high fat diet (HFD) + Streptozocin (STZ) + ovariectomy (OVX). The mice in the treatment groups were given ALA for 10 weeks. In the in vitro study, MC3T3-E1 cells were induced with 500 μM methylglyoxal for 24 h with or without pretreatment with ALA for 24 h. The oxidative and antioxidative biomarkers, bone microarchitecture, histo-morphology, and related protein expression of apoptosis, osteogenic differentiation and the YAP/Glut4 pathway were detected. The results showed ALA could improve glucose tolerance, inhibit oxidative stress and apoptosis and alleviate bone loss. Further study by siRNA technology revealed that the YAP/Glut4 pathway was implicated in the pathogenesis of bone loss due to the coexistence of T2DM and POP. Taken together, the present study has demonstrated for the first time that ALA exerts potent protective effects against bone loss in T2DM and POP coexisting conditions by modulating the YAP/Glut4 pathway.
Collapse
MESH Headings
- Thioctic Acid/pharmacology
- Thioctic Acid/therapeutic use
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Mice
- Female
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/drug therapy
- Glucose Transporter Type 4/metabolism
- YAP-Signaling Proteins/metabolism
- Oxidative Stress/drug effects
- Signal Transduction/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Mice, Inbred C57BL
- Apoptosis/drug effects
- Cell Line
- Diet, High-Fat/adverse effects
- Humans
- Ovariectomy/adverse effects
- Antioxidants/pharmacology
- Cell Differentiation/drug effects
- Transcription Factors/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Osteogenesis/drug effects
Collapse
Affiliation(s)
- Lei Xu
- Office of Ethics Committee, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Zhang
- Department of Pathology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiawu Bao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guozhu Han
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Tanday N, Coulter-Parkhill A, Moffett RC, Suruli K, Dubey V, Flatt PR, Irwin N. Sex-based impact of pancreatic islet stressors in GluCreERT2/Rosa26-eYFP mice. J Endocrinol 2023; 259:e230174. [PMID: 37650517 PMCID: PMC10563506 DOI: 10.1530/joe-23-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The present study examines differences in metabolic and pancreatic islet adaptative responses following streptozotocin (STZ) and hydrocortisone (HC) administration in male and female transgenic GluCreERT2/Rosa26-eYFP mice. Mice received five daily doses of STZ (50 mg/kg, i.p.) or 10 daily doses of HC (70 mg/kg, i.p.), with parameters assessed on day 11. STZ-induced hyperglycaemia was evident in both sexes, alongside impaired glucose tolerance and reduced insulin concentrations. HC also had similar metabolic effects in male and female mice resulting in classical increases of circulating insulin indicative of insulin resistance. Control male mice had larger pancreatic islets than females and displayed a greater reduction of islet and beta-cell area in response to STZ insult. In addition, female STZ mice had lower levels of beta-cell apoptosis than male counterparts. Following HC administration, female mouse islets contained a greater proportion of alpha cells when compared to males. All HC mice presented with relatively comparable increases in beta- and alpha-cell turnover rates, with female mice being slightly more susceptible to HC-induced beta-cell apoptosis. Interestingly, healthy control female mice had inherently increased alpha-to-beta-cell transdifferentiation rates, which was decreased by HC treatment. The number of glucagon-positive alpha cells altering their lineage to insulin-positive beta cells was increased in male, but not female, STZ mice. Taken together, although there was no obvious sex-specific alteration of metabolic profile in STZ or HC mice, subtle differences in pancreatic islet morphology emphasises the impact of sex hormones on islets and importance of taking care when interpreting observations between males and females.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| | | | - R Charlotte Moffett
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Karthick Suruli
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Vaibhav Dubey
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Londonderry, Northern Ireland
| |
Collapse
|
5
|
Bahramzadeh A, Bolandnazar K, Meshkani R. Resveratrol as a potential protective compound against skeletal muscle insulin resistance. Heliyon 2023; 9:e21305. [PMID: 38027557 PMCID: PMC10660041 DOI: 10.1016/j.heliyon.2023.e21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The increasing prevalence of type 2 diabetes has become a major global problem. Insulin resistance has a central role in pathophysiology of type 2 diabetes. Skeletal muscle is responsible for the disposal of most of the glucose under conditions of insulin stimulation, and insulin resistance in skeletal muscle causes dysregulation of glucose homeostasis in the whole body. Despite the current pharmaceutical and non-pharmacological treatment strategies to combat diabetes, there is still a need for new therapeutic agents due to the limitations of the therapeutic agents. Meanwhile, plant polyphenols have attracted the attention of researchers for their use in the treatment of diabetes and have gained popularity. Resveratrol, a stilbenoid polyphenol, exists in various plant sources, and a growing body of evidence suggests its beneficial properties, including antidiabetic activities. The present review aimed to provide a summary of the role of resveratrol in insulin resistance in skeletal muscle and its related mechanisms. To achieve the objectives, by searching the PubMed, Scopus and Web of Science databases, we have summarized the results of all cell culture, animal, and human studies that have investigated the effects of resveratrol in different models on insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Bolandnazar
- Department of Biological Sciences and Technology, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Chen S, Li B, Chen L, Jiang H. Identification and validation of immune-related biomarkers and potential regulators and therapeutic targets for diabetic kidney disease. BMC Med Genomics 2023; 16:90. [PMID: 37127580 PMCID: PMC10150481 DOI: 10.1186/s12920-023-01519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal disease worldwide. Renal inflammation and infiltration of immune cells contribute to the development and progression of DKD. Thus, the aim of the present study was to identify and validate immune-related biomarkers and analyze potential regulators including transcription factors (TFs), microRNAs (miRNAs), and drugs for DKD. METHODS Immune-related genes from the ImmPort database and glomeruli samples from GSE1009 and GSE30528 were used to identify differentially expressed immune-related genes (DEIRGs) of DKD. The expression level and clinical correlation analyses of DEIRGs were verified in the Nephroseq database. Murine podocytes were cultured to construct the high glucose-induced podocyte injury model. The reliability of the bioinformatics analysis was experimentally validated by RT-qPCR in podocytes. Networks among DEIRGs, regulators, and drugs were constructed to predict potential regulatory mechanisms for DKD. RESULTS DKD-associated DEIRGs were identified. CCL19 and IL7R were significantly upregulated in the DKD group and negatively correlated with glomerular filtration rate (GFR). GHR, FGF1, FYN, VEGFA, F2R, TGFBR3, PTGDS, FGF9, and SEMA5A were significantly decreased in the DKD group and positively correlated with GFR. RT-qPCR showed that the relative mRNA expression levels of GHR, FGF1, FYN, TGFBR3, PTGDS, FGF9, and SEMA5A were significantly down-regulated in the high glucose-induced podocyte injury group. The enriched regulators for DEIRGs included 110 miRNAs and 8 TFs. The abnormal expression of DEIRGs could be regulated by 16 established drugs. CONCLUSIONS This study identified immune-related biomarkers, regulators, and drugs of DKD. The findings of the present study provide novel insights into immune-related diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Blood Purification, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No. 277, Xi'an, 710061, Shannxi, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Lei Chen
- Department of Blood Purification, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No. 277, Xi'an, 710061, Shannxi, China
| | - Hongli Jiang
- Department of Blood Purification, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No. 277, Xi'an, 710061, Shannxi, China.
| |
Collapse
|
7
|
Casado-Barragán F, Lazcano-Páez G, Larenas PE, Aguirre-Delgadillo M, Olivares-Aravena F, Witto-Oyarce D, Núñez-Allimant C, Silva K, Nguyen QM, Cárdenas P, Kassan M, Gonzalez AA. Increased Renal Medullary NOX-4 in Female but Not Male Mice during the Early Phase of Type 1 Diabetes: Potential Role of ROS in Upregulation of TGF-β1 and Fibronectin in Collecting Duct Cells. Antioxidants (Basel) 2023; 12:antiox12030729. [PMID: 36978977 PMCID: PMC10045926 DOI: 10.3390/antiox12030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic diabetes mellitus (DM) can lead to kidney damage associated with increased reactive oxygen species (ROS), proteinuria, and tubular damage. Altered protein expression levels of transforming growth factor-beta 1 (TGF-β1), fibronectin, and renal NADPH oxidase (NOX-4) are associated with the profibrotic phenotype in renal tubular cells. NOX-4 is one of the primary sources of ROS in the diabetic kidney and responsible for the induction of profibrotic factors in collecting duct (CD) cells. The renal medulla is predominantly composed of CDs; in DM, these CD cells are exposed to high glucose (HG) load. Currently there is no published literature describing the expression of these markers in the renal medulla in male and female mice during the early phase of DM, or the role of NOX-4-induced ROS. Our aim was to evaluate changes in transcripts and protein abundances of TGF-β1, fibronectin, and NOX-4 along with ROS levels in renal medullary tissues from male and female mice during a short period of streptozotocin (STZ)-induced type 1 DM and the effect of HG in cultured CD cells. CF-1 mice were injected with or without a single dose of STZ (200 mg/kg) and euthanized at day 6. STZ females showed higher expression of fibronectin and TGF-β1 when compared to control mice of either gender. Interestingly, STZ female mice showed a >30-fold increase on mRNA levels and a 3-fold increase in protein levels of kidney medullary NOX-4. Both male and female STZ mice showed increased intrarenal ROS. In primary cultures of inner medullary CD cells exposed to HG over 48 h, the expression of TGF-β1, fibronectin, and NOX-4 were augmented. M-1 CD cells exposed to HG showed increased ROS, fibronectin, and TGF-β1; this effect was prevented by NOX-4 inhibition. Our data suggest that at as early as 6 days of STZ-induced DM, the expression of profibrotic markers TGF-β1 and fibronectin increases in renal medullary CD cells. Antioxidants mechanisms in male and female in renal medullary tissues seems to be differentially regulated by the actions of NOX-4.
Collapse
Affiliation(s)
- Felipe Casado-Barragán
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Geraldine Lazcano-Páez
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Paulina E. Larenas
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | | | | | - Daniela Witto-Oyarce
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Camila Núñez-Allimant
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Katherin Silva
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Pilar Cárdenas
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Modar Kassan
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37917, USA
| | - Alexis A. Gonzalez
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
- Correspondence:
| |
Collapse
|
8
|
Lamri A, De Paoli M, De Souza R, Werstuck G, Anand S, Pigeyre M. Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Front Cardiovasc Med 2022; 9:964743. [PMID: 36505380 PMCID: PMC9729955 DOI: 10.3389/fcvm.2022.964743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that sex and gender differences play an important role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D earlier than women, even though there is more obesity in young women than men. This difference in T2D prevalence is attenuated after the menopause. However, not all women are equally protected against T2D before the menopause, and gestational diabetes represents an important risk factor for future T2D. Biological mechanisms underlying sex and gender differences on T2D physiopathology are not yet fully understood. Sex hormones affect behavior and biological changes, and can have implications on lifestyle; thus, both sex-specific environmental and biological risk factors interact within a complex network to explain the differences in T2D risk and physiopathology in men and women. In addition, lifetime hormone fluctuations and body changes due to reproductive factors are generally more dramatic in women than men (ovarian cycle, pregnancy, and menopause). Progress in genetic studies and rodent models have significantly advanced our understanding of the biological pathways involved in the physiopathology of T2D. However, evidence of the sex-specific effects on genetic factors involved in T2D is still limited, and this gap of knowledge is even more important when investigating sex-specific differences during the life course. In this narrative review, we will focus on the current state of knowledge on the sex-specific effects of genetic factors associated with T2D over a lifetime, as well as the biological effects of these different hormonal stages on T2D risk. We will also discuss how biological insights from rodent models complement the genetic insights into the sex-dimorphism effects on T2D. Finally, we will suggest future directions to cover the knowledge gaps.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada
| | - Monica De Paoli
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Russell De Souza
- Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Sonia Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Marie Pigeyre
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,*Correspondence: Marie Pigeyre
| |
Collapse
|
9
|
Li B, Pan LL, Pan X, Dong X, Ren Z, Zhang H, Chen W, de Vos P, Sun J. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr 2022; 64:2811-2823. [PMID: 36168918 DOI: 10.1080/10408398.2022.2126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cell. It contributes to high mortality, frequent diabetic complications, poor quality of life in patients and also puts a significant economic burden on health care systems. Therefore, the development of new therapeutic strategies is urgently needed. Recently, certain dietary compounds with potential applications in food industry, particularly polyphenols and polysaccharides, have gained increasing attention with their prominent anti-diabetic effects on T1D by modulating β cell function, the gut microbiota and/or the immune system. In this review, we critically discuss the recent findings of several dietary polyphenols and polysaccharides with the potential to protect against T1D and the underlying anti-diabetic mechanisms. More importantly, we highlight the current trends, major issues, and future directions of industrial production of polyphenols- and polysaccharides-based functional foods for preventing or delaying T1D.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Ferraz Carbonel AA, da Silva RA, de Souza Ferreira LP, Vieira RR, dos Santos Simões R, da Silva Sasso GR, de Jesus Simões M, Soares Junior JM, Azevedo Lima PD, Borges FT. Isoflavone Protects the Renal Tissue of Diabetic Ovariectomized Rats via PPARγ. Nutrients 2022; 14:nu14132567. [PMID: 35807748 PMCID: PMC9268059 DOI: 10.3390/nu14132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes associated with post-menopause is related to a worse condition of kidney disease. Taking into consideration that this disorder may be regulated by estrogenic mediators, we evaluated the renal protective effect of isoflavone. We investigated the role of the PPARγ in the pathogenesis of the disease. For this study, we used diabetic female rats in a postmenopausal model through ovariectomy. The animals were treated with isoflavone or 17β-estradiol. A dosage was administered to bring on blood glycemia, and through immunohistochemistry, we evaluated the immunoreactivity of PPARγ in the endometrium and renal tissue. We analyzed the immunoreactivity of renal injury molecule KIM-1 and the collagen and glycogen densities in the kidney. Through bioinformatics analysis, we observed PPARγ and COL1A1 gene expression under the influence of different glucose doses. In particular, we observed that isoflavone and 17β-estradiol regulate blood glycemia. Renal injury was inhibited by isoflavone, observed by a reduction in KIM-1, along with glycogen accumulation. These benefits of isoflavone may be associated with PPARγ overexpression in the kidneys and endometrium of diabetic ovariectomized rats.
Collapse
Affiliation(s)
- Adriana Aparecida Ferraz Carbonel
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
- Department of Gynecology, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil
- Correspondence: ; Tel.: +55-11-5576-4268
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (IBILCE/UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Renata Ramos Vieira
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Ricardo dos Santos Simões
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo (FMUSP), São Paulo 05403-911, SP, Brazil; (R.d.S.S.); (J.M.S.J.)
| | - Gisela Rodrigues da Silva Sasso
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Manuel de Jesus Simões
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
- Department of Gynecology, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil
| | - José Maria Soares Junior
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo (FMUSP), São Paulo 05403-911, SP, Brazil; (R.d.S.S.); (J.M.S.J.)
| | | | - Fernanda Teixeira Borges
- Department of Medicine, Nephrology Division, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil;
- Interdisciplinary Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil
| |
Collapse
|
11
|
Chansela P, Potip B, Weerachayaphorn J, Kangwanrangsan N, Chukijrungroat N, Saengsirisuwan V. Morphological alteration of the pancreatic islet in ovariectomized rats fed a high-fat high-fructose diet. Histochem Cell Biol 2022; 157:427-442. [PMID: 35037128 DOI: 10.1007/s00418-021-02062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Diabetes and its complications are major causes of mortality worldwide. Type 2 diabetes coexists with insulin resistance and β-cell dysfunction, which are aggravated by overconsumption and estrogen-deprived conditions. However, the morphology of pancreatic islets in a combined condition of excessive caloric intake and estrogen deficiency has never been described. Herein, we examined morphological changes in the pancreatic islets of ovariectomized (OVX) rats fed a high-fat high-fructose diet (HFFD) for 12 weeks. The histological changes in the size and number of pancreatic islets were assessed by hematoxylin-eosin and immunohistochemical staining. Enlarged pancreatic islets with fat deposition in OVX rats were accompanied by whole-body insulin resistance and hyperglycemia. The addition of a HFFD to OVX rats (OVX + HFFD) further aggravated insulin resistance, with a substantial increase in the density of enlarged pancreatic islets and fat accumulation. The augmented number of enlarged islets was correlated with elevated plasma glucose and insulin levels. Intriguingly, unlike the HFFD and OVX alone, the OVX + HFFD markedly expanded the area of insulin-producing β-cells and glucagon-producing α-cells. Importantly, enlarged islets, pancreatic fat deposits, and diabetic states developing in OVX + HFFD conditions were resolved by estrogen replacement. Collectively, the morphological characteristics of pancreatic islets were influenced in an insulin-resistant state caused by estrogen deficiency and HFFD consumption and were distinct from each factor alone. A combination of estrogen deficiency with HFFD consumption worsened the integrity of pancreatic islets, ultimately resulting in disease progression. These findings expand our understanding of the causal relationship between pancreatic morphology and diabetes development and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Bubphachat Potip
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Natsasi Chukijrungroat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Lee A, Sugiura Y, Cho IH, Setou N, Koh E, Song GJ, Lee S, Yang HJ. In Vivo Hypoglycemic Effects, Potential Mechanisms and LC-MS/MS Analysis of Dendropanax Trifidus Sap Extract. Nutrients 2021; 13:4332. [PMID: 34959884 PMCID: PMC8703777 DOI: 10.3390/nu13124332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
Extracts of medicinal plants have been widely used to benefit human health. Dendropanax morbiferus (DM) has been well-studied for its anti-inflammatory and anti-oxidative effects, while Dendropanax trifidus (DT) is a lesser-known ecotype phylogenetically similar to DM, which has received significantly less attention. Studies thus far have primarily focused on leaf and bark extracts of DM, and not much is yet known about the properties of either DM or DT sap. Therefore, here we performed in vivo toxicity and efficacy studies, in order to assess the biological effects of DT sap. To establish a safe dosage range, single dose or two-week daily administrations of various concentrations were performed for ICR mice. Measurements of survival ratio, body/organ weight, blood chemistry, histochemistry and Western blots were performed. A concentration of ≤0.5 mg/g DT sap was found to be safe for long-term administration. Interestingly, DT sap significantly reduced blood glucose in female mice. In addition, increasing concentrations of DT sap decreased phosphorylated (p) insulin receptor substrate (IRS)-1(ser1101)/IRS-1 in liver tissues, while increasing pAMP-activated protein kinase (AMPK)/AMPK in both the liver and spleen. To analyze its components, liquid chromatography-tandem mass spectrometry of DT sap was performed in comparison with Acer saccharum (AS) sap. Components such as estradiol, trenbolone, farnesol, dienogest, 2-hydroxyestradiol and linoleic acid were found to be highly enriched in DT sap compared to AS sap. Our results indicate DT sap exhibits hypoglycemic effects, which may be due to the abundance of the bioactive components.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
| | - Yuki Sugiura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | - Ik-Hyun Cho
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Noriko Setou
- Department of Disaster Psychiatry, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea;
| | - Seungheun Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
| |
Collapse
|
13
|
Dutta SM, Chen G, Maiti S. Profiles of Two Glycaemia Modifying Drugs on the Expression of Rat and Human Sulfotransferases. Curr Drug Metab 2021; 22:240-248. [PMID: 33256575 DOI: 10.2174/1389200221666201130123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
AIMS To study the effects of blood glucose regulating compounds on human and rat sulfotransferases (SULTs) expressions. BACKGROUND Phase-II enzymes, sulfotransferases catalyze the sulfuryl-group-transfer to endogenous/exogenous compounds. The alteration of expressions of SULTs may have influence on the sulfation of its substrate and other biomolecules. OBJECTIVES The influence of the altered biotransformation might alter different biochemical events, drug-drug interactions and bioaccumulation or excretion pattern of certain drug. METHODS In this brief study, diabetes-inducing drug streptozotocin (STZ; 10 or 50 mg/kg to male Sprague Dawley rat for 2 weeks) or hyperglycemia controlling drug tolbutamide (TLB 0.1 or 10μM to human hepato-carcinoma cells, HepG2 for 10 days) was applied and the SULTs expressions were verified. Extensive protein-protein (STa, SULT2A1/DHEAST) interactions were studied by the STRING (Search-Tool-for-the-Retrieval-of-Interacting Genes/Proteins) Bioinformatics-software. RESULTS Present result suggests that while STZ increased the STa (in rat) (dehydroepiandrosterone catalyzing SULT; DHEAST in human HepG2), tolbutamide decreased PPST (phenol catalyzing SULT) and DHEAST activity in human HepG2 cells. Moderate decreases of MPST (monoamine catalyzing SULT) and EST (estrogen catalyzing) activities are noticed in this case. STa/DHEAST was found to be highly interactive to SHBG/- sex-hormone-binding-globulin; PPARα/lipid-metabolism-regulator; FABP1/fatty-acid-binding-protein. CONCLUSION Streptozotocin and tolbutamide, these two glycaemia-modifying drugs demonstrated regulation of rat and human SULTs activities. The reciprocal nature of these two drugs on SULTs expression may be associated with their contrasting abilities in influencing glucose-homeostasis. Possible association of certain SULT-isoform with hepatic fat-regulations may indicate an unfocused link between calorie-metabolism and the glycemic-state of an individual. Explorations of this work may uncover the role of sulfation metabolism of specific biomolecule on cellular glycemic regulation.
Collapse
Affiliation(s)
- Sangita M Dutta
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Guangping Chen
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, United States
| | - Smarajit Maiti
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India
| |
Collapse
|
14
|
Wang R, Zhu W, Peng J, Li K, Li C. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Crit Rev Food Sci Nutr 2020; 62:311-324. [PMID: 32951435 DOI: 10.1080/10408398.2020.1815171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polyphenols have attracted a lot of global attention due to their diverse biological actions against cancer, obesity, and cardiovascular diseases. Although extensive research has been carried out to elucidate the mechanisms of pleiotropic actions of polyphenols, this remains unclear. Lipid rafts are distinct nanodomains enriched in cholesterol and sphingolipids, present in the inner and outer leaflets of cell membranes, forming functional platforms for the regulation of cellular processes and diseases. Recent studies focusing on the interaction between polyphenols and cellular lipid rafts shed new light on the pleiotropic actions of polyphenols. Polyphenols are postulated to interact with lipid rafts in two ways: first, they interfere with the structural integrity of lipid rafts, by disrupting their structure and clustering of the ordered domains; second, they modulate the downstream signaling pathways mediated by lipid rafts, by binding to receptor proteins associated with lipid rafts, such as the 67 kDa laminin receptor (67LR), epidermal growth factor receptor (EGFR), and others. This study aims to elaborate the mechanism of interaction between polyphenols and lipid rafts, and describe pleiotropic preventive effects of polyphenols.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
15
|
De Paoli M, Werstuck GH. Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data. Can J Diabetes 2020; 44:448-452. [DOI: 10.1016/j.jcjd.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
16
|
Pal S, Porwal K, Rajak S, Sinha RA, Chattopadhyay N. Selective dietary polyphenols induce differentiation of human osteoblasts by adiponectin receptor 1-mediated reprogramming of mitochondrial energy metabolism. Biomed Pharmacother 2020; 127:110207. [PMID: 32422565 DOI: 10.1016/j.biopha.2020.110207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Anabolic therapies for osteoporosis including dietary polyphenols promote osteoblast function by influencing its energy metabolism. Among the dietary polyphenols, the beneficial skeletal effects of genistein (an isoflavone), kaempferol (a flavone), resveratrol (RES, a stilbenoid) and epigallocatechin gallate (EGCG, a catechin) have been reported in preclinical studies. We studied the action mechanism of these nutraceuticals on osteoblast bioenergetics. All stimulated differentiation of human fetal osteoblasts (hFOB). However, only EGCG and RES stimulated mitochondrial parameters including basal and maximum respiration, spare respiratory capacity and ATP production (a measure of the activity of electron transport chain/ETC). Increases in these parameters were due to increased mitochondrial biogenesis and consequent upregulation of several mitochondrial proteins including those involved in ETC. Rotenone blocked the osteogenic effect of EGCG and RES suggesting the mediatory action of mitochondria. Both compounds rapidly activated AMPK, and dorsomorphin (an AMPK inhibitor) abolished ATP production stimulated by these compounds. Moreover, EGCG and RES upregulated the mitochondrial biogenesis factor, PGC-1α which is downstream of AMPK activation, and silencing PGC-1α blocked their stimulatory effects on ATP production and hFOB differentiation. Adiponectin receptor 1 (AdipoR1) is an upstream regulator of PGC-1α, and both compounds increased the expression of AdipoR1 but not AdipoR2. Silencing AdipoR1 blocked the upregulation of EGCG/RES-induced PGC-1α and hFOB differentiation. In rat calvarium, both compounds increased AdipoR1, PGC-1α, and RunX2 (the osteoblast transcription factor) with a concomitant increase in mitochondrial copy number and ATP levels. We conclude that EGCG and RES display osteogenic effects by reprogramming osteoblastic bioenergetics by acting as the AdipoR1 agonists.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
17
|
Oliveira PWC, Couto MR, de Sousa GJ, Peixoto P, Moraes FSA, de Andrade TU, Bissoli NS. Effects of Drugs, Phytoestrogens, Nutrients and Probiotics on Endothelial Dysfunction in the Estrogen-Deficient State. Curr Pharm Des 2020; 26:3711-3722. [PMID: 32228420 DOI: 10.2174/1381612826666200331084338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is commonly present in estrogen-deficient states, e.g., after menopause. In the search for alternatives to hormone replacement therapy (HRT), treatments based on phytoestrogens or in non-hormonal mechanisms have been under evaluation. OBJECTIVE Here we aim to present an overview of innovative potential treatments for endothelial dysfunction in estrogen-deficient states, introducing our own preliminary data about the probiotic kefir. METHODS We conducted a review based on a PubMed database search for keywords of interest (Menopause, Ovariectomy, Vascular dysfunction, Hot flashes, Metformin, Statins, Phytoestrogens, Omega-3, Vitamin D, Probiotics). RESULTS Vascular parameters were found to be improved by both metformin and statins through pleiotropic effects, being related to a decrease in oxidative stress and restoration of the nitric oxide pathway. Phytoestrogens such as genistein and resveratrol have also been shown to improve vascular dysfunction, which seems to involve their estrogenic-like actions. Omega-3, vitamin D and its analogues, as well as probiotics, have shown similar vascular beneficial effects in both postmenopausal women and an animal model of ovariectomy (OVX), which could be related to antioxidant and/or anti-inflammatory effects. Moreover, our preliminary data on the probiotic kefir treatment in OVX rats suggested a vascular antioxidant effect. In particular, some evidence points to statins and vitamin D having anti-atherogenic effects. CONCLUSION Pleiotropic effects of common medications and natural compounds could have therapeutic potential for endothelial dysfunction in estrogen-deficient states. They could, therefore, work as future complementary or alternative treatments to HRT.
Collapse
Affiliation(s)
- Phablo Wendell C Oliveira
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Mariana R Couto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Glauciene J de Sousa
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Flávia S A Moraes
- Department of Pharmacy, University Vila Velha, Vila Velha, ES, Brazil
| | | | - Nazaré S Bissoli
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| |
Collapse
|
18
|
Efficacy and Safety of Resveratrol in Type 1 Diabetes Patients: A Two-Month Preliminary Exploratory Trial. Nutrients 2020; 12:nu12010161. [PMID: 31935938 PMCID: PMC7019753 DOI: 10.3390/nu12010161] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023] Open
Abstract
Resveratrol has been reported to be beneficial against diabetes complications. The objective of this study was to evaluate the efficacy of resveratrol in decreasing hyperglycemia in patients with type 1 diabetes (T1D) by a preliminary investigation designed as an exploratory clinical trial. Thirteen patients with T1D from both the sexes participated in this trial. All patients received resveratrol in 500 mg capsules, twice daily for 60 days. Bodyweight, fasting blood sugar (FBS), hemoglobin A1c (HbA1c), insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), homeostasis model of assessment for β-cell function (HOMA-β), and markers of liver and kidney damage, inflammation, and oxidative stress were measured before the intervention, at 30 days and at 60 days. Resveratrol supplementation for 60 days significantly decreased FBS and HbA1c in comparison with the baseline values. Resveratrol treatment also resulted in a decrease in the level of a marker for oxidative stress, malondialdehyde, and an increase in total antioxidant capacity in T1D patients. Insulin, HOMA-IR, HOMA-β, and markers of liver and kidney function and inflammation were not significantly affected by resveratrol treatment. Overall, the results showed that 60 days of resveratrol supplementation exerted strong antidiabetic and antioxidant effects in patients with T1D.
Collapse
|
19
|
Pham DC, Shibu MA, Mahalakshmi B, Velmurugan BK. Effects of phytochemicals on cellular signaling: reviewing their recent usage approaches. Crit Rev Food Sci Nutr 2019; 60:3522-3546. [PMID: 31822111 DOI: 10.1080/10408398.2019.1699014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the previous studies in last three decades report evidence of interactions between the different phytochemicals and the proteins involved in signal transduction pathways using in silico, in vitro, ex vivo, and in vivo analyses. However, extrapolation of these findings for clinical purposes has not been that fruitful. The efficacy of the phytochemicals in vivo studies is limited by parameters such as solubility, metabolic degradation, excretion, etc. Various approaches have now been devised to circumvent these limitations. Recently, chemical modification of the phytochemicals are demonstrated to reduce some of the limitations and improve their efficacy. Similar to traditional medicines several combinatorial phytochemical formulations have shown to be more efficient. Further, phytochemicals have been reported to be even more efficient in the form of nanoparticles. However, systematic evaluation of their efficacy, mode of action in pathway modulation, usage and associated challenges is required to be done. The present review begins with basic understanding of how signaling cascades regulate cellular response and the consequences of their dysregulation further summarizing the developments and problems associated with the dietary phytochemicals and also discuss recent approaches in strengthening these compounds in pharmacological applications. Only context relevant studies have been reviewed. Considering the limitations and scope of the article, authors do not claim inclusion of all the early and recent studies.
Collapse
Affiliation(s)
- Dinh-Chuong Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - M A Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|