1
|
Sreebun S, Booncherd K, Thongchaitriwat S, Ichida K, Pasomboon P, Yazawa R, Boonanuntanasarn S. Cryopreservation of the whole testes of Asian sea bass (Lates calcarifer) and its effects on apoptosis, germ cell-specific gene expression, germ cell transplantability, and DNA methylation. Theriogenology 2024; 229:178-190. [PMID: 39197255 DOI: 10.1016/j.theriogenology.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Cryopreservation of spermatogonia could be a useful tool to preserve the genetic resources of fish, which could be further restored via germ cell transplantation. In this study, the protocol for the cryopreservation of the spermatogonia of Asian sea bass (Lates calcarifer), an economically important fishery resource in the Indo-West Pacific, was optimised. The impact of the cryopreservation technique on cell viability and apoptosis, expression of several genes related to immature germ cell markers, transplantability in allogeneic recipients, and global DNA methylation was evaluated. The slow-freezing method was performed for the cryopreservation of immature testis tissue, which contains a high proportion of spermatogonia. The optimal condition that yielded the highest recovery rate of post-thawed spermatogonia included a cryomedium containing Leibovitz's (L-15) medium and 10 % dimethyl sulfoxide, ice equilibration for 60 min before freezing, and subsequent thawing at 4 °C for 8 min. Moreover, a higher number of early and late apoptotic cells was detected in the cryopreserved than in the fresh testes, suggesting that apoptosis could result in reduced viability. The expression levels of dazl decreased in the cryopreserved testes; however, there were no significant differences in the expression levels of nanos2 or nanos3 between the fresh and cryopreserved testes. Although qRT-PCR showed lower vasa expression in cryopreserved testicular cells, in situ hybridisation showed expressed vasa in the cryopreserved testicular cells. Post-thawed spermatogonia could be incorporated into the genital ridge of allogeneic recipients, suggesting that cryopreserved spermatogonia exhibit transplantability characteristics. Compared with fresh testes, significant changes in the proportion of DNA methylation (decreased 5-mC and 5-caC) were observed in cryomedium-free testicular cells, whereas those of the cryopreserved cells were not significantly different. Therefore, the method we developed for the cryopreservation of the spermatogonia of Asian sea bass enabled post-thaw cells to retain several stemness characteristics and maintain their epigenetic stability.
Collapse
Affiliation(s)
- S Sreebun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - K Booncherd
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - S Thongchaitriwat
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - K Ichida
- Institute for Aquaculture Biotechnology (IAB), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo, 108-8477, Japan
| | - P Pasomboon
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - R Yazawa
- Institute for Aquaculture Biotechnology (IAB), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo, 108-8477, Japan; Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo, 108-8477, Japan
| | - S Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
López LS, Monzani PS, Carvalho GB, de Siqueira Silva DH, Vianna NC, Yasui GS, Senhorini JA. Cryopreservation and transplantation of spermatogonia stem cells in piracanjuba Brycon orbignyanus (Characiformes: Characidae), an endangered fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01406-6. [PMID: 39331242 DOI: 10.1007/s10695-024-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Piracanjuba (Brycon orbignyanus) is an endangered fish species from the Neotropical region. The establishment of a cryobank using spermatogonial stem cells (SSCs) and subsequent production of a germline chimera is thus a promising strategy for such species. In the present work, procedures for the isolation and cryopreservation of piracanjuba SSCs and subsequent transplantation into sterile recipients were established. The piracanjuba SSCs were obtained by Percoll density gradient centrifugation and differential plating. SSC fractions were evaluated by relative ddx4 expression, alkaline phosphatase activity, and light microscopy. SSC cryopreservation was performed using five cryoprotectants at three different concentrations. The mix of the cells from the 20% and 30% Percoll density gradients showed 58.35 ± 0.03% purity of SSCs. The purity of SSCs increased to 66.00 ± 0.01% after differential plating. The relative ddx4 expression was 3.5 times higher in cells from the Percoll density gradient centrifugation than in the gonad and cells after differential plating. Propanediol (1 M) was the most effective cryoprotector evaluated (P = 1.000), showing 90.75 ± 1.85% cell viability. Freshly isolated and cryopreserved cells from the Percoll density gradient centrifugation were transplanted into a sterile male adult triploid hybrid with germ cell-less gonads. SSCs were observed in the germinal epithelium of the testes of recipients 20 days after transplantation. The results are promising for obtaining functional germline chimeras in Neotropical fish. Consequently, although the number of males used for the experiment was borderline, the procedures established here can be applied in future actions for the conservation and reconstitution of the piracanjuba in case of extinction.
Collapse
Affiliation(s)
- Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil.
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), No. 3918. Zona Playitas, Carretera Ensenada, 22860, Tijuana, Baja California, Mexico.
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diógenes Henrique de Siqueira Silva
- Study Group on the Reproduction of Amazonian Fishes, Biology Faculty, Federal University of the South and Southeast of Pará, Marabá, Pará, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation/National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, São Paulo, Brazil
| |
Collapse
|
3
|
Murray A, Kilbride P, Gibson MI. Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities. RSC Med Chem 2024; 15:2980-2995. [PMID: 39309363 PMCID: PMC11411628 DOI: 10.1039/d4md00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
- Asymptote, Cytiva Chivers Way Cambridge CB24 9BZ USA
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
4
|
Pessoa GP, López LS, Rosero JM, Dos Santos SCA, Yasui GS, Senhorini JA, Monzani PS. Isolation and cryopreservation of Pseudopimelodus mangurus (Siluriformes) spermatogonial cells. Cryobiology 2024; 116:104941. [PMID: 39029551 DOI: 10.1016/j.cryobiol.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Spermatogonia cryopreservation can be a strategy for future conservation actions. The neotropical Siluriformes Pseudopimelodus mangurus was already classified as vulnerable on the Red List of Threatened Species. P. mangurus spermatogonial cells were isolated, assessed, and cryopreserved. Fragments of the testis were enzymatically dissociated, purified using Percoll density gradient, and submitted to differential plating. Fractionated cells were evaluated by microscopy, ddx4 (vasa) relative expression, and alkaline phosphatase activity. Cryopreservation was conducted using ethylene glycol, glycerol, dimethyl sulfoxide (DMSO), dimethylacetamide (DMA), and propanediol at 1 M, 1.5 M, and 2 M. Cell viability was evaluated and cell concentration was determined. Cell fractions from 20 % and 30 % Percoll gradient bands showed the highest concentrations of spermatogonia. The fraction mix showed 54 % purity and 93 % viability. After differential plating, 60 % purity and 92 % viability were obtained. Spermatogonial cells showed high alkaline phosphatase activity compared to spermatocytes and spermatids. The relative spermatogonial ddx4 expression from the Percoll density gradient was about twice as high as in samples from the testis and the differential plating. The increased ddx4 expression indicated the enrichment of spermatogonial cells by density gradient step and dead cells expressing ddx4 in differential plating, or ddx4 decreasing expression during cell culture. For this reason, cells from the Percoll gradient were chosen for cryopreservation. Propanediol at 1 M demonstrated the best condition for spermatogonial cell cryopreservation, presenting 98 % viability, while dimethylacetamide at 2 M represented the least favorable condition, with approximately 47 % viability. These findings are essential for P. mangurus spermatogonial cell cryopreservation, aiming to generate a spermatogonia cryobank for future conservation efforts.
Collapse
Affiliation(s)
- Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Jenyffer Mairely Rosero
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
5
|
de Freitas TR, Rodrigues RB, Marques LS, Dantas RV, Torres-Lozano KG, França TS, Lima LCO, Santos FW, Nicoleti ET, Chaves TF, Streit DP. Biodegradable capsules as a sustainable and accessible container for vitrification of gonadal tissue using the zebrafish animal model. Cryobiology 2024; 116:104944. [PMID: 39033953 DOI: 10.1016/j.cryobiol.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cryopreservation of fish gonadal tissue is an important technique for preserving genetic variability. However, this technique involves the use of cryotubes, plastic containers with low degradability that are expensive and difficult to obtain in certain parts of the world. Therefore, this study aimed to evaluate the efficiency of gelatin and hypromellose hard capsules as a sustainable and accessible alternative container to the cryotube for vitrification of zebrafish (Danio rerio) gonadal tissue. The gonadal tissues (testicular or ovarian) were vitrified in cryotubes, hard-gelatin, and hard-hypromellose capsules. Gelatin capsules exhibited comparable efficacy to cryotubes in preserving spermatogonia viability (33.03 ± 10.03 % and 37.96 ± 8.35 %, respectively), whereas hypromellose capsules showed decreased viability (18.38 ± 2.09 %). Immature oocyte viability remained unaffected by the capsule materials, with no difference compared to cryotubes at all oocyte stages (Primary Growth: p < 0.0001; Cortical Alveolar: p < 0.0001; Vitellogenic: p < 0.0001). Mitochondrial activity and lipid peroxidation demonstrated no difference among cryotubes and capsules for both gonadal tissues. However, antioxidant activity was notably higher in gelatin capsules (Testes: 147.2 ± 32.32 μg; Ovary: 87.98 ± 10.91 μg) than in cryotubes (Testes: 81.04 ± 26.05 μg; Ovary: 54.35 ± 11.23 μg) and hypromellose capsules (Testes: 62.36 ± 17.10 μg; Ovary: 63.96 ± 7.51 μg), likely due to the inherent antioxidant properties of gelatin. The results obtained in this study demonstrate that the cryotube can be replaced by gelatin capsules for vitrification of both gonadal tissues of zebrafish, being a sustainable and accessible alternative as it is a low-cost and environmentally friendly container.
Collapse
Affiliation(s)
- Thaiza Rodrigues de Freitas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rômulo Batista Rodrigues
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Animal Science and Biological Sciences, Federal University of Santa Maria, Palmeira das Missões, RS, Brazil.
| | - Lis Santos Marques
- Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Renata Villar Dantas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | - Thales Souza França
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | - Francielli Weber Santos
- Reproduction Biotechnology Laboratory (Biotech), Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Eduardo Thomé Nicoleti
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Tales Fabris Chaves
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Danilo Pedro Streit
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Cabrita E, Pacchiarini T, Fatsini E, Sarasquete C, Herráez MP. Post-thaw quality assessment of testicular fragments as a source of spermatogonial cells for surrogate production in the flatfish Solea senegalensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023:10.1007/s10695-023-01232-2. [PMID: 37644252 DOI: 10.1007/s10695-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.
Collapse
Affiliation(s)
- Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Tiziana Pacchiarini
- Sea4tech, Incubadora de Alta Tecnología INCUBAZUL, Edificio Europa, Zona Franca de Cádiz, Cádiz, Spain
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Carmen Sarasquete
- Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - María Paz Herráez
- Dept. Biologia Molecular, Facultad de Biologia, Universidad de León, 24071, León, Spain
| |
Collapse
|
7
|
Vitrification of the ovarian tissue in sturgeons. Theriogenology 2023; 196:18-24. [PMID: 36375212 DOI: 10.1016/j.theriogenology.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to test whether vitrification of sterlet Acipenser ruthenus and Russian sturgeon Acipenser gueldenstaedtii ovarian tissue through needle-immersed vitrification (NIV) is an efficient strategy for the preservation of oogonia (OOG) in order to supplement the current conservation efforts for these endangered fish species. Histological analyses of the gonads displayed that the ovaries of both species were immature and contained predominantly OOG and primary oocytes. The germline origin of these cells was verified by localization of the vasa protein through immunocytochemistry. NIV protocol was optimized by testing different equilibration (ES) and vitrification solutions (VS) containing various concentrations of dimethyl sulfoxide (Me2SO), propylene glycol (PG) or methanol (MeOH). In sterlet, the highest average viability (55.7 ± 11.5%) was obtained by using a combination of 1.5 M PG and 1.5 M Me2SO in the ES, and 1.5 M MeOH and 5.5 M Me2SO in the VS. In Russian sturgeon, the highest average viability (49.4 ± 17.1%) was obtained by using a combination of 1.5 M MeOH and 1.5 M Me2SO in the ES, and 3 M PG and 3 M Me2SO in the VS. To test whether vitrified/warmed OOG are functional, we have conducted an intra-specific transplantation assay to verify whether transplanted sterlet OOG will colonize the gonads of recipient fish. Fluorescently labelled cells were detected within recipient gonads at 2 and 3 months post-fertilization (mpf). Colonization rates of vitrified/warmed OOG (70% at 2 mpf and 61% at 3 mpf) were similar to those of fresh OOG (80% at 2 mpf and 70% at 3 mpf). This study has demonstrated that vitrification of ovarian tissue is an effective method for the preservation of OOG, and that the vitrified/warmed cells are functional and are able to colonize recipient gonads after transplantation similarly to the fresh cells. Since the vitrification procedure displayed in this study is simple and does not require complex and expensive laboratory equipment, it can be readily applied in field conditions, and therefore it can be invaluable for the conservation efforts of the critically endangered sturgeon species. However, care needs to be taken that despite the research conducted so far, donor-derived progeny was not yet obtained in sturgeons.
Collapse
|
8
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
9
|
Tichopád T, Franěk R, Doležálková-Kaštánková M, Dedukh D, Marta A, Halačka K, Steinbach C, Janko K, Pšenička M. Clonal gametogenesis is triggered by intrinsic stimuli in the hybrid's germ cells but is dependent on sex differentiation. Biol Reprod 2022; 107:446-457. [PMID: 35416937 DOI: 10.1093/biolre/ioac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Interspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid's reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreduplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid's gonial cells or whether it is regulated by the surrounding gonadal tissue. We investigated gametogenesis in the Cobitis taenia hybrid complex, which involves sexually reproducing species (Cobitis elongatoides and C. taenia) as well as their hybrids, where females reproduce clonally via PMER while males are sterile. We transplanted spermatogonial stem cells (SSCs) from C. elongatoides and triploid hybrid males into embryos of sexual species and of asexual hybrid females, respectively, and observed their development in an allospecific gonadal environment. Sexual SSCs underwent regular meiosis and produced normally reduced gametes when transplanted into clonal females. On the other hand, the hybrid's SSCs lead to sterility when transplanted into sexual males, but maintained their ability to undergo asexual development (PMER) and production of clonal eggs, when transplanted into sexual females. This suggests that asexual gametogenesis is under complex control when somatic gonadal tissue indirectly affects the execution of asexual development by determining the sexual differentiation of stem cells and once such cells develop to female phenotypes, hybrid germ cells trigger the PMER from their intrinsic signals.
Collapse
Affiliation(s)
- Tomáš Tichopád
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Franěk
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Marie Doležálková-Kaštánková
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic.,Institute of Zoology, Academy of Science of Moldova, MD-2028, Academiei 1, 2001 Chisinau, Moldova
| | - Karel Halačka
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Pšenička
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
10
|
Xie X, Tichopád T, Kislik G, Langerová L, Abaffy P, Šindelka R, Franěk R, Fučíková M, Steinbach C, Shah MA, Šauman I, Chen F, Pšenička M. Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet ( Acipenser ruthenus) Using Flow-Cytometric Cell Sorting. Front Cell Dev Biol 2021; 9:772625. [PMID: 34957105 PMCID: PMC8708567 DOI: 10.3389/fcell.2021.772625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Collapse
Affiliation(s)
- Xuan Xie
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Tomáš Tichopád
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Galina Kislik
- Imaging Methods Core Facility at BIOCEV, Operated by Faculty of Science, Charles University in Prague, Vestec, Czechia
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Michaela Fučíková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Mujahid Ali Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Ivo Šauman
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Fan Chen
- Department of Pharmacology, C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
11
|
Rivers N, Daly J, Temple-Smith P. New directions in assisted breeding techniques for fish conservation. Reprod Fertil Dev 2021; 32:807-821. [PMID: 32527372 DOI: 10.1071/rd19457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Fish populations continue to decline globally, signalling the need for new initiatives to conserve endangered species. Over the past two decades, with advances in our understanding of fish germ line biology, new exsitu management strategies for fish genetics and reproduction have focused on the use of germ line cells. The development of germ cell transplantation techniques for the purposes of propagating fish species, most commonly farmed species such as salmonids, has been gaining interest among conservation scientists as a means of regenerating endangered species. Previously, exsitu conservation methods in fish have been restricted to the cryopreservation of gametes or maintaining captive breeding colonies, both of which face significant challenges that have restricted their widespread implementation. However, advances in germ cell transplantation techniques have made its application in endangered species tangible. Using this approach, it is possible to preserve the genetics of fish species at any stage in their reproductive cycle regardless of sexual maturity or the limitations of brief annual spawning periods. Combining cryopreservation and germ cell transplantation will greatly expand our ability to preserve functional genetic samples from threatened species, to secure fish biodiversity and to produce new individuals to enhance or restore native populations.
Collapse
Affiliation(s)
- Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia; and Corresponding author.
| | - Jonathan Daly
- Smithsonian Conservation Biology Institute, Front Royal, VA 22360, USA; and Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia
| |
Collapse
|
12
|
Morita T, Miwa M, Kumakura N, Morishima K, Miki T, Takeuchi Y, Yoshizaki G. Production of functional sperm from cryopreserved testicular germ cells following intraperitoneal transplantation into allogeneic surrogate in yellowtail (Seriola quinqueradiata). Cryobiology 2021; 100:32-39. [PMID: 33831369 DOI: 10.1016/j.cryobiol.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to establish a method for the cryopreservation of spermatogonia of the yellowtail (Seriola quinqueradiata), which is the most commonly farmed fish in Japan. Testicular cells were prepared by enzymatic dissociation of testicular fragments containing an abundance of type A spermatogonia and were added to cryomedium containing dimethyl sulfoxide (DMSO), ethylene glycol, glycerol, or propylene glycol at concentrations of 0.5-2.5 M. The cells were then frozen and stored in liquid nitrogen for 3 days. After thawing, their survival and transplantability were evaluated. Testicular cells were most successfully cryopreserved in 1.0 M DMSO as indicated by survival of 34% of cells. Furthermore, in situ hybridization using the yellowtail vasa probe showed that these recovered cells contained a similar proportion of germ cells to fresh testicular cells before freezing. Transplantation of the recovered cells into the peritoneal cavities of allogeneic larvae resulted in 94% of surviving recipients having donor-derived germ cells in their gonads after 28 days. Sperm were then collected from seven randomly selected recipients once they reached 2 years of age and used to fertilize wild-type eggs, which led to an average of 26% of the first filial (F1) offspring being derived from donor fish, as confirmed through the use of microsatellite markers. Thus, we successfully cryopreserved yellowtail spermatogonia and produced functional sperm via intraperitoneal transplantation into allogeneic recipients.
Collapse
Affiliation(s)
- Tetsuro Morita
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd., 1-32-3 Nanakuni, Hachioji-shi, Tokyo, 192-0991, Japan.
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Naoki Kumakura
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd., 1-32-3 Nanakuni, Hachioji-shi, Tokyo, 192-0991, Japan
| | - Kagayaki Morishima
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd., 1-32-3 Nanakuni, Hachioji-shi, Tokyo, 192-0991, Japan
| | - Takahisa Miki
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd., 1-32-3 Nanakuni, Hachioji-shi, Tokyo, 192-0991, Japan
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, 11-4-1 Otsusaka, Noto-cho, Ishikawa, 927-0552, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
13
|
Cryopreservation and Transplantation of Spermatogonial Stem Cells. Methods Mol Biol 2021. [PMID: 33606221 DOI: 10.1007/978-1-0716-0970-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cryopreservation as a method that enables long-term storage of biological material has long been used for the conservation of valuable zebrafish genetic resources. However, currently, only spermatozoa of zebrafish can be successfully cryopreserved, while protocols for cryopreservation of eggs and embryos have not yet been fully developed. Transplantation of germline stem cells (GSCs) has risen as a favorable method that can bypass the current problem in cryopreservation of female genetic resources and can lead to reconstitution of fish species and lines through surrogate production. Here, we describe essential steps needed for the cryopreservation of spermatogonial stem cells (SSCs) and their utilization in the conservation of zebrafish genetic resources through SSC transplantation and surrogate production.
Collapse
|
14
|
Marinović Z, Šćekić I, Lujić J, Urbányi B, Horváth Á. The effects of cryopreservation and cold storage on sperm subpopulation structure of common carp (Cyprinus carpio L.). Cryobiology 2021; 99:88-94. [PMID: 33450240 DOI: 10.1016/j.cryobiol.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The objectives of this study were to identify the presence of different spermatozoa subpopulations (SPs) according to their kinematic characteristics in the sperm of common carp and to test the effects of cryopreservation and prolonged (6-day) storage at room temperature (RT; 23 °C) and 4 °C on spermatozoa motility and subsequently on SP dynamics. Two-step clustering analyses identified three motile SPs based on their kinematic properties: SP1 contained spermatozoa with low velocity and low/moderate STR/LIN values (slow non-linear SP); SP2 was comprised of spermatozoa with high velocities and high STR/LIN values (fast linear SP); SP3 was characterized with high VCL, and moderate LIN/STR (fast non-linear SP); and an additional SP0 was added comprising immotile spermatozoa. Total motility, progressive motility and VCL decreased after cryopreservation to approximately 50% of their value in fresh sperm, while the frequency of SPs characterized by high values of motility parameters declined in favor of those with low motility values and SP0. Motility values of fresh and cryopreserved spermatozoa which were washed with fresh extender after thawing decreased significantly after 24 h of storage at RT and after 72 h of storage at 4 °C, while cryopreserved sperm which remained in the original cryomedium faced a steep decline in motility after only 2 h of storage. As subpopulation frequencies followed this dynamic, this indicates that cryopreserved sperm should be washed with fresh extender in order to obtain favorable sperm kinematic properties after freezing.
Collapse
Affiliation(s)
- Zoran Marinović
- Department of Aquaculture, Szent István University, Páter Károly U. 1., H-2100, Gödöllő, Hungary.
| | - Ilija Šćekić
- Department of Aquaculture, Szent István University, Páter Károly U. 1., H-2100, Gödöllő, Hungary
| | - Jelena Lujić
- Center for Reproductive Genomics, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly U. 1., H-2100, Gödöllő, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly U. 1., H-2100, Gödöllő, Hungary
| |
Collapse
|
15
|
Ye H, Zhou C, Yue H, Wu M, Ruan R, Du H, Li C, Wei Q. Cryopreservation of germline stem cells in American paddlefish (Polyodon spathula). Anim Reprod Sci 2020; 224:106667. [PMID: 33307489 DOI: 10.1016/j.anireprosci.2020.106667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Most sturgeon and paddlefish are critically endangered; therefore, effective measures to conserve these genetic resources are required. Cryopreservation of gonad tissues containing germline stem cells could be an effective strategy for long term preservation and restoration of fish species using germ cell transplantation procedure. The aim of this study was to develop an optimal procedure for long-term cryopreservation of American paddlefish gonads using a slow-freezing method. Through optimization of permeating cryoprotectants, nonpermeating cryoprotectants, and supplementation of proteins, gonad tissues were frozen with a cryomedium containing 1.3 M dimethyl sulfoxide, 0.1 M trehalose, and 10 % fetal bovine serum at a cooling rate of -1 °C/min. This method was also successfully utilized for the cryopreservation of Yangtze sturgeon testes. Viability of gonadal cells isolated from frozen gonads was not different from cells isolated from fresh gonadal tissues, while the number of gonadal cells dissociated from frozen gonads was less. Germline stem cells dissociated from long-term (1 year) cryopreserved gonads were labeled with PKH26 fluorescent dye and intraperitoneally transplanted into larvae of Yangtze sturgeon. The colonization of transplanted germline stem cells was confirmed by the presence of PKH26-labeled donor germline stem cells and donor-derived mtDNA sequence in the recipient gonads, providing evidence that germline stem cells from sturgeon and paddlefish gonads that had been preserved for a long period maintained their functions. The results of present study indicate the procedures used are effective for long-term preservation of critically endangered species within the Acipenseriformes order which can later be regenerated using surrogate broodstock technology.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Congli Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mengbin Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
16
|
Abualreesh M, Myers JN, Gurbatow J, Johnson A, Xing D, Wang J, Li S, Coogan M, Vo K, El Husseini N, Dunham RA, Butts IAE. Development of a spermatogonia cryopreservation protocol for blue catfish, Ictalurus furcatus. Cryobiology 2020; 97:46-52. [PMID: 33058900 DOI: 10.1016/j.cryobiol.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (-0.5, -1.0, -5.0, -10 °C/min until -80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at -1 °C/min, but similar results were obtained using -0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or -1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.
Collapse
Affiliation(s)
- Muyassar Abualreesh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jaelen N Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jeremy Gurbatow
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquaculture and Technology, Can Tho Technical Economic College, Can Tho, Viet Nam
| | - Nour El Husseini
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
17
|
Šćekić I, Marinović Z, Lujić J, Müller T, Kitanović N, Urbányi B, Horváth Á. A novel strategy for conservation of European eel (Anguilla anguilla) genetic resources: Cryopreservation of ovarian stem cells. Cryobiology 2020; 95:151-156. [DOI: 10.1016/j.cryobiol.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
|
18
|
Octavera A, Yoshizaki G. Production of Chinese rosy bitterling offspring derived from frozen and vitrified whole testis by spermatogonial transplantation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1431-1442. [PMID: 32356193 DOI: 10.1007/s10695-020-00802-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Bitterling is a small cyprinid fish facing an increasing risk of extinction owing to habitat destruction and decreasing freshwater mussel population that are used as their spawning substrates. Owing to their large size and high yolk contents, methods for cryopreservation of their eggs or embryos, which is a promising method for long-term preservation of their genetic resources, are still not available. We conducted this study to evaluate the feasibility of gamete production by transplanting cryopreserved testicular cells into germ cell-less recipients that were produced by knockdown of dead end gene. Immature testes isolated from recessive albino Chinese rosy bitterlings were cryopreserved by slow freezing or vitrification. Approximately 3000 slow-frozen or vitrified cells were transplanted into the peritoneal cavity of 4-day-old germ cell-less wild-type Chinese rosy bitterlings. We observed no significant differences in the incorporation rates of the slow-frozen and vitrified cells into the genital ridges of recipients compared with those of freshly prepared cells. When the recipients matured, almost half of the male or female recipients that received freshly prepared, slow-frozen, or vitrified cells produced gametes derived from donor cells, with no significant differences in their fecundity among the 3 groups. Moreover, fertilization of the resulting eggs and sperm produced donor-derived offspring exhibiting the albino phenotype. Therefore, the abovementioned methods could be used as a powerful and practical method for long-term preservation of bitterling genetic resources for biotic conservation.
Collapse
Affiliation(s)
- Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo, 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
19
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
20
|
Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, Yoshizaki G, Horváth Á. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci Rep 2019; 9:13861. [PMID: 31554831 PMCID: PMC6761286 DOI: 10.1038/s41598-019-50169-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Zebrafish is one of the most commonly used model organisms in biomedical, developmental and genetic research. The production of several thousands of transgenic lines is leading to difficulties in maintaining valuable genetic resources as cryopreservation protocols for eggs and embryos are not yet developed. In this study, we utilized testis cryopreservation (through both slow-rate freezing and vitrification) and spermatogonia transplantation as effective methods for long-term storage and line reconstitution in zebrafish. During freezing, utilization of 1.3 M of dimethyl sulfoxide (Me2SO) displayed the highest spermatogonia viability (~60%), while sugar and protein supplementation had no effects. Needle-immersed vitrification also yielded high spermatogonia viability rates (~50%). Both optimal slow-rate freezing and vitrification protocols proved to be reproducible in six tested zebrafish lines after displaying viability rates of >50% in all lines. Both fresh and cryopreserved spermatogonia retained their ability to colonize the recipient gonads after intraperitoneal transplantation of vasa::egfp and actb:yfp spermatogonia into wild-type AB recipient larvae. Colonization rate was significantly higher in dnd-morpholino sterilized recipients than in non-sterilized recipients. Lastly, wild-type recipients produced donor-derived sperm and donor-derived offspring through natural spawning. The method demonstrated in this study can be used for long-term storage of valuable zebrafish genetic resources and for reconstitution of whole zebrafish lines which will greatly improve the current preservation practices.
Collapse
Affiliation(s)
- Zoran Marinović
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Qian Li
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary.
| | - Yoshiko Iwasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Zsolt Csenki
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| |
Collapse
|
21
|
Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology 2019; 140:33-43. [PMID: 31425935 DOI: 10.1016/j.theriogenology.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
We report for the first time, a comparison of two approaches for artificially induced triploidy in zebrafish (Danio rerio) using cold shock and heat shock treatments. Of the two methods, heat shock treatment proved more effective with a triploid production rate of 100% in particular females. Subsequently, triploid zebrafish larvae were used as recipients for intraperitoneal transplantation of ovarian and testicular cells originating from vas:EGFP strain in order to verify their suitability for surrogate reproduction. Production of donor-derived sperm was achieved in 23% of testicular cell recipients and 16% of ovarian cell recipients, indicating the suitability of triploids as surrogate hosts for germ cell transplantation. Success of the transplantation was confirmed by positive GFP signal detected in gonads of dissected fish and stripped sperm. Germline transmission was confirmed by fertilization tests followed by PCR analysis of embryos with GFP specific primers. Reproductive success of germline chimera triploids evaluated as fertilization rate and progeny development was comparable to control groups.
Collapse
Affiliation(s)
- Roman Franěk
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Tomáš Tichopád
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Michaela Fučíková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|