1
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Epidemiology, Transmission Mode, and Pathogenesis of Chlamydia pecorum Infection in Koalas ( Phascolarctos cinereus): An Overview. Animals (Basel) 2024; 14:2686. [PMID: 39335275 PMCID: PMC11440102 DOI: 10.3390/ani14182686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Chlamydial infections pose a significant threat to koala populations. Chlamydia pecorum (C. pecorum) remains the major chlamydial species affecting koala health, both in the wild and in captivity, and chlamydial infections are considered important factors affecting the long-term survival of koalas. A clear understanding of chlamydial infections, including the epidemiology, transmission mode, pathogenesis, immune response, control, and prevention thereof, is essential for improving the management of chlamydial infections in koalas. In this study, we discuss the important advances made in our understanding of C. pecorum infection in koalas, focusing on the epidemiology of chlamydial infections, and the transmission, pathogenesis, immune response, and control strategies for chlamydial infection, with the aim of improving koala health and achieving effective conservation strategies.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Hagenbuch F, Loehrer S, Marti H, Kasimov V, Jelocnik M, Borel N. Investigation of Chlamydia pecorum in livestock from Switzerland reveals a high degree of diversity in bovine strains. Vet Microbiol 2024; 292:110057. [PMID: 38502978 DOI: 10.1016/j.vetmic.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Chlamydia pecorum is a widespread veterinary chlamydial species causing endemic infections in livestock, such as ruminants and pigs, globally. However, there is limited contemporary knowledge on infecting strain diversity in various hosts. This study aimed to evaluate the genetic diversity of C. pecorum strains infecting Swiss livestock through C. pecorum genotyping and phylogenetic analyses in comparison to the global population, while also assessing chlamydial strains for plasmid carriage. A total of 263 C. pecorum positive samples from clinically healthy ruminant and pig herds (Bovines = 216, sheep = 25, pigs = 14) as well as placentae from eight C. pecorum positive ruminant abortion cases from other Swiss herds were investigated. The ompA and Multi-Locus sequence typing revealed novel C. pecorum genotypes, and bovine strains exhibited considerable genetic diversity, contrasting with lower diversity in sheep and pig strains. C. pecorum plasmid was detected in 100.0% of sheep (41/41) and pig (255/255) samples, and in 69.4% of bovine samples (150/216). In contrast, no plasmid was detected in the eight C. pecorum-positive ruminant abortion cases either representing plasmid-less strains or possibly escaping PCR detection due to autolysis of the placenta. This study supports the genetic diversity of C. pecorum strains, particularly in bovines, and identifies novel sequence types in Swiss livestock.
Collapse
Affiliation(s)
- Fabian Hagenbuch
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Samuel Loehrer
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Vasilli Kasimov
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Martina Jelocnik
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
3
|
Chen CJ, Casteriano A, Green AC, Govendir M. A retrospective study on antibacterial treatments for koalas infected with Chlamydia pecorum. Sci Rep 2023; 13:12670. [PMID: 37542093 PMCID: PMC10403558 DOI: 10.1038/s41598-023-39832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Chlamydiosis remains the leading infectious disease and is one of the key factors responsible for the dramatic reduction of koala populations in South-East Queensland (SEQ) and New South Wales (NSW) regions of Australia. Possible infection outcomes include blindness, infertility, painful cystitis, and death if left untreated. Studies have reported the treatment efficacy of chloramphenicol and doxycycline, which are the two most commonly administered treatments in diseased koalas, in clinical settings. However, none have directly compared the treatment efficacy of these antibacterials on koala survival. A retrospective study was essential to identify any relationships between the demographical information, and the animals' responses to the current treatment regimens. Associations were explored between six explanatory (sex; maturity; location; clinical signs, treatment; treatment duration) and two outcome variables (survival; post-treatment PCR). Results showed that female koalas had a statistical trend of lower odds of surviving when compared to males (OR = 0.36, p = 0.05). Koalas treated with chloramphenicol for ≥ 28 days had greater odds of surviving than when treated for < 28 days (OR = 8.8, p = 0.02), and those koalas administered doxycycline had greater odds of testing PCR negative when compared to chloramphenicol treatments (OR = 5.45, p = 0.008). There was no difference between the antibacterial treatments (chloramphenicol, doxycycline, and mixed/other) and the survival of koalas. Female koalas had greater odds of exhibiting UGT signs only (OR = 4.86, p < 0.001), and also greater odds of having both ocular and UGT clinical signs (OR = 5.29, p < 0.001) when compared to males. Of the koalas, 28.5% initially had no clinical signs but were PCR positive for C. pecorum. This study enables further understanding of the complex nature between chlamydial infection and response to antibacterial treatment.
Collapse
Affiliation(s)
- Chien-Jung Chen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia.
| | - Andrea Casteriano
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra Clare Green
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Silver LW, Cheng Y, Quigley BL, Robbins A, Timms P, Hogg CJ, Belov K. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol Ecol 2022; 31:3286-3303. [PMID: 35510793 PMCID: PMC9325493 DOI: 10.1111/mec.16493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome‐wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as “endangered.”
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Provectus Algae Pty Ltd, 5 Bartlett Road, Noosaville, Queensland, 4566, Australia
| | - Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, Queensland, 4510, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
5
|
Denner J. Vaccination against the Koala Retrovirus (KoRV): Problems and Strategies. Animals (Basel) 2021; 11:ani11123555. [PMID: 34944329 PMCID: PMC8697897 DOI: 10.3390/ani11123555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The koala retrovirus (KoRV) is spreading in the koala population from the north to the south of Australia and is also in the process of endogenization into the koala genome. Virus infection is associated with tumorigenesis and immunodeficiency and is contributing to the decline of the animal population. Antibody production is an excellent marker of retrovirus infection; however, animals carrying endogenous KoRV are tolerant. Therefore, the therapeutic immunization of animals carrying endogenous KoRV seems to be ineffective. Using the recombinant transmembrane (TM) envelope protein of the KoRV, we immunized goats, rats and mice, obtaining in all cases neutralizing antibodies which recognize epitopes in the fusion peptide proximal region (FPPR), and in the membrane-proximal external region (MPER). Immunizing several animal species with the corresponding TM envelope protein of the closely related porcine endogenous retrovirus (PERV), as well as the feline leukemia virus (FeLV), we also induced neutralizing antibodies with similar epitopes. Immunizing with the TM envelope protein in addition to the surface envelope proteins of all three viruses resulted in higher titers of neutralizing antibodies. Immunizing KoRV-negative koalas with our vaccine (which is composed of both envelope proteins) may protect these animals from infection, and these may be the starting points of a virus-free population.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Robert von Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
6
|
White RT, Legione AR, Taylor-Brown A, Fernandez CM, Higgins DP, Timms P, Jelocnik M. Completing the Genome Sequence of Chlamydia pecorum Strains MC/MarsBar and DBDeUG: New Insights into This Enigmatic Koala ( Phascolarctos cinereus) Pathogen. Pathogens 2021; 10:1543. [PMID: 34959498 PMCID: PMC8703710 DOI: 10.3390/pathogens10121543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.
Collapse
Affiliation(s)
- Rhys T. White
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Alistair R. Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alyce Taylor-Brown
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Cristina M. Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| |
Collapse
|
7
|
Chlamydia pecorum Ovine Abortion: Associations between Maternal Infection and Perinatal Mortality. Pathogens 2021; 10:pathogens10111367. [PMID: 34832523 PMCID: PMC8618313 DOI: 10.3390/pathogens10111367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifest in a broad array of clinical presentations and in a range of host species. While C. pecorum is a known cause of ovine abortion, clinical cases have only recently been described in detail. Here, the prevalence and sequence types (STs) of C. pecorum in ewes from a property experiencing high levels of perinatal mortality (PNM) in New South Wales (NSW), Australia, were investigated using serological and molecular methods. Ewes that were PNM+ were statistically more likely to test seropositive compared to PNM− ewes and displayed higher antibody titres; however, an increase in chlamydial shedding from either the rectum, vagina or conjunctiva of PNM+ ewes was not observed. Multilocus sequence typing (MLST) indicated that C. pecorum ST23 was the major ST shed by ewes in the flock, was the only ST identified from the vaginal site, and was the same ST detected within aborted foetal tissues. Whole genome sequencing of C. pecorum isolated from one abortion case revealed that the C. pecorum plasmid (pCpec) contained a unique deletion in coding sequence 1 (CDS1) that was also present in C. pecorum ST23 shed from the ewes. A further unique deletion was noted in a polymorphic membrane protein gene (pmpG) of the C. pecorum chromosome, which warrants further investigation given the role of PmpG in host cell adherence and tissue tropism.This study describes novel infection parameters in a sheep flock experiencing C. pecorum-associated perinatal mortality, provides the first genomic data from an abortigenic C. pecorum strain, and raises questions about possible links between unique genetic features of this strain and C. pecorum abortion.
Collapse
|
8
|
Ostfeld N, Islam MM, Jelocnik M, Hilbe M, Sydler T, Hartnack S, Jacobson C, Clune T, Marsh I, Sales N, Polkinghorne A, Borel N. Chlamydia pecorum-Induced Arthritis in Experimentally and Naturally Infected Sheep. Vet Pathol 2020; 58:346-360. [PMID: 33208021 DOI: 10.1177/0300985820973461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chlamydia pecorum is an obligate intracellular pathogen with a wide host range including livestock such as sheep, cattle, goats, and pigs as well as wildlife species such as koalas. Chlamydial polyarthritis is an economically important disease resulting in swollen joints, lameness, stiffness, and weight loss in young sheep. In the present study, tissues from sheep experimentally or naturally infected with Chlamydia pecorum were assessed by histopathology and immunohistochemistry. Carpal, hock, and stifle joints as well as spleen, liver, kidney, lymph nodes, lung, and brain of 35 sheep from different inoculation groups were available. Two different C. pecorum strains (IPA and E58), different routes of administration (intraarticular or intravenous), UVA-irradiated IPA strain, and corresponding noninfected control groups were investigated. Similar investigations on tissues from 5 naturally infected sheep were performed. The most obvious inflammatory lesions were observed in synovial tissues and, notably, in the renal pelvis from the experimentally infected group and naturally infected animals. This resulted in chronic or chronic-active arthritis and pyelitis. Intralesional chlamydial inclusions could be demonstrated by immunohistochemistry in both tissues. Immunohistochemical evaluation of the presence and distribution of macrophages, T and B cells in synovial tissues revealed macrophages as the most prevalent inflammatory cell population. Previous observations indicated that C. pecorum isolates can infect circulating monocytes. Together with the finding of the histological lesions in synovial tissues and internal organs alongside the presence of C. pecorum DNA, these observations suggest chlamydial arthritis in lambs is the result of hematogeneous spread of C. pecorum.
Collapse
Affiliation(s)
| | - Mominul M Islam
- 5333University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Martina Jelocnik
- 5333University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | | | | | | | - Tom Clune
- 5673Murdoch University, Perth, Western Australia, Australia
| | - Ian Marsh
- NSW Department of Primary Industries, 153388Elizabeth Macarthur Agricultural Institut, Menangle, New South Wales, Australia
| | - Narelle Sales
- NSW Department of Primary Industries, 153388Elizabeth Macarthur Agricultural Institut, Menangle, New South Wales, Australia
| | - Adam Polkinghorne
- 6488Nepean Hospital, NSW Health Pathology, Penrith, New South Wales, Australia.,University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
9
|
Pagliarani S, Johnston SD, Beagley KW, Dief H, Palmieri C. The occurrence and pathology of chlamydiosis in the male reproductive tract of non-human mammals: A review. Theriogenology 2020; 154:152-160. [PMID: 32622195 DOI: 10.1016/j.theriogenology.2020.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Organisms belonging to the Family Chlamydiaceae are responsible for a broad range of diseases in humans, livestock, companion animals and non-domestic species. Infection of the reproductive organs can cause a range of syndromes of which sub- and infertility are the most frequently observed clinical manifestations. While the gross and histological lesions associated with the isolation of Chlamydiaceae from the non-human female reproductive tract are well documented, little attention has been given to the pathological effects of this infection in the male genital system. As such, the occurrence and importance of Chlamydia-associated disease in male non-human mammalian species is less well documented. In order to improve our understanding of the significance of chlamydiosis in domestic, laboratory and wild animals, this review provides an up-to-date summary of Chlamydia-associated male reproductive pathology, whether that infection occurs naturally or experimentally. Although most lesions in males are described as incidental and of minor significance, results of recent studies suggest that infection with Chlamydiaceae can adversely impact male fertility and/or be instrumental in disease transmission. Although in humans, bulls and mice Chlamydia infection has been associated with morphological and functional abnormalities of the spermatozoa, this review will focus on the gross and histological findings linked to the colonisation of the genital system by this pathogen. Advances in our understanding of male reproductive chlamydiosis are necessary for diagnostic and therapeutic strategies, as well as epidemiological and conservation studies.
Collapse
Affiliation(s)
- Sara Pagliarani
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia; School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia.
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4001, Australia
| | - Hamdy Dief
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
10
|
Robbins A, Hanger J, Jelocnik M, Quigley BL, Timms P. Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes. Sci Rep 2020; 10:15013. [PMID: 32929174 PMCID: PMC7490398 DOI: 10.1038/s41598-020-72050-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.
Collapse
Affiliation(s)
- Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
11
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
12
|
Fabijan J, Sarker N, Speight N, Owen H, Meers J, Simmons G, Seddon J, Emes RD, Tarlinton R, Hemmatzadeh F, Woolford L, Trott DJ. Pathological Findings in Koala Retrovirus-positive Koalas (Phascolarctos cinereus) from Northern and Southern Australia. J Comp Pathol 2020; 176:50-66. [PMID: 32359636 DOI: 10.1016/j.jcpa.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Koala retrovirus (KoRV) infection shows differences in prevalence and load between northern and southern Australian koala populations; however, the effect of this on diseases such as lymphoma and chlamydial disease is unclear. This study compared clinicopathological findings, haematology and splenic lymphoid area of KoRV-positive koalas from northern (Queensland [Qld], n = 67) and southern (South Australia [SA], n = 92) populations in order to provide further insight into KoRV pathogenesis. Blood was collected for routine haematology and for measurement of KoRV proviral load by quantitative polymerase chain reaction (qPCR). Plasma samples were assessed for KoRV viral load by reverse transcriptase qPCR and conjunctival and cloacal swabs were collected for measurement of the load of Chlamydia pecorum (qPCR). During necropsy examination, spleen was collected for lymphoid area analysis. Lymphoma was morphologically similar between the populations and occurred in koalas with the highest KoRV proviral and viral loads. Severe ocular chlamydial disease was observed in both populations, but urinary tract disease was more severe in Qld, despite similar C. pecorum loads. No associations between KoRV and chlamydial disease severity or load were observed, except in SA where viral load correlated positively with chlamydial disease severity. In both populations, proviral and viral loads correlated positively with lymphocyte and metarubricyte counts and correlated negatively with erythrocyte and neutrophil counts. Splenic lymphoid area was correlated positively with viral load. This study has shown further evidence for KoRV-induced oncogenesis and highlighted that lymphocytes and splenic lymphoid tissue may be key sites for KoRV replication. However, KoRV infection appears to be highly complex and continued investigation is required to fully understand its pathogenesis.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - N Sarker
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - H Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Meers
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - G Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Seddon
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - R Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
13
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
14
|
Longitudinal study of wild koalas (Phascolarctos cinereus) reveals chlamydial disease progression in two thirds of infected animals. Sci Rep 2019; 9:13194. [PMID: 31519969 PMCID: PMC6744427 DOI: 10.1038/s41598-019-49382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Chlamydial disease threatens many of Australia’s koala populations, and yet our understanding of chlamydial epidemiology and disease dynamics in koalas is limited by a lack of comprehensive, longitudinal population studies. To address this, we utilised longitudinal samples from a large-scale population study of wild koalas in south-east Queensland, to follow chlamydial infections over time and to investigate some of the drivers of disease progression. Our findings show, firstly, that almost two thirds of chlamydial infections progressed to disease, challenging the notion that chlamydial infections in koalas commonly remain chronic and asymptomatic. Secondly, disease progression at the urogenital tract site was associated with infection load, and urogenital tract shedding was significantly higher when koalas acquired a new infection. Thirdly, chronic chlamydial exposure was not necessary for pathogenic sequelae to develop, such as infertility and mortality. Fourthly, ompA-characterised strain sub-types may reflect tissue tropisms and pathogenicity, and the chlamydial status of some chronically infected koalas may be explained by reinfections with novel genotypes. Finally, successful antimicrobial treatment provided only short-term protection against reinfection and disease progression in susceptible koalas. These findings highlight the importance of identifying and preventing chlamydial infections in koalas, informing new population management strategies and research priorities.
Collapse
|
15
|
Phillips S, Quigley BL, Aziz A, Bergen W, Booth R, Pyne M, Timms P. Antibiotic treatment of Chlamydia-induced cystitis in the koala is linked to expression of key inflammatory genes in reactive oxygen pathways. PLoS One 2019; 14:e0221109. [PMID: 31415633 PMCID: PMC6695219 DOI: 10.1371/journal.pone.0221109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Chlamydial-induced cystitis in the koala (Phascolarctos cinereus) is currently treated by antibiotics. However, while reducing the chlamydial load, this treatment can also lead to gastrointestinal complications and death. Development of alternative treatments, such as a therapeutic chlamydial vaccine, are hindered by the lack of detailed understanding of the innate immune response to chlamydial clearance and disease regression during antibiotic treatment. Through clinical, microbiological and transcriptomic approaches, disease regression, bacterial clearance and innate immune responses were mapped in koalas with signs of chlamydial-induced cystitis while receiving anti-chlamydial antibiotics. Significant reduction in the signs of cystitis were observed during and post antibiotic treatment. This was observed as a thinning of the bladder wall and complete reversal of urinary incontinence. Transcriptomic analysis before treatment, at the end of treatment and prior to release identified significant down-regulation of specific genes involved in 21 biological pathways. Of these, the chemokine receptor signalling and NOD-like receptor signalling pathways where identified as important markers of inflammation. Specific genes within these pathways (NCF1 and NOX2) were significantly down-regulated, suggesting a decrease in reactive oxygen species production. Through the monitoring of specific clinical and transcriptomic markers, these findings allow detailed profiling of the clinical response to therapeutic vaccination in koalas with current signs of disease. This also adds to our understanding of innate immune responses to chlamydial infections and indicates that chlamydial-induced cystitis in the koala is linked to the regulation of reactive oxygen pathways.
Collapse
Affiliation(s)
- Samuel Phillips
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
- * E-mail:
| | - Bonnie L. Quigley
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ammar Aziz
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Wendy Bergen
- Australia Zoo Wildlife Hospital, Steve Irwin Way, Queensland, Australia
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Steve Irwin Way, Queensland, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, Currumbin, Queensland, Australia
| | - Peter Timms
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
16
|
Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019; 7:microorganisms7050146. [PMID: 31137741 PMCID: PMC6560403 DOI: 10.3390/microorganisms7050146] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms.
Collapse
|
17
|
Cristescu RH, Miller RL, Schultz AJ, Hulse L, Jaccoud D, Johnston S, Hanger J, Booth R, Frère CH. Developing noninvasive methodologies to assess koala population health through detecting Chlamydia from scats. Mol Ecol Resour 2019; 19:957-969. [PMID: 30681773 DOI: 10.1111/1755-0998.12999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
Wildlife diseases are a recognized driver of global biodiversity loss, have substantial economic impacts, and are increasingly becoming a threat to human health. Disease surveillance is critical but remains difficult in the wild due to the substantial costs and potential biases associated with most disease detection methods. Noninvasive scat surveys have been proposed as a health monitoring methodology to overcome some of these limitations. Here, we use the known threat of Chlamydia disease to the iconic, yet vulnerable, koala Phascolarctos cinereus to compare three methods for Chlamydia detection in scats: multiplex quantitative PCR, next generation sequencing, and a detection dog specifically trained on scats from Chlamydia-infected koalas. All three methods demonstrated 100% specificity, while sensitivity was variable. Of particular interest is the variable sensitivity of these diagnostic tests to detect sick individuals (i.e., not only infection as confirmed by Chlamydia-positive swabs, but with observable clinical signs of the disease); for koalas with urogenital tract disease signs, sensitivity was 78% with quantitative PCR, 50% with next generation genotyping and 100% with the detection dog method. This may be due to molecular methods having to rely on high-quality DNA whereas the dog most likely detects volatile organic compounds. The most appropriate diagnostic test will vary with disease prevalence and the specific aims of disease surveillance. Acknowledging that detection dogs might not be easily accessible to all, the future development of affordable and portable "artificial noses" to detect diseases from scats in the field might enable cost-effective, rapid and large-scale disease surveillance.
Collapse
Affiliation(s)
- Romane H Cristescu
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Russell L Miller
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anthony J Schultz
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Lyndal Hulse
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Damian Jaccoud
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Stephen Johnston
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - Rosie Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Céline H Frère
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
18
|
In vitro analysis of genetically distinct Chlamydia pecorum isolates reveals key growth differences in mammalian epithelial and immune cells. Vet Microbiol 2019; 232:22-29. [PMID: 31030841 DOI: 10.1016/j.vetmic.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
Abstract
Chlamydia (C.) pecorum is an obligate intracellular bacterium that infects and causes disease in a broad range of animal hosts. Molecular studies have revealed that this pathogen is genetically diverse with certain isolates linked to different disease outcomes. Limited in vitro or in vivo data exist to support these observations, further hampering efforts to improve our understanding of C. pecorum pathogenesis. In this study, we evaluated whether genetically distinct C. pecorum isolates (IPA, E58, 1710S, W73, JP-1-751) display different in vitro growth phenotypes in different mammalian epithelial and immune cells. In McCoy cells, shorter lag phases were observed for W73 and JP-1-751 isolates. Significantly smaller inclusions were observed for the naturally plasmid-free E58 isolate. C. pecorum isolates of bovine (E58) and ovine origin (IPA, W73, JP-1-751) grew faster in bovine cells compared to a porcine isolate (1710S). C. pecorum isolates could infect but appear not able to complete their developmental cycle in bovine peripheral neutrophil granulocytes. All isolates, except 1710S, could multiply in bovine monocyte-derived macrophages. These results reveal potentially important phenotypic differences that will help to understand the pathogenesis of C. pecorum in vivo and to identify C. pecorum virulence factors.
Collapse
|