1
|
Crawford AJ, Gomez-Cruz C, Russo GC, Huang W, Bhorkar I, Roy T, Muñoz-Barrutia A, Wirtz D, Garcia-Gonzalez D. Tumor proliferation and invasion are intrinsically coupled and unraveled through tunable spheroid and physics-based models. Acta Biomater 2024; 175:170-185. [PMID: 38160858 DOI: 10.1016/j.actbio.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Proliferation and invasion are two key drivers of tumor growth that are traditionally considered independent multicellular processes. However, these processes are intrinsically coupled through a maximum carrying capacity, i.e., the maximum spatial cell concentration supported by the tumor volume, total cell count, nutrient access, and mechanical properties of the tissue stroma. We explored this coupling of proliferation and invasion through in vitro and in silico methods where we modulated the mechanical properties of the tumor and the surrounding extracellular matrix. E-cadherin expression and stromal collagen concentration were manipulated in a tunable breast cancer spheroid to determine the overall impacts of these tumor variables on net tumor proliferation and continuum invasion. We integrated these results into a mixed-constitutive formulation to computationally delineate the influences of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix on net proliferation and continuum invasion. This framework integrates biological in vitro data into concise computational models of invasion and proliferation to provide more detailed physical insights into the coupling of these key tumor processes and tumor growth. STATEMENT OF SIGNIFICANCE: Tumor growth involves expansion into the collagen-rich stroma through intrinsic coupling of proliferation and invasion within the tumor continuum. These processes are regulated by a maximum carrying capacity that is determined by the total cell count, tumor volume, nutrient access, and mechanical properties of the surrounding stroma. The influences of biomechanical parameters (i.e., stiffness, cell elongation, net proliferation rate and cell-ECM friction) on tumor proliferation or invasion cannot be unraveled using experimental methods alone. By pairing a tunable spheroid system with computational modeling, we delineated the interdependencies of each system parameter on tumor proliferation and continuum invasion, and established a concise computational framework for studying tumor mechanobiology.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Clara Gomez-Cruz
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain
| | - Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Wilson Huang
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Isha Bhorkar
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Triya Roy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Arrate Muñoz-Barrutia
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Area de Ingenieria Biomedica, Instituto de Investigacion Sanitaria Gregorio Maranon, Calle del Doctor Esquerdo 46, Madrid' ES 28007, Spain
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21215, USA.
| | - Daniel Garcia-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain.
| |
Collapse
|
2
|
Zhong G, Kroo L, Prakash M. Thermotaxis in an apolar, non-neuronal animal. J R Soc Interface 2023; 20:20230279. [PMID: 37700707 PMCID: PMC10498350 DOI: 10.1098/rsif.2023.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Neuronal circuits are hallmarks of complex decision-making processes in the animal world. How animals without neurons process information and respond to environmental cues promises a new window into studying precursors of neuronal control and origin of the nervous system as we know it today. Robust decision making in animals, such as in chemotaxis or thermotaxis, often requires internal symmetry breaking (such as anterior-posterior (AP) axis) provided naturally by a given body plan of an animal. Here we report the discovery of robust thermotaxis behaviour in Trichoplax adhaerens, an early-divergent, enigmatic animal with no anterior-posterior symmetry breaking (apolar) and no known neurons or muscles. We present a quantitative and robust behavioural response assay in Placozoa, which presents an apolar flat geometry. By exposing T. adhaerens to a thermal gradient under a long-term imaging set-up, we observe robust thermotaxis that occurs over timescale of hours, independent of any circadian rhythms. We quantify that T. adhaerens can detect thermal gradients of at least 0.1°C cm-1. Positive thermotaxis is observed for a range of baseline temperatures from 17°C to 22.5°C, and distributions of momentary speeds for both thermotaxis and control conditions are well described by single exponential fits. Interestingly, the organism does not maintain a fixed orientation while performing thermotaxis. Using natural diversity in size of adult organisms (100 µm to a few millimetres), we find no apparent size-dependence in thermotaxis behaviour across an order of magnitude of organism size. Several transient receptor potential (TRP) family homologues have been previously reported to be conserved in metazoans, including in T. adhaerens. We discover naringenin, a known TRPM3 antagonist, inhibits thermotaxis in T. adhaerens. The discovery of robust thermotaxis in T. adhaerens provides a tractable handle to interrogate information processing in a brainless animal. Understanding how divergent marine animals process thermal cues is also critical due to rapid temperature rise in our oceans.
Collapse
Affiliation(s)
- Grace Zhong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Laurel Kroo
- Department of Mechanical engineering, Stanford University, Stanford, CA 94305, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Khataee H, Czirok A, Neufeld Z. Contact inhibition of locomotion generates collective cell migration without chemoattractants in an open domain. Phys Rev E 2021; 104:014405. [PMID: 34412289 DOI: 10.1103/physreve.104.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target locations, give rise to the formation of a variety of tissues and organs. The directional migration of the neural crest cells is experimentally described using a process referred to as contact inhibition of locomotion, by which cells redirect their movement upon the cell-cell contacts. However, it is unclear how the migration alignment is affected by the motility properties of the cells. Here, we theoretically model the migration alignment as a function of the motility dynamics and interaction of the cells in an open domain with a channel geometry. The results indicate that by increasing the influx rate of the cells into the domain a transition takes place from random movement to an organized collective migration, where the migration alignment is maximized and the migration time is minimized. This phase transition demonstrates that the cells can migrate efficiently over long distances without any external chemoattractant information about the direction of migration just based on local interactions with each other. The analysis of the dependence of this transition on the characteristic properties of cellular motility shows that the cell density determines the coordination of collective migration whether the migration domain is open or closed. In the open domain, this density is determined by a feedback mechanism between the flux and order parameter, which characterises the alignment of collective migration. The model also demonstrates that the coattraction mechanism proposed earlier is not necessary for collective migration and a constant flux of cells moving into the channel is sufficient to produce directed movement over arbitrary long distances.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Yeoman B, Shatkin G, Beri P, Banisadr A, Katira P, Engler AJ. Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Rep 2021; 34:108816. [PMID: 33691109 PMCID: PMC7997775 DOI: 10.1016/j.celrep.2021.108816] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 11/05/2022] Open
Abstract
Significant changes in cell stiffness, contractility, and adhesion, i.e., mechanotype, are observed during a variety of biological processes. Whether cell mechanics merely change as a side effect of or driver for biological processes is still unclear. Here, we sort genotypically similar metastatic cancer cells into strongly adherent (SA) versus weakly adherent (WA) phenotypes to study how contractility and adhesion differences alter the ability of cells to sense and respond to gradients in material stiffness. We observe that SA cells migrate up a stiffness gradient, or durotax, while WA cells largely ignore the gradient, i.e., adurotax. Biophysical modeling and experimental validation suggest that differences in cell migration and durotaxis between weakly and strongly adherent cells are driven by differences in intra-cellular actomyosin activity. These results provide a direct relationship between cell phenotype and durotaxis and suggest how, unlike other senescent cells, metastatic cancer cells navigate against stiffness gradients.
Collapse
Affiliation(s)
- Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA; Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Shatkin G, Yeoman B, Birmingham K, Katira P, Engler AJ. Computational models of migration modes improve our understanding of metastasis. APL Bioeng 2020; 4:041505. [PMID: 33195959 PMCID: PMC7647620 DOI: 10.1063/5.0023748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Tumor cells migrate through changing microenvironments of diseased and healthy tissue, making their migration particularly challenging to describe. To better understand this process, computational models have been developed for both the ameboid and mesenchymal modes of cell migration. Here, we review various approaches that have been used to account for the physical environment's effect on cell migration in computational models, with a focus on their application to understanding cancer metastasis and the related phenomenon of durotaxis. We then discuss how mesenchymal migration models typically simulate complex cell–extracellular matrix (ECM) interactions, while ameboid migration models use a cell-focused approach that largely ignores ECM when not acting as a physical barrier. This approach greatly simplifies or ignores the mechanosensing ability of ameboid migrating cells and should be reevaluated in future models. We conclude by describing future model elements that have not been included to date but would enhance model accuracy.
Collapse
Affiliation(s)
- Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Katherine Birmingham
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
6
|
Movilla N, Valero C, Borau C, García-Aznar JM. Matrix degradation regulates osteoblast protrusion dynamics and individual migration. Integr Biol (Camb) 2020; 11:404-413. [PMID: 31922533 DOI: 10.1093/intbio/zyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023]
Abstract
Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.
Collapse
Affiliation(s)
- Nieves Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Clara Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
To lead or to herd: optimal strategies for 3D collective migration of cell clusters. Biomech Model Mechanobiol 2020; 19:1551-1564. [PMID: 31997028 DOI: 10.1007/s10237-020-01290-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Cells migrating in clusters play a significant role in a number of biological processes such as embryogenesis, wound healing, and tumor metastasis during cancer progression. A variety of environmental and biochemical factors can influence the collective migration of cells with differing degrees of cell autonomy and inter-cellular coupling strength. For example, weakly coupled cells can move collectively under the influence of contact guidance from neighboring cells or the environment. Alternatively strongly coupled cells might follow one or more leader cells to move as a single cohesive unit. Additionally, chemical and mechanical signaling between these cells may alter the degree of coupling and determine effective cluster sizes. Being able to understand this collective cell migration process is critical in the prediction and manipulation of outcomes of key biological processes. Here we focus on understanding how various environmental and cellular factors influence small clusters of cells migrating collectively within a 3D fibrous matrix. We combine existing knowledge of single-cell migration in 2D and 3D environments, prior experimental observations of cell-cell interactions and collective migration, and a newly developed stochastic model of cell migration in 3D matrices, to simulate the migration of cell clusters in different physiologically relevant environments. Our results show that based on the extracellular environment and the strength of cell-cell mechanical coupling, two distinct optimal approaches to driving collective cell migration emerge. The ability to effectively employ these two distinct migration strategies might be critical for cells to collectively migrate through the heterogeneous tissue environments within the body.
Collapse
|
8
|
Correction: A stochastic algorithm for accurately predicting path persistence of cells migrating in 3D matrix environments. PLoS One 2019; 14:e0212253. [PMID: 30730986 PMCID: PMC6366890 DOI: 10.1371/journal.pone.0212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|