1
|
Hu J, Hu Y, Zhang X, Zhang J, Zhou Y, Wang X, Wu W, Chen J, Han Y. Tenacissoside G reverses paclitaxel resistance by inhibiting Src/PTN/P-gp signaling axis activation in ovarian cancer cells. J Nat Med 2025:10.1007/s11418-025-01879-6. [PMID: 40195205 DOI: 10.1007/s11418-025-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/17/2025] [Indexed: 04/09/2025]
Abstract
Ovarian cancer (OC) is the most common malignant gynecologic tumor, with the highest mortality rate among female reproductive system cancers. Resistance to chemotherapy drugs, which often develops after long-term use, is a major cause of treatment failure. In recent years, traditional Chinese medicine has been widely used in the treatment of tumor for their advantages in improving the efficacy of chemotherapy and alleviating the toxic side effects. Tenacissoside G (Tsd-G), as one of the main active ingredients of Marsdenia tenacissima, exhibits anti-tumor effects. However, its impact on ovarian cancer is not well understood. To assess the role and mechanism of Tsd-G in reversing paclitaxel (PTX) resistance, the reversal fold of Tsd-G in combination with PTX on OC PTX-resistant (A2780/T) cells was determined using CCK-8 assay. The apoptosis level and migration ability of A2780/T cells after 24 h treatment with Tsd-G and PTX were assessed by Hoechst 33,342, flow cytometry, and wound healing assay. Western Blot and Src overexpression plasmid were used to explore the relationship between Src and PTX resistance. The relationship between Src expression and human OC was analyzed by gene expression database. The effect of Tsd-G on P-gp activity was detected by flow cytometry. Western blot and RT-PCR experiments were performed to detect the differences in mRNA and protein expression of Src/PTN/P-gp signaling axis to validate the mechanism of Tsd-G in reversing the resistance to PTX in ovarian cancer. The results showed that Tsd-G reverses PTX resistance in ovarian cancer cells by regulating cell proliferation, cell cycle, inducing apoptosis, and inhibiting migration. The mechanism might associate with the inhibition of Src expression and phosphorylation activation, which in turn inhibits the expression and activity of downstream PTN and P-gp. This study provides a new idea for the treatment of PTX-resistant OC patients and provides theoretical support for revealing the anti-ovarian cancer active ingredients in Marsdenia tenacissima.
Collapse
Affiliation(s)
- Jiudong Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yujie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Xiangqi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Jingxian Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yangyun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Xiaohe Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yonglong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
2
|
Angarola BL, Sharma S, Katiyar N, Kang HG, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukόw O. Comprehensive single-cell aging atlas of healthy mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. NATURE AGING 2025; 5:122-143. [PMID: 39587369 PMCID: PMC11754115 DOI: 10.1038/s43587-024-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. In this study, we investigated how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single-cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory and cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveals co-localization of aged immune and epithelial cells in situ. Lastly, we found transcriptional signatures of aging mammary cells in human breast tumors, suggesting possible links between aging and cancer. Together, these data uncover that epithelial, immune and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| | - Olga Anczukόw
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Lin W, Tang L, Zhuo C, Mao X, Shen J, Huang S, Li S, Qin Y, Liao J, Chen Y, Zhang X, Li Y, Song J, Meng L, Dong X, Li Y. scRNA-Seq Analysis Revealed CAFs Regulating HCC Cells via PTN Signaling. J Hepatocell Carcinoma 2024; 11:2269-2281. [PMID: 39582814 PMCID: PMC11583788 DOI: 10.2147/jhc.s493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the microenvironment of hepatocellular carcinoma (HCC). However, the mechanisms through which CAFs influence the progression of HCC remain incompletely understood. Methods Single-cell RNA sequencing datasets (GSE158723 and GSE112271) were retrieved from the Gene Expression Omnibus (GEO) database at the National Center for Biotechnology Information (NCBI) and analyzed using R software. Our analysis suggested that CAFs may promote liver cancer cell development, possibly through the interaction of pleiotrophin (PTN) and syndecan-2 (SDC2). Clinical samples from HCC patients were collected and processed into frozen sections and single-cell suspensions for Masson staining, immunofluorescence staining, and flow cytometry. Additionally, Huh7 liver cancer cells and LO2 normal liver cells were cultured and subjected to immunofluorescence assays using cell slides. Results The proportion of CAFs in cancerous tissues was higher than in adjacent non-cancerous tissues, and pleiotrophin (PTN) expression was elevated in cancer tissues compared to adjacent tissues. These findings aligned with the results of the single-cell RNA sequencing (scRNA-seq) analysis. Furthermore, SDC2 expression was significantly upregulated in Huh7 liver cancer cells compared to LO2 normal liver cells. Discussion This study suggests that CAFs may contribute to HCC progression via the PTN/SDC2 signaling pathway. Our findings provide deeper insights into the interactions between CAFs and HCC cells within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Wenxian Lin
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Lizhu Tang
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, The People’s Republic of China
| | - Chenyi Zhuo
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Xiuli Mao
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Jiajia Shen
- Department of Laboratory Medicine, Nanning Maternity and Child Health Hospital & Nanning Women and Children’s Hospital, Nanning, 530011, The People’s Republic of China
| | - Shaoang Huang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Shangyang Li
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yujuan Qin
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Ju Liao
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Yuhong Chen
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, The People’s Republic of China
| | - Xiamin Zhang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yuting Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, The People’s Republic of China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Lingzhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yueyong Li
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| |
Collapse
|
4
|
Miao M, Song Y, Jin M, Du Y, Xin P, Jiang Y, Zhang H. Single-cell RNA combined with bulk RNA analysis to explore oxidative stress and energy metabolism factors and found a new prostate cancer oncogene MXRA8. Aging (Albany NY) 2024; 16:4469-4502. [PMID: 38441550 PMCID: PMC10968713 DOI: 10.18632/aging.205599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Prostate cancer is the most common malignancy among men worldwide, and its diagnosis and treatment are challenging due to its heterogeneity. METHODS Integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we identified two molecular subtypes of prostate cancer based on dysregulated genes involved in oxidative stress and energy metabolism. We constructed a risk score model (OMR) using common differentially expressed genes, which effectively evaluated prostate cancer prognosis. RESULTS Our analysis demonstrated a significant correlation between the risk score model and various factors, including tumor immune microenvironment, genomic variations, chemotherapy resistance, and immune response. Notably, patients with low-risk scores exhibited increased sensitivity to chemotherapy and immunotherapy compared to those with high-risk scores, indicating the model's potential to predict patient response to treatment. Additionally, our investigation of MXRA8 in prostate cancer showed significant upregulation of this gene in the disease as confirmed by PCR and immunohistochemistry. Functional assays including CCK-8, transwell, plate cloning, and ROS generation assay demonstrated that depletion of MXRA8 reduced the proliferative, invasive, migratory capabilities of PC-3 cells, as well as their ROS generation capacity. CONCLUSIONS Our study highlights the potential of oxidative stress and energy metabolism-related genes as prognostic markers and therapeutic targets in prostate cancer. The integration of scRNA-seq and bulk RNA-seq data enables a better understanding of prostate cancer heterogeneity and promotes personalized treatment development. Additionally, we identified a novel oncogene MXRA8 in prostate cancer.
Collapse
Affiliation(s)
- Miao Miao
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Song
- Operating Room, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mingyue Jin
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Yang Du
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Ikhlas M, Ferianto D, Syamsu SA, Ganda IJ, Smaradania N, Sampepajung E, Anggita CA, Faruk M. Pleiotrophin serum level and metastasis occurrence in breast cancer patients. Breast Dis 2024; 43:93-98. [PMID: 38701136 PMCID: PMC11091641 DOI: 10.3233/bd-249003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Breast cancer (BC) cases in Makassar, Indonesia, are on the rise, with 2723 cases recorded in 2018. Tumor cells in the blood indicate metastasis, emphasizing the need for early diagnosis and monitoring. Pleiotrophin (PTN) is associated with various human malignancies, and recent studies suggest a correlation between PTN expression and advanced BC stages; therefore, PTN could serve as an independent predictor of metastasis. This study aimed to determine the correlation between serum PTN level, histopathological grading, and metastasis occurrence in BC patients in Makassar, Indonesia. METHODS This study used an observational cross-sectional design. Pleiotrophin serum levels were examined using enzyme-linked immunosorbent assays. This study used a t-test and ROC curve analysis for the statistical tests. RESULTS Of the 64 samples used in this study, metastasis was present in 26 cases and absent in 38 samples. The mean PTN serum levels in metastatic and non-metastatic breast cancer patients were 4.311 and 1.253, respectively. The PTN receiver operating characteristic curve showed an area under the curve of 2.47 ng/dL, which was statistically significant (p < 0.001). A significant relationship was found between PTN level and metastasis (p < 0.001). The correlation coefficient was 0.791, indicating a positive correlation. CONCLUSION This study revealed that the serum PTN level among breast cancer patients had a cut-off value of 2.47 ng/dL. The research established a clear correlation between PTN level and metastasis occurrence in breast cancer patients, indicating a higher likelihood of distant metastasis with elevated PTN concentration.
Collapse
Affiliation(s)
- Muhamad Ikhlas
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Faculty of Medicine, Universitas Alkhairaat, Palu, Indonesia
| | - Djonny Ferianto
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Salman Ardi Syamsu
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Idham Jaya Ganda
- Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Nilam Smaradania
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Elridho Sampepajung
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
6
|
Angarola BL, Sharma S, Katiyar N, Gu Kang H, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukow O. Comprehensive single cell aging atlas of mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563147. [PMID: 37961129 PMCID: PMC10634680 DOI: 10.1101/2023.10.20.563147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| |
Collapse
|
7
|
van den Berg MF, Kooistra HS, Grinwis GCM, Nicoli S, Golinelli S, Stammeleer L, van Wolferen ME, Timmermans-Sprang EPM, Zandvliet MMJM, van Steenbeek FG, Galac S. Whole transcriptome analysis of canine pheochromocytoma and paraganglioma. Front Vet Sci 2023; 10:1155804. [PMID: 37691636 PMCID: PMC10484483 DOI: 10.3389/fvets.2023.1155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising from the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia, respectively. Local invasion, concurrent disorders, and metastases prevent surgical removal, which is the most effective treatment to date. Given the current lack of effective medical treatment, there is a need for novel therapeutic strategies. To identify druggable pathways driving PPGL development, we performed RNA sequencing on PPGLs (n = 19) and normal adrenal medullas (NAMs; n = 10) of dogs. Principal component analysis (PCA) revealed that PPGLs clearly clustered apart from NAMs. In total, 4,218 genes were differentially expressed between PPGLs and NAMs. Of these, 232 had a log2 fold change of >3 or < -3, of which 149 were upregulated in PPGLs, and 83 were downregulated. Compared with NAMs, PPGLs had increased expression of genes related to the cell cycle, tumor development, progression and metastasis, hypoxia and angiogenesis, and the Wnt signaling pathway, and decreased expression of genes related to adrenal steroidogenesis. Our data revealed several overexpressed genes that could provide targets for novel therapeutics, such as Ret Proto-Oncogene (RET), Dopamine Receptor D2 (DRD2), and Secreted Frizzled Related Protein 2 (SFRP2). Based on the PCA, PPGLs were classified into 2 groups, of which group 1 had significantly higher Ki67 scores (p = 0.035) and shorter survival times (p = 0.04) than group 2. Increased expression of 1 of the differentially expressed genes between group 1 and 2, pleiotrophin (PTN), appeared to correlate with a more aggressive tumor phenotype. This study has shed light on the transcriptomic profile of canine PPGL, yielding new insights into the pathogenesis of these tumors in dogs, and revealed potential novel targets for therapy. In addition, we identified 2 transcriptionally distinct groups of PPGLs that had significantly different survival times.
Collapse
Affiliation(s)
- Marit F. van den Berg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Stefania Golinelli
- Department of Veterinary Medical Science, Faculty of Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Monique E. van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Maurice M. J. M. Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Ballesteros-Pla C, Sánchez-Alonso MG, Pizarro-Delgado J, Zuccaro A, Sevillano J, Ramos-Álvarez MP. Pleiotrophin and metabolic disorders: insights into its role in metabolism. Front Endocrinol (Lausanne) 2023; 14:1225150. [PMID: 37484951 PMCID: PMC10360176 DOI: 10.3389/fendo.2023.1225150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic β cells, as well as cells during the mammary gland development. Moreover, this cytokine is important for the structural integrity of the liver and the neuromuscular junction in the skeletal muscle. From a metabolic point of view, pleiotrophin plays a key role in the maintenance of glucose and lipid as well as whole-body insulin homeostasis and favors oxidative metabolism in the skeletal muscle. All in all, this review proposes pleiotrophin as a druggable target to prevent from the development of insulin-resistance-related pathologies.
Collapse
|
9
|
Mthethwa PG, Marais LC, Ramsuran V, Aldous CM. A Systematic Review of the Heterogenous Gene Expression Patterns Associated with Multidrug Chemoresistance in Conventional Osteosarcoma. Genes (Basel) 2023; 14:genes14040832. [PMID: 37107591 PMCID: PMC10137822 DOI: 10.3390/genes14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug chemoresistance (MDR) remains the most significant obstacle to improving survival in osteosarcoma patients. Heterogeneous genetic alterations characterise the tumour microenvironment, and host molecular markers have been associated with MDR. This systematic review examines the genetic alterations of molecular biomarkers associated with multidrug chemotherapy resistance in genome-wide analysis of central high-grade conventional osteosarcoma (COS). We systematically searched MEDLINE, EMBASE, Web of Science, Wiley online library and Scopus. Only human studies involving genome-wide analysis were included, while candidate gene, in vitro and animal studies were excluded. The risk of bias of the studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. The systematic search identified 1355 records. Following the screening, six studies were included in the qualitative analysis. There were 473 differentially expressed genes (DEGs) associated with chemotherapy response in COS. Fifty-seven of those were associated with MDR in osteosarcoma. The heterogeneous gene expressions were related to the mechanism of MDR in osteosarcoma. The mechanisms include drug-related sensitivity genes, bone remodelling and signal transduction. Complex, variable and heterogenous gene expression patterns underpin MDR in osteosarcoma. Further research is needed to identify the most relevant alterations for prognostication and to guide the development of possible therapeutic targets.
Collapse
Affiliation(s)
- Phakamani Goodman Mthethwa
- Department of Orthopaedic Surgery, Dr. Pixley Ka Isaka Seme Memorial Hospital, University of KwaZulu-Natal, 310 Bhejane Street, KwaMashu, Durban 4360, South Africa
- Correspondence: ; Tel.: +27-031-020-0366
| | - Leonard Charles Marais
- Department of Orthopaedic Surgery, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation Platform (KRISP), University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Collen Michelle Aldous
- Department of Clinical Medicine, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| |
Collapse
|
10
|
Understanding of molecular basis of histological graded horn cancer by transcriptome profiling. Gene 2023; 857:147196. [PMID: 36641075 DOI: 10.1016/j.gene.2023.147196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Horn cancer is most devastating and prominent cancer in Indian zebu cattle that affects socio-economic condition of small-scale farmers who depends on their cattle for farm work. Development in the field for genomics through next generation sequencing and bioinformatics advancement have helped to identify genes which have a role in horn cancer development. Histopathological examination of cancerous tissues of horn revealed myxomatous changes, well, moderate and poorly differentiated squamous cell carcinoma. Differential gene expression analysis showed 40, 11, 66 and 29 upregulated genes and 10, 14, 08 and 07 down-regulated genes in myxomatous, well, moderate and poorly differentiated squamous cell carcinoma as compared to normal. Significant differentially expressed genes are related to cell development, cell proliferation, cell-cell communication, cell signaling and angiogenesis which are linked to Akt pathway, mTOR pathway and Wnt pathway. Activity of these genes and related pathways have already been established about their role in development of cancer. Among the candidate genes; keratin family, keratin family related gene, chemokine signaling and cytokines signaling associated genes could be a prominent target for the development of stage specific prognosis marker after further detailed study at large sample population level. CSTA, PTN, SPP1 genes have upregulation in all stages of cancer and they have enrolled as biomarkers for horn cancer.
Collapse
|
11
|
Luteolin attenuates the chemoresistance of osteosarcoma through inhibiting the PTN/β-catenin/MDR1 signaling axis by upregulating miR-384. J Bone Oncol 2022; 34:100429. [PMID: 35493691 PMCID: PMC9048097 DOI: 10.1016/j.jbo.2022.100429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Our research confirmed that luteolin could attenuate the chemoresistance of osteosarcoma through inhibiting the PTN/β-catenin/MDR1 signaling axis by upregulating miR-384. Our study demonstrated that doxorubicin resistance could be inhibited by the transfer of exosomal miR-384 into recipient chemoresistant osteosarcoma cells. The in vivo experiment showed combination therapy with both doxorubicin and luteolin resulted in higher survival rates compared with other single–agent therapies.
Multidrug resistance (MDR) remains a critical bottleneck in successful treatment of osteosarcoma (OS). Luteolin is a flavonoid compound that has been verified to increase the sensitivity to antineoplastic drugs in many tumors. However, its roles in reversing MDR of OS and the potential underlying mechanisms remain largely unknown. In this study, we demonstrated that luteolin enhances cellular chemosensitivity to doxorubicin and cisplatin both in OS cells and xenograft models, and it could increase the miR-384 level and downregulate the PTN expression. Additionally, target analysis confirmed that miR-384 directly modulates PTN expression, and subsequent mechanistic analysis verified that miR-384 could inhibit the MDR of OS cells through suppressing the PTN/β-catenin/MDR1 signaling axis. Further analysis revealed treatment of sensitive MG63 cells with luteolin effectively packaged miR-384 into secreted exosomes and the exosomes could improve doxorubicin response in doxorubicin-resistant MG63/DOX cells. Our study confirmed that luteolin exerts MDR reversal effect against OS cells by regulating PTN expression via miR-384 and it may be a promising therapeutic agent for chemoresistant OS via its targeting of the PTN/β-catenin/MDR1 axis.
Collapse
|
12
|
Qiao L, Han J, Wang G, Yuan T, Gu Y. Promising novel biomarkers and candidate drugs or herbs in Osteoarthritis: Evidence from bioinformatics analysis of high‐throughput data. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220331090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The most common joint illness is osteoarthritis (OA). The goal of this work was to find changes in gene signatures between normal knee joints and OA tissue samples and look for prospective gene targets for OA.
Methods:
The gene expression profiles of GSE12021, GSE51588, and GSE55457 were downloaded from Gene Expression Omnibus (GEO). Total 64 samples (40 OA and 24 standard control samples) were used. The limma program was used to find differentially expressed genes (DEGs) in OA versus NC. Functional annotation and protein-protein interaction (PPI) network construction of OA-specific DEGs were performed. Finally, the candidate drugs and herbs as potential drugs to treat OA were predicted in the DGIdb and TCMIO databases.
Results:
19 upregulated and 27 downregulated DEGs between OA and NC samples. DEGs such as PTN, COMP, NELL1 and MN1 have shown a significant correlation with OA and are expected to become new biomarkers. Cellular senescence,Positive regulation of ossification and Vascular endothelial growth factor (VEGF) were significantly enriched for OA‐specific DEGs.In cell composition analysis, DEGs were also found to be highly enriched in the cytosol.We have identified a total of 68 types of drugs or molecular compounds that are promising to reverse OA-related DEGs.Honeycomb and cinnamon oil have the possibility of treating OA.
Conclusion:
Our findings suggest new biomarkers that can be used to diagnose OA. Furthermore, we tried to find drugs and traditional Chinese medicine that may improve the progress of OA. This research may improve the identification and treatment of these uncontrollable chronic diseases.
Collapse
Affiliation(s)
- Linghui Qiao
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Jie Han
- Wuxi No.2 People\'s Hospital,Affiliated Wuxi Clinical College of Nantong University, China
| | - Guancheng Wang
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Tao Yuan
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Yanglin Gu
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| |
Collapse
|
13
|
Gu L, Jiang C, Xu C, Liu Y, Zhou H. Based on Molecular Subtypes, Immune Characteristics and Genomic Variation to Constructing and Verifying Multi-Gene Prognostic Characteristics of Colorectal Cancer. Front Cell Dev Biol 2022; 10:828415. [PMID: 35281077 PMCID: PMC8905350 DOI: 10.3389/fcell.2022.828415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Colon cancer (COAD) has been identified as being among the most prevalent tumors globally and ranked the third major contributor to cancer-related mortality. COAD is a molecularly heterogeneous disease. There are great differences in clinical manifestations and prognosis among different molecular subtypes. Methods:379 TCGA-COAD samples were divided into four subtypes: primary proliferative, with collective, crypt-like, and EMT invasion. The differences among the four subtypes were analyzed from the multidimensional perspectives of immunity, genomic variation, and prognosis. The limma package was utilized to identify differentially expressed genes (DEGs) amongst different molecular subtypes. Phenotype-related coexpressed gene modules were identified using WGCNA. The polygenic prognosis model was created utilizing the lasso Cox analysis and verified by time-dependent subject operating characteristics (ROC). Results: There are some differences in prognosis, TMB and common gene variation, immune score, and immunotherapy/chemotherapy between proliferative and three invasive molecular subtypes. 846 differential genes (DEGs) were obtained by limma packet analysis. Differential gene analysis was utilized to screen the DEGs among distinct subtypes, which were significantly enriched in the pathways related to tumorigenesis and development. Co-expression network analysis found 46 co-expressed genes correlated with proliferative and three invasive phenotypes. Based on differentially co-expressed genes, we developed a prognostic risk model of 8-genes signature, which exhibited strong stability regardless of external and internal validation. RT-PCR experiments proved the expression of eight genes in tumor and normal samples. Conclusion: We have developed an eight-gene signature prognostic stratification system. Furthermore, we proposed that this classifier can serve as a molecular diagnostic tool to assess the prognosis of colon cancer patients.
Collapse
Affiliation(s)
- Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Lié O, Virolle T, Gabut M, Pasquier C, Zemmoura I, Augé-Gouillou C. SETMAR Shorter Isoform: A New Prognostic Factor in Glioblastoma. Front Oncol 2022; 11:638397. [PMID: 35047379 PMCID: PMC8761672 DOI: 10.3389/fonc.2021.638397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that the chimeric protein SETMAR is a factor of interest in cancer, especially in glioblastoma. However, little is known about the expression of this protein in glioblastoma tissues, and no study has been done to assess if SETMAR could be a prognostic and/or diagnostic marker of glioblastoma. We analyzed protein extracts of 47 glioblastoma samples coming from a local and a national cohort of patients. From the local cohort, we obtained localized biopsies from the central necrosis area, the tumor, and the perilesional brain. From the French Glioblastoma Biobank (FGB), we obtained three types of samples: from the same tumors before and after treatment, from long survivors, and from very short survivors. We studied the correlations between SETMAR amounts, clinical profiles of patients and other associated proteins (PTN, snRNP70 and OLIG2). In glioblastoma tissues, the shorter isoform of SETMAR (S-SETMAR) was predominant over the full-length isoform (FL-SETMAR), and the expression of both SETMAR variants was higher in the tumor compared to the perilesional tissues. Data from the FGB showed that SETMAR amounts were not different between the initial tumors and tumor relapses after treatment. These data also showed a trend toward higher amounts of S-SETMAR in long survivors. In localized biopsies, we found a positive correlation between good prognosis and large amounts of S-SETMAR in the perilesional area. This is the main result presented here: survival in Glioblastoma is correlated with amounts of S-SETMAR in perilesional brain, which should be considered as a new relevant prognosis marker.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Thierry Virolle
- Institut de Biologie Valrose, Université Côte D’Azur, CNRS, INSERM, Nice, France
| | - Mathieu Gabut
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- Service de Neurochirurgie, CHRU de Tours, Tours, France
| | | |
Collapse
|
15
|
Abstract
Drug resistance is a major problem in cancer therapy with cisplatin. It has not been reported that pleiotrophin, which is anti-apoptotic in some cancer cells, is associated with cisplatin resistance. Pleiotrophin was exogenously expressed in 293 cells. Viability and apoptosis of PC3 cells treated with different concentrations of cisplatin in the presence or absence of purified pleiotrophin were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry, respectively. PC3 cells transfected with shRNAs were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting 24 h after transfection. MTT assay data indicated that the EC50 value of cisplatin for PC3 cells was significantly increased in the presence of pleiotrophin. Flow cytometry data demonstrated the pleiotrophin dose-dependent anti-apoptosis in PC3 cells treated with cisplatin. Knockdown of pleiotrophin with sh-RNA, as justified by RT-PCR and western blotting analysis, led to increased cisplatin induced-apoptosis in PC3 cells with an increased level of the cleaved poly ADP-ribose polymerase protein. Pleiotrophin may be a potential antiapoptotic protein associated with cisplatin susceptibility, which warrants further study on the role of pleiotrophin in cisplatin resistance.
Collapse
|
16
|
Reyes-Mata PM, Rojas-Mayorquín AE, Carrera-Quintanar L, González-Castillo C, Mireles-Ramírez MA, Guerrero-García JDJ, Ortuño-Sahagún D. Pleiotrophin serum level is increased in Relapsing-Remitting Multiple Sclerosis and correlates with sex, BMI and treatment. Arch Med Res 2021; 53:59-68. [PMID: 34247888 DOI: 10.1016/j.arcmed.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is an immune-mediated demyelinating disease mainly affecting the Central Nervous System (CNS). 80% of MS patients present the Relapsing-Remitting form (RRMS). Pleiotrophin (PTN), a cytokine previously associated with other autoimmune and neurological diseases, could play a role in the pathophysiology of RRMS due to its neuro and immunomodulatory effect. However, PTN has never been explored in RRMS patients. AIM OF THE STUDY To determine PTN serum levels in patients with RRMS, treated with Glatiramer acetate (GA) or Interferon-beta (IFN-β), as well as in non-treated patients and healthy controls as a first attempt to explore PTN in RRMS. METHODS PTN serum levels were quantified by ELISA in 57 patients and 18 controls. RESULTS We demonstrated that PTN serum levels are significantly higher in RRMS patients. In IFN-β treated patients alone, PTN correlated positively with time of disease evolution and time of IFN-β use and correlated negatively with the MS severity score (MSSS). When comparing groups according to weight status, we observed that PTN is statistically increased in overweight female patients and that weight does not affect male patients. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve analysis was higher for males compared to females. CONCLUSION PTN serum level is higher in RRMS patients and that is associated with sex, BMI and IFN-β treatment. Therefore, we propose that PTN could be playing a role in MS. Further studies must be performed to identify the exact role of PTN in this pathology.
Collapse
Affiliation(s)
- Paulina María Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Argelia Esperanza Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, México
| | - Lucrecia Carrera-Quintanar
- Laboratorio de Ciencias de los Alimentos, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Mario Alberto Mireles-Ramírez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano de Seguro Social, Guadalajara, Jalisco, México
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano de Seguro Social, Guadalajara, Jalisco, México
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México.
| |
Collapse
|
17
|
Identification of a 5-Gene-Based Scoring System by WGCNA and LASSO to Predict Prognosis for Rectal Cancer Patients. ACTA ACUST UNITED AC 2021; 2021:6697407. [PMID: 33833937 PMCID: PMC8012151 DOI: 10.1155/2021/6697407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Background Although accumulating evidence suggested that a molecular signature panel may be more effective for the prognosis prediction than routine clinical characteristics, current studies mainly focused on colorectal or colon cancers. No reports specifically focused on the signature panel for rectal cancers (RC). Our present study was aimed at developing a novel prognostic signature panel for RC. Methods Sequencing (or microarray) data and clinicopathological details of patients with RC were retrieved from The Cancer Genome Atlas (TCGA-READ) or the Gene Expression Omnibus (GSE123390, GSE56699) database. A weighted gene coexpression network was used to identify RC-related modules. The least absolute shrinkage and selection operator analysis was performed to screen the prognostic signature panel. The prognostic performance of the risk score was evaluated by survival curve analyses. Functions of prognostic genes were predicted based on the interaction proteins and the correlation with tumor-infiltrating immune cells. The Human Protein Atlas (HPA) tool was utilized to validate the protein expression levels. Results A total of 247 differentially expressed genes (DEGs) were commonly identified using TCGA and GSE123390 datasets. Brown and yellow modules (including 77 DEGs) were identified to be preserved for RC. Five DEGs (ASB2, GPR15, PRPH, RNASE7, and TCL1A) in these two modules constituted the optimal prognosis signature panel. Kaplan-Meier curve analysis showed that patients in the high-risk group had a poorer prognosis than those in the low-risk group. Receiver operating characteristic (ROC) curve analysis demonstrated that this risk score had high predictive accuracy for unfavorable prognosis, with the area under the ROC curve of 0.915 and 0.827 for TCGA and GSE56699 datasets, respectively. This five-mRNA classifier was an independent prognostic factor. Its predictive accuracy was also higher than all clinical factor models. A prognostic nomogram was developed by integrating the risk score and clinical factors, which showed the highest prognostic power. ASB2, PRPH, and GPR15/TCL1A were predicted to function by interacting with CASQ2/PDK4/EPHA67, PTN, and CXCL12, respectively. TCL1A and GPR15 influenced the infiltration levels of B cells and dendritic cells, while the expression of PRPH was positively associated with the abundance of macrophages. HPA analysis supported the downregulation of PRPH, RNASE7, CASQ2, EPHA6, and PDK4 in RC compared with normal controls. Conclusion Our immune-related signature panel may be a promising prognostic indicator for RC.
Collapse
|
18
|
Liu S, Shen M, Hsu EC, Zhang CA, Garcia-Marques F, Nolley R, Koul K, Rice MA, Aslan M, Pitteri SJ, Massie C, George A, Brooks JD, Gnanapragasam VJ, Stoyanova T. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer 2021; 124:896-900. [PMID: 33288843 PMCID: PMC7921397 DOI: 10.1038/s41416-020-01200-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023] Open
Abstract
Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | | | - Fernando Garcia-Marques
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Kashyap Koul
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Meghan A Rice
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Charlie Massie
- Cambridge Urology Translational Research and Clinical Trials, Cambridge University Hospitals NHS Trust & University of Cambridge, Cambridge, UK
- Urological Malignancies Programme, CRUK Cambridge Cancer Centre, Cambridge, UK
- Early Detection Programme, CRUK Cambridge Cancer Centre, Cambridge, UK
| | - Anne George
- Urological Malignancies Programme, CRUK Cambridge Cancer Centre, Cambridge, UK
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Vincent J Gnanapragasam
- Cambridge Urology Translational Research and Clinical Trials, Cambridge University Hospitals NHS Trust & University of Cambridge, Cambridge, UK.
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Tanya Stoyanova
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
19
|
Long J, Zhang S, Zeng X, Ouyang Y, Wang Y, Hu Z, Ye Y, Wu W, Jin F, Zhou S, Zeng Z. Development of an Immunogenomic Landscape-Based Prognostic Index of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2020; 7:586344. [PMID: 33330624 PMCID: PMC7732611 DOI: 10.3389/fmolb.2020.586344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the eighth leading cancer by incidence worldwide, with approximately 700,000 new cases in 2018 (accounting for 11% of all cancers). The occurrence and development of tumors are closely related to the immunological function of the body and sensitivity to treatment schemes as well as prognosis. It is urgent for clinicians to systematically study patients’ immune gene maps to help select a treatment plan and analyze the potential to cure HNSCC. Here, the transcriptomic data of HNSCC samples were downloaded from The Cancer Genome Atlas (TCGA), and 4,793 genes differentially expressed in normal and cancer tissues of HNSCC were identified, including 1,182 downregulated and 3,611 upregulated genes. From these genes, 400 differentially expressed immune-related genes (IRGs) were extracted, including 95 downregulated genes and 305 upregulated genes. The prognostic values of IRGs were evaluated by univariate Cox analysis, and 236 genes that were significantly related to the overall survival (OS) of patients were identified. The signaling pathways that play roles in the prognosis of IRGs were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the expression profiles of IRGs and OS in 499 HNSCC patients based on TCGA dataset were integrated. Potential molecular mechanisms and characteristics of these HNSCC-specific IRGs were further explored with the help of a new prognostic index based on IRGs developed by least absolute shrinkage and selection operator (LASSO) Cox analysis. A total of 64 hub genes (IRGs associated with prognosis) were markedly associated with the clinical outcome of HNSCC patients. KEGG functional enrichment analysis revealed that these genes were actively involved in several pathways, e.g., cytokine–cytokine receptor interaction, T-cell receptor signaling, and natural killer cell-mediated cytotoxicity. IRG-based prognostic signatures performed moderately in prognostic predictions. Interestingly, the prognostic index based on IRGs reflected infiltration by several types of immune cells. These data screened several IRGs of clinical significance and revealed drivers of the immune repertoire, demonstrating the importance of a personalized IRG-based immune signature in the recognition, surveillance, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Jinhua Long
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shichao Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xianlin Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yan Ouyang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yun Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yuannong Ye
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Weili Wu
- Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feng Jin
- Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi Zhou
- Department of Intervention, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Development of an immune gene prognostic classifier for survival prediction and respond to immunocheckpoint inhibitor therapy/chemotherapy in endometrial cancer. Int Immunopharmacol 2020; 86:106735. [DOI: 10.1016/j.intimp.2020.106735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
|
21
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|