1
|
Rocha Tapia A, Abgottspon F, Nilvebrant J, Nygren PÅ, Duclos Ivetich S, Bello Hernandez AJ, Thanasi IA, Szijj PA, Sekkat G, Cuenot FM, Chudasama V, Aceto N, deMello AJ, Richards DA. Site-directed conjugation of single-stranded DNA to affinity proteins: quantifying the importance of conjugation strategy. Chem Sci 2024; 15:8982-8992. [PMID: 38873052 PMCID: PMC11168188 DOI: 10.1039/d4sc01838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 06/15/2024] Open
Abstract
Affinity protein-oligonucleotide conjugates are increasingly being explored as diagnostic and therapeutic tools. Despite growing interest, these probes are typically constructed using outdated, non-selective chemistries, and little has been done to investigate how conjugation to oligonucleotides influences the function of affinity proteins. Herein, we report a novel site-selective conjugation method for furnishing affinity protein-oligonucleotide conjugates in a 93% yield within fifteen minutes. Using SPR, we explore how the choice of affinity protein, conjugation strategy, and DNA length impact target binding and reveal the deleterious effects of non-specific conjugation methods. Furthermore, we show that these adverse effects can be minimised by employing our site-selective conjugation strategy, leading to improved performance in an immuno-PCR assay. Finally, we investigate the interactions between affinity protein-oligonucleotide conjugates and live cells, demonstrating the benefits of site-selective conjugation. This work provides critical insight into the importance of conjugation strategy when constructing affinity protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Andres Rocha Tapia
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Fabrice Abgottspon
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Johan Nilvebrant
- Department of Protein Science, KTH Royal Institute of Technology, AlbaNova University Center 106 91 Stockholm Sweden
| | - Per-Åke Nygren
- Department of Protein Science, KTH Royal Institute of Technology, AlbaNova University Center 106 91 Stockholm Sweden
| | - Sarah Duclos Ivetich
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | | | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Peter A Szijj
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Ghali Sekkat
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - François M Cuenot
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
2
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
3
|
Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
5
|
Müggenburg F, Biallas A, Debiais M, Smietana M, Müller S. Azido Functionalized Nucleosides Linked to Controlled Pore Glass as Suitable Starting Materials for Oligonucleotide Synthesis by the Phosphoramidite Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Alexander Biallas
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Mégane Debiais
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Sabine Müller
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| |
Collapse
|
6
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
7
|
Henry SJ, Stephanopoulos N. Functionalizing DNA nanostructures for therapeutic applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1729. [PMID: 34008347 PMCID: PMC8526372 DOI: 10.1002/wnan.1729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self-assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus-responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Skylar J.W. Henry
- School of Molecular Sciences, Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ
| |
Collapse
|
8
|
Sang P, Hu Z, Cheng Y, Yu H, Xie Y, Yao W, Guo Y, Qian H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5783-5797. [PMID: 34009975 DOI: 10.1021/acs.jafc.0c07980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An immunoassay is mostly employed for the direct detection of food contaminants, and a molecular assay for targeting nucleic acids employs amplification techniques for distinguishing genes. The integration of an immunoassay with nucleic acid amplification techniques inherits the direct and rapid performance of an immunoassay and the ultrasensitive merit of a molecular assay. Enthusiastic attention has been attracted in recent years on the utilization of isothermal amplification techniques in an immunoassay, as well as the employment of a lateral flow immunoassay in a molecular assay. Thus, this Review discussed these kinds of approaches from two categories: immuno-nucleic acid amplification (I-NAA) and nucleic acid amplification-immunoassay (NAA-I). The advantages, drawbacks, and future developments were discussed for a comprehensive understanding.
Collapse
Affiliation(s)
- Panting Sang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Schwach J, Kolobynina K, Brandstetter K, Gerlach M, Ochtrop P, Helma J, Hackenberger CPR, Harz H, Cardoso MC, Leonhardt H, Stengl A. Site-Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. Chembiochem 2021; 22:1205-1209. [PMID: 33207032 PMCID: PMC8048457 DOI: 10.1002/cbic.202000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Antibody conjugates have taken a great leap forward as tools in basic and applied molecular life sciences that was enabled by the development of chemoselective reactions for the site-specific modification of proteins. Antibody-oligonucleotide conjugates combine the antibody's target specificity with the reversible, sequence-encoded binding properties of oligonucleotides like DNAs or peptide nucleic acids (PNAs), allowing sequential imaging of large numbers of targets in a single specimen. In this report, we use the Tub-tag® technology in combination with Cu-catalyzed azide-alkyne cycloaddition for the site-specific conjugation of single DNA and PNA strands to an eGFP-binding nanobody. We show binding of the conjugate to recombinant eGFP and subsequent sequence-specific annealing of fluorescently labelled imager strands. Furthermore, we reversibly stain eGFP-tagged proteins in human cells, thus demonstrating the suitability of our conjugation strategy to generate antibody-oligonucleotides for reversible immunofluorescence imaging.
Collapse
Affiliation(s)
- Jonathan Schwach
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Ksenia Kolobynina
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Katharina Brandstetter
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Marcus Gerlach
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Jonas Helma
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Humboldt Universität zu BerlinDepartment of ChemistryBrook-Taylor-Strasse 212489BerlinGermany
| | - Hartmann Harz
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - M. Cristina Cardoso
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Andreas Stengl
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| |
Collapse
|
10
|
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J Clin Med 2021; 10:jcm10040838. [PMID: 33670689 PMCID: PMC7922418 DOI: 10.3390/jcm10040838] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
A summary of the key technological advancements in the preparation of antibody-oligonucleotide conjugates (AOCs) and the distinct advantages and disadvantages of AOCs as novel therapeutics are presented. The merits and demerits of the different approaches to conjugating oligonucleotides to antibodies, antibody fragments or other proteins, mainly from the perspective of AOC purification and analytical characterizations, are assessed. The lessons learned from in vitro and in vivo studies, especially the findings related to silencing, trafficking, and cytotoxicity of the conjugates, are also summarized.
Collapse
Affiliation(s)
- Julien Dugal-Tessier
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
- Correspondence: ; Tel.: +1-732-202-5664
| | | | - Nareshkumar Jain
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
| |
Collapse
|
11
|
Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111944. [DOI: 10.1016/j.jphotobiol.2020.111944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
12
|
|
13
|
Smith LD, Willard MC, Smith JP, Cunningham BT. Development of a Linker-Mediated Immunoassay Using Chemically Transitioned Nanosensors. Anal Chem 2020; 92:3627-3635. [DOI: 10.1021/acs.analchem.9b04518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucas D. Smith
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Michael C. Willard
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Jordan P. Smith
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Wiener J, Kokotek D, Rosowski S, Lickert H, Meier M. Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics. Sci Rep 2020; 10:1457. [PMID: 31996713 PMCID: PMC6989672 DOI: 10.1038/s41598-020-58238-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. The possibility to transfer the readout signal from the protein to the DNA level with an oligonucleotide-conjugated antibody increased the sensitivity of protein assays by orders of magnitude and enabled new multiplexing strategies. A bottleneck in the generation of larger oligonucleotide-conjugated antibody panels is the low conjugation yield between antibodies and oligonucleotides, as well as the lack of product purification methods. In this study, we combined a non-site-directed antibody conjugation technique using copper-free click chemistry with ion-exchange chromatography to obtain purified single and double oligonucleotide-conjugated antibodies. We optimized the click conjugation reaction of antibodies with oligonucleotides by evaluating crosslinker, reaction temperature, duration, oligonucleotide length, and secondary structure. As a result, we were able to achieve conjugation yields of 30% at a starting quantity as low as tens of nanograms of antibody, which makes the approach applicable for a wide variety of protein analytical assays. In contrast to previous non-site-directed conjugation methods, we also optimized the conjugation reaction for antibody specificity, confirmed by testing with knockout cell lines. The advantages of using single or double oligonucleotide-conjugated antibodies in regards to signal noise reduction are shown within immunofluorescence, proximity ligation assays, and single cell CITE-seq experiments.
Collapse
Affiliation(s)
- Julius Wiener
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.,Microfluidic and Biological Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Daniel Kokotek
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Simon Rosowski
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
15
|
Dovgan I, Hentz A, Koniev O, Ehkirch A, Hessmann S, Ursuegui S, Delacroix S, Riomet M, Taran F, Cianférani S, Kolodych S, Wagner A. Automated linkage of proteins and payloads producing monodisperse conjugates. Chem Sci 2020; 11:1210-1215. [PMID: 34123245 PMCID: PMC8148077 DOI: 10.1039/c9sc05468e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads. Controlled protein functionalization holds great promise for a wide variety of applications.![]()
Collapse
Affiliation(s)
- Igor Dovgan
- Biofunctional Chemistry Laboratory, UMR 7199, LabEx Medalis, University of Strasbourg France
| | - Alexandre Hentz
- Biofunctional Chemistry Laboratory, UMR 7199, LabEx Medalis, University of Strasbourg France
| | - Oleksandr Koniev
- Syndivia SAS 650 Boulevard Gonthier d'Andernach 67400 Illkirch France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sylvain Ursuegui
- Biofunctional Chemistry Laboratory, UMR 7199, LabEx Medalis, University of Strasbourg France
| | | | - Margaux Riomet
- Service de Chimie Bio-organique et Marquage DRF/JOLIOT - CEA, Université Paris-Saclay F-91191 Gif-sur-Yvette France
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage DRF/JOLIOT - CEA, Université Paris-Saclay F-91191 Gif-sur-Yvette France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sergii Kolodych
- Syndivia SAS 650 Boulevard Gonthier d'Andernach 67400 Illkirch France
| | - Alain Wagner
- Biofunctional Chemistry Laboratory, UMR 7199, LabEx Medalis, University of Strasbourg France
| |
Collapse
|
16
|
Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosens Bioelectron 2019; 144:111633. [DOI: 10.1016/j.bios.2019.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
17
|
Dahiya B, Mehta PK. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays. Anal Biochem 2019; 587:113444. [PMID: 31545948 DOI: 10.1016/j.ab.2019.113444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
Immuno-polymerase chain reaction (I-PCR) assay with advantages of both enzyme-linked immunosorbent assay (ELISA) and PCR exhibits several-fold enhanced sensitivity in comparison to respective ELISA, which has wide applications for ultralow detection of several molecules, i.e. cytokines, protooncogenes and biomarkers associated with several diseases. Conjugation of reporter DNA to the detection antibodies is the most crucial step of I-PCR assay that usually employs streptavidin-protein A, streptavidin-biotin conjugate or succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) system by a covalent binding. However, coupling of antibodies and oligonucleotides to nanoparticles (NPs) is relatively easier in the NP-based I-PCR (NP-I-PCR) that also displays better accuracy. This article is mainly focused on the detection of important biomarkers associated with several outrageous infectious and non-infectious diseases by NP-I-PCR assays, which would expedite an early initiation of therapy thus human health would be improved. Similarly, ultralow detection of environmental pollutants by these assays and their elimination would certainly improve human health.
Collapse
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India.
| |
Collapse
|
18
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|