1
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Manocchio F, Morales D, Navarro-Masip E, Aragonès G, Torres-Fuentes C, Bravo FI, Muguerza B. Photoperiod-Dependent Effects on Blood Biochemical Markers of Phenolic-Enriched Fruit Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13111-13124. [PMID: 38811015 PMCID: PMC11181326 DOI: 10.1021/acs.jafc.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Fruits are rich in bioactive compounds, such as (poly)phenols, and their intake is associated with health benefits, although recent animal studies have suggested that the photoperiod of consumption influences their properties. Fruit loss and waste are critical issues that can be reduced by obtaining functional fruit extracts. Therefore, the aim of this study was to obtain phenolic-enriched extracts from eight seasonal fruits that can modulate blood biochemical parameters and to investigate whether their effects depend on the photoperiod of consumption. Eight ethanol-based extracts were obtained and characterized, and their effects were studied in F344 rats exposed to short (6 h light, L6) and long (18 h light) photoperiods. Cherry and apricot extracts decreased blood triacylglyceride levels only when consumed under the L6 photoperiod. Pomegranate, grape, and orange extracts reduced cholesterol and fasting glucose levels during the L6 photoperiod; however, plum extract reduced fasting glucose levels only during the L18 photoperiod. The results showed the importance of photoperiod consumption in the effectiveness of phenolic-enriched fruit extracts and promising evidence regarding the use of some of the developed fruit extracts as potential functional ingredients for the management of several blood biomarkers.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Diego Morales
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Elia Navarro-Masip
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Dikmetas D, Devecioglu D, Karbancioglu-Guler F, Kahveci D. Sequential Extraction and Characterization of Essential Oil, Flavonoids, and Pectin from Industrial Orange Waste. ACS OMEGA 2024; 9:14442-14454. [PMID: 38559951 PMCID: PMC10976415 DOI: 10.1021/acsomega.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Orange is one of the primary fruits processed into juice and other products worldwide, leading to a vast amount of waste accumulation. Such waste has been considered as an attractive candidate for upcycling to obtain bioactive components remaining. The present study investigated the extraction of essential oil (EO), flavonoids, and pectin from industrial orange waste with a holistic approach. To maximize EO yield and d-limonene concentration, hydrodistillation (HD) conditions were selected to be 5.5 mL water/g solid for 180 min. Remaining solids were further used for flavonoid extraction where conventional solvent, sequential ultrasound + solvent, and ultrasound-assisted extraction (UE) were applied. UE applied for 50 min with 120 mL solvent/g solid yielded the highest total phenolic (TPCs) and total flavonoid contents (TFCs), antioxidant capacity, and hesperidin and neohesperidin concentrations. In terms of TPC, TFC, antioxidant capacity, and antibacterial activity, both EO and flavonoid fractions demonstrated moderate to high bioactivity. At the final step, ethanol precipitation was applied to obtain the pectin that was solubilized in hot water during HD and it was characterized by Fourier transform infrared, degree of esterification, and galacturonic acid content. Practical application: to ensure utilization in the food, pharmaceutical, and cosmetic industries, this study presents a combined method to obtain several value-added compounds from industrial orange waste. Bioactive EO and flavonoids obtained could have applications in functional food, supplements, or cosmetic formulations, whereas extracted pectin can be used in many formulated foods and drugs.
Collapse
Affiliation(s)
- Dilara
Nur Dikmetas
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Dilara Devecioglu
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Funda Karbancioglu-Guler
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
4
|
Michailidis M, Ziogas V, Sarrou E, Nasiopoulou E, Styliani Titeli V, Skodra C, Tanou G, Ganopoulos I, Martens S, Molassiotis A. Screening the Citrus Greek National Germplasm Collection for fruit quality and metabolic footprint. Food Chem 2024; 435:137573. [PMID: 37769559 DOI: 10.1016/j.foodchem.2023.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Citrus fruits are one of the most important fruits in the global food industry due to their unique taste and nutritional benefits. Herein, we characterize the physicochemical and bioactive attributes of twenty-nine Greek citrus accessions, including oranges, mandarins/clementines, lemons, bergamot, citrons and lime along with twenty-seven highly commercial international cultivars. The assessed genotypes differ in various quality traits including color, ripening, and textural attributes. Several indigenous cultivars displayed desirable organoleptic traits, such as the oranges 'Valencia Oval Porou' (e.g., juice content and ascorbic acid) and 'Sanguine Gouritis' (eg., soluble solids (SSC) and acidity (TA) ratio), the mandarin 'Clementine Porou' (e.g., SSC/TA) and the lemon 'Vakalou' (e.g., firmness, acidity). Differences in primary metabolites, mainly in sugars, organic acids and amino acids were recorded among the tested species and cultivars. In addition, the autochthonous orange cultivars 'Sanguine Gouritsis' and 'Valencia Oval Porou' contained high sucrose levels whereas 'Lainato Chanion' had high hesperidin content. This large-scale analysis supports the ample availability of genetic resources for the development of citrus cultivars with improved nutritional quality traits.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Vasileios Ziogas
- Intsitute of Olive Tree, Subtropical Plants and Viticulture, ELGO-DIMITRA, Chania 73134, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece
| | - Elpida Nasiopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Vaia Styliani Titeli
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece; Joint Laboratory of Horticulture, ELGO-Dimitra, Thessaloniki-Thermi 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece; Joint Laboratory of Horticulture, ELGO-Dimitra, Thessaloniki-Thermi 57001, Greece
| | - Stefan Martens
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38098, San Michele all'Adige, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| |
Collapse
|
5
|
Arilla E, Martínez-Monzó J, Codoñer-Franch P, García-Segovia P, Igual M. Stability of vitamin C, carotenoids, phenols, and antioxidant capacity of pasteurised orange juice with resistant maltodextrin storage. FOOD SCI TECHNOL INT 2024; 30:18-29. [PMID: 36083164 DOI: 10.1177/10820132221124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistant maltodextrin (RMD) was added at increasing concentrations (0%, 2.5%, 5% and 7.5%) before pasteurisation to orange juice to analyse its potential protective effect on the health-related bioactive compounds of pasteurised orange juice throughout its storage time. Samples were characterised in terms of basic physico-chemical properties and bioactive compounds at the beginning of the storage. Higher concentrations of RMD proved to better preserve the bioactive compounds of orange juice, thus obtaining a higher antioxidant capacity (AC). Stability of all samples was determined by measuring the same parameters at days 0, 15, 45, 75, 105, 136 and 170 of storage. °Brix and pH were very stable in all samples along storage, while all bioactive compouds had negative variations. However, RMD addition slightly improved ascorbic acid, vitamin C, total phenols, and total carotenoids retention, improving then its AC. This effect was greater in the 5% RMD-added samples. All bioactive compounds showed a positive Pearson's correlation coefficient with AC. Colour variations were also measured at days 105 and 170. All samples had a positive variation of all colour parameters, being this clearer at day 170. This work enlights the potential functionality of RMD to better preserve the health-related compounds of pasteurised orange juice.
Collapse
Affiliation(s)
- Elías Arilla
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Javier Martínez-Monzó
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of València, València, Spain
- Department of Pediatrics, University Hospital Dr. Peset, Foundation for the Promotion of Health and Bio-medical Research un the Valencian Region (FISABIO), Valencia, Spain
| | - Purificación García-Segovia
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Marta Igual
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Ortiz-Sanchez M, Solarte-Toro JC, Inocencio-García PJ, Cardona Alzate CA. Sustainability analysis of orange peel biorefineries. Enzyme Microb Technol 2024; 172:110327. [PMID: 37804740 DOI: 10.1016/j.enzmictec.2023.110327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Biorefineries are constantly evolving since new technological advances in enzyme and microbial processes are boosting research for producing new bio-based products. Nevertheless, the step towards real process implementation must overcome a series of stages based on process sustainability in the early design stages. Orange peel (OP) has been profiled as a potential raw material for producing different products. Few studies have estimated the sustainability of OP-based biorefineries considering the upstream influence on the final process performance. This research aims to perform the sustainability assessment of several OP valorization pathways based on experimental data applying the biorefinery concept. Steam distillation and polyphenolic compound extraction prior to saccharification and anaerobic digestion increase the process performance. A glucose concentration and biogas yield of 21.43 g/L (0.44 g/g OP, db) and 415 mL/g SV were obtained, respectively. An essential oil extraction yield of 1.17 g/100 g OP (db) with a d-limonene content of 91.62% was produced. Moreover, hesperidin, apigenin, and naringenin yields of 7.88 mg/g, 0.475 mg/g, and 0.675 mg/g were obtained. An OP-based biorefinery addressed to produce essential oil, polyphenolic compounds, and biogas with a processing 25 tons/day (wb) has a sustainability index of 66.88%, higher than the values obtained with lesser upstream stages. In conclusion, an integral OP upgrading leads to better enzymatic and anaerobic digestion performances, as well as, a high process sustainability.
Collapse
Affiliation(s)
- Mariana Ortiz-Sanchez
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Juan Camilo Solarte-Toro
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Pablo José Inocencio-García
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Carlos Ariel Cardona Alzate
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| |
Collapse
|
7
|
Saha S, Do T, Maycock J, Wood S, Boesch C. Antibiofilm Efficacies of Flavonoid-Rich Sweet Orange Waste Extract against Dual-Species Biofilms. Pathogens 2023; 12:pathogens12050657. [PMID: 37242327 DOI: 10.3390/pathogens12050657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The current study evaluated the antibacterial properties of industrial sweet orange waste extracts (ISOWEs), which are a rich source of flavonoids. The ISOWEs exhibited antibacterial activity towards the dental cariogenic pathogens Streptococcus mutans and Lactobacillus casei with 13.0 ± 2.0 and 20.0 ± 2.0 mg/mL for MIC (minimum inhibitory concentration) and 37.7 ± 1.5 and 43.3 ± 2.1 mg/mL for MBC (minimum bactericidal concentration), respectively. When evaluated in a 7-day dual-species oral biofilm model, ISOWEs dose-dependently reduced the viable bacteria count, and demonstrated strong synergistic effects when combined with the anti-septic chlorhexidine (at 0.1 and 0.2%). Similarly, confocal microscopy confirmed the anti-cariogenic properties of ISOWEs, alone and in combination with chlorhexidine. The citrus flavonoids contributed differently to these effects, with the flavones (nobiletin, tangeretin and sinensetin) demonstrating significantly lower MICs and MBCs compared to the flavanones hesperidin and narirutin. In conclusion, our study demonstrated the potential of citrus waste as a currently underutilised source of flavonoids for antimicrobial applications, such as in dental health.
Collapse
Affiliation(s)
- Suvro Saha
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9LU, UK
| | - Thuy Do
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9LU, UK
| | - Joanne Maycock
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Simon Wood
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9LU, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Blidi S, Troise AD, Ledbetter M, Cottin S, Sturrock K, De Pascale S, Scaloni A, Fiore A. α-Dicarbonyl compounds trapping ability and antiglycative effect of high-molecular-weight brewer's spent grain melanoidins. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Chan YT, Huang J, Wong HC, Li J, Zhao D. Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro. Food Chem 2023; 404:134644. [DOI: 10.1016/j.foodchem.2022.134644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
10
|
Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2023; 63:1187-1207. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Collapse
Affiliation(s)
- Vikas Dadwal
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh Gupta
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Gamboa P, Worsfold J, Davidovich G, Acosta O, Usaga J. Headspace control and antimicrobials: inhibition strategies to prevent growth of Alicyclobacillus acidoterrestris in orange juice. Lett Appl Microbiol 2022; 75:1203-1214. [PMID: 35862481 DOI: 10.1111/lam.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris can cause spoilage in orange juice that leads to consumer rejection. Six different orange juices were physiochemically characterized (pH, total soluble solids, titratable acidity, total polyphenols and vitamin C). A bottle for each sampling point per juice was filled (headspace: 40% volume) and inoculated with 102 - 103 CFU ml-1 of A. acidoterrestris ATCC® 49025™ (heat shocked before inoculation: 75°C, 20 min). Samples were stored for 21 d at 45 ± 1°C and plate counted periodically on acidified YSG agar (pH 3.7) incubated at 45 ± 1°C for 3 d. The effect of headspace (6% versus 40% volume) on A. acidoterrestris growth was also evaluated. The effect of nisin (0.006%, 0.003%, 0.0015%, and 0.00075%), sodium benzoate (0.1%), potassium sorbate (0.1%), and a mix of benzoate and sorbate (0.05% each) on A. acidoterrestris was additionally addressed. A. acidoterrestris reached up to 107 CFU ml-1 in five of the six juices in less than one week. Headspace significantly impacted (P<0.05) A. acidoterrestris maximum population, which reached the critical value of 5 log CFU ml-1 at 40% headspace. All preservatives, regardless of concentration, showed a bacteriostatic effect during 22 d of storage with no significant differences among treatments (P>0.05).
Collapse
Affiliation(s)
- Paola Gamboa
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica
| | - Jessica Worsfold
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica
| | - Gabriela Davidovich
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica.,Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica
| | - Oscar Acosta
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica
| | - Jessie Usaga
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Ciudad Universitaria Rodrigo Facio, Código Postal 11501-2060, San José, Costa Rica
| |
Collapse
|
12
|
Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022; 14:nu14122387. [PMID: 35745117 PMCID: PMC9227685 DOI: 10.3390/nu14122387] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Hesperidin is a bioflavonoid occurring in high concentrations in citrus fruits. Its use has been associated with a great number of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, especially for the production of juice. It results in the accumulation of huge amounts of by-products such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extraction from these by-products has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extraction and determination methods for quantification of hesperidin in fruits and by-products are presented and discussed as well as its stability and biological activities.
Collapse
|
13
|
Nguyen TCV, Trinh LTT, Nguyen KL, Nguyen HC, Tran TD. Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Roquete Amparo T, Cherem Peixoto Silva A, Brandão Seibert J, dos Santos da Silva D, Martins Rebello dos Santos V, Melo de Abreu Vieira P, Célio Brandão G, Henrique Bianco de Souza G, Aloise Maneira Corrêa Santos B. In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and Their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Ruiz de Azua MJ, Cruz-Carrión Á, Muguerza B, Arola-Arnal A, Suarez M. Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients 2021; 13:3643. [PMID: 34684644 PMCID: PMC8537345 DOI: 10.3390/nu13103643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The phytochemical composition of fruits, especially polyphenols, depends on the environmental conditions under which these fruits are cultivated and the agronomic practices followed. Therefore, the consumption of fruits from different origins, with different polyphenol signatures, could have differential effects on health. In addition, recent studies have shown that variation in the biological rhythms due to changes in the photoperiod in the different seasons differentially affect the metabolism in animal models, thus conditioning their response to food consumption. Considering all, this article evaluates the effects of consumption of sweet cherry from different sources, local (LC) and non-local (nLC), on plasma metabolic parameters and the gene expression of key enzymes of lipid metabolism in Fischer 344 rats under photoperiods simulating different seasons. Animals were classified into three photoperiods (L6, L12 and L18) and three treatments (LC, nLC and VH). Both the photoperiod and the treatments significantly affected the evaluated parameters. An effect of the photoperiod on triacylglycerides, non-esterified fatty acids and the mRNA concentration of crucial enzymes from the hepatic lipid metabolism was observed. Furthermore, the consumption of fruit in L12 lowered blood glucose, while the different treatments affected the hepatic expression of genes related with lipidic enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.J.R.d.A.); (Á.C.-C.); (B.M.); (A.A.-A.)
| |
Collapse
|
18
|
Brenes X, Guevara M, Wong E, Cortés C, Usaga J, Rojas-Garbanzo C. Effect of high intensity ultrasound on main bioactive compounds, antioxidant capacity and color in orange juice. FOOD SCI TECHNOL INT 2021; 28:694-702. [PMID: 34632838 DOI: 10.1177/10820132211050203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ultrasound is a useful alternative to thermal processing that can be applied to many food products and juices to aid with enzymes and microorganism inactivation and to improve the efficiency of unit operations generally applied in the food industry. The aim of this study was to evaluate the effect of a high-intensity sonication treatment (frequency 20 kHz; intensity 39.4 W/cm2) applied for treatment times from 0 to 105 min on the content of polyphenols, vitamin C, organic acids, and carotenoids, and on the hydrophilic and lipophilic antioxidant capacity and color of orange juice. Treatments were performed in triplicate and data was statistically analyzed. Sonication time did not have a significant effect (P > 0.05) on total polyphenols, total vitamin C, organic acid, and carotenoid contents, lipophilic antioxidant capacity, or juice color. The hydrophilic antioxidant activity and the lutein content increased significantly (P < 0.05) with increased sonication time. These results may be useful as a baseline for the development of sonication treatments that could be used in combination with other traditional and emerging processing approaches to protect the most important bioactive compounds and quality properties of orange juice.
Collapse
Affiliation(s)
- Ximena Brenes
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - María Guevara
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Eric Wong
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica.,Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Carolina Cortés
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Jessie Usaga
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Carolina Rojas-Garbanzo
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| |
Collapse
|
19
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
20
|
Optimization of enzymatic hydrolysis of immature citrus ( Citrus unshiu Marcov.) for flavonoid content and antioxidant activity using a response surface methodology. Food Sci Biotechnol 2021; 30:663-673. [PMID: 34123463 DOI: 10.1007/s10068-021-00897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022] Open
Abstract
Immature citrus with peel was enzymatically treated for production of a hydrolysate with enriched bioactive components and higher antioxidant activity. The effects of reaction factors, including enzyme concentration, reaction time, and temperature on hesperetin and naringenin contents, total phenolic content (TPC), and antioxidant activity were investigated using response surface methodology. The models were adequate, and the enzyme concentration, temperature, and time positively affected hesperetin and naringenin contents and TPC, but negatively affected DPPH radical scavenging capacity. The reaction conditions for maximizing hesperetin, naringenin, and total phenol production and ferric reducing antioxidant power were optimized with the combination of enzyme concentration at 4%, 51 °C and 18 h. The hydrolysate at the optimized conditions contained higher hesperetin and naringenin contents and TPC compared with those before hydrolysis, by 251.7-, 45.5-, and 2.6-fold, respectively. This hydrolysate can be utilized in the production of functional beverages with high added values.
Collapse
|
21
|
Arilla E, García-Segovia P, Martínez-Monzó J, Codoñer-Franch P, Igual M. Effect of Adding Resistant Maltodextrin to Pasteurized Orange Juice on Bioactive Compounds and Their Bioaccessibility. Foods 2021; 10:foods10061198. [PMID: 34073221 PMCID: PMC8230003 DOI: 10.3390/foods10061198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.
Collapse
Affiliation(s)
- Elías Arilla
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
- Correspondence: ; Tel.: +34-96-3879694
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of València, Avenida de Blasco Ibáñez, No. 15, 46010 València, Spain;
- Department of Pediatrics, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research un the Valencian Region (FISABIO), Avenida Gaspar Aguilar, No. 90, 46017 València, Spain
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| |
Collapse
|
22
|
Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021; 10:foods10051120. [PMID: 34070065 PMCID: PMC8158112 DOI: 10.3390/foods10051120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel is the main by-product from orange juice industry. It is a known source of bioactive compounds, mostly phenolic compounds, and it has been widely studied for its healthy activities. Thus, this research focuses on the establishment of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode. For this purpose, a Box–Behnken design of 27 experiments was carried out with four independent factors—ratio ethanol/water (v/v), time (min), amplitude (%), and pulse (%). Quantitative analyses of phenolic compounds were performed and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology (RSM). The extracts obtained in the established conditions were analyzed by High Performance Liquid Chromatography (HPLC) coupled to mass spectrometer detector and 74 polar compounds were identified. The highest phenolic content and antioxidant activity were obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W), and pulse 100%. The established method allows an increment of phenolics recovery up to 60% higher than a conventional extraction. Moreover, the effect of drying on phenolic content was also evaluated.
Collapse
|
23
|
Graczyk F, Strzemski M, Balcerek M, Kozłowska W, Mazurek B, Karakuła M, Sowa I, Ptaszyńska AA, Załuski D. Pharmacognostic Evaluation and HPLC-PDA and HS-SPME/GC-MS Metabolomic Profiling of Eleutherococcus senticosus Fruits. Molecules 2021; 26:molecules26071969. [PMID: 33807364 PMCID: PMC8036712 DOI: 10.3390/molecules26071969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/02/2023] Open
Abstract
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is a medicinal plant used in Traditional Chinese Medicine (TCM) for thousands of years. However, due to the overexploitation, this species is considered to be endangered and is included in the Red List, e.g., in the Republic of Korea. Therefore, a new source of this important plant in Europe is needed. The aim of this study was to develop pharmacognostic and phytochemical parameters of the fruits. The content of polyphenols (eleutherosides B, E, E1) and phenolic acids in the different parts of the fruits, as well as tocopherols, fatty acids in the oil, and volatile constituents were studied by the means of chromatographic techniques [HPLC with Photodiode-Array Detection (PDA), headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS)]. To the best of our knowledge, no information is available on the content of eleutherosides and phenolic acids in the pericarp and seeds. The highest sum of eleutheroside B and E was detected in the whole fruits (1.4 mg/g), next in the pericarp (1.23 mg/g) and the seeds (0.85 mg/g). Amongst chlorogenic acid derivatives (3-CQA, 4-CQA, 5-CQA), 3-CQA was predominant in the whole fruits (1.08 mg/g), next in the pericarp (0.66 mg/g), and the seeds (0.076 mg/g). The oil was rich in linoleic acid (C18:3 (n-3), 18.24%), ursolic acid (35.72 mg/g), and α-tocopherol (8.36 mg/g). The presence of druses and yellow oil droplets in the inner zone of the mesocarp and chromoplasts in the outer zone can be used as anatomical markers. These studies provide a phytochemical proof for accumulation of polyphenols mainly in the pericarp, and these structures may be taken into consideration as their source subjected to extraction to obtain polyphenol-rich extracts.
Collapse
Affiliation(s)
- Filip Graczyk
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland; (M.B.); (D.Z.)
- Correspondence: ; Tel.: +48-795672587
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (M.K.); (I.S.)
| | - Maciej Balcerek
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland; (M.B.); (D.Z.)
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Barbara Mazurek
- Analytical Department, New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland;
| | - Michał Karakuła
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (M.K.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (M.K.); (I.S.)
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland;
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland; (M.B.); (D.Z.)
| |
Collapse
|
24
|
Pontifex MG, Malik MMAH, Connell E, Müller M, Vauzour D. Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front Neurosci 2021; 15:640648. [PMID: 33679318 PMCID: PMC7933480 DOI: 10.3389/fnins.2021.640648] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
In addition to essential micronutrients such as vitamin C, citrus fruits represent a considerably rich source of non-essential bioactive compounds, in particular flavanones which form a sub-set of the flavonoid group. Preclinical studies have demonstrated the neuroprotective potential of citrus flavonoids and have highlighted both the well-established (anti-inflammatory and anti-oxidative properties), and newly emerging (influence upon blood-brain barrier function/integrity) mechanistic actions by which these neurological effects are mediated. Encouragingly, results from human studies, although limited in number, appear to support this preclinical basis, with improvements in cognitive performance and disease risk observed across healthy and disease states. Therefore, citrus fruits - both as whole fruit and 100% juices - should be encouraged within the diet for their potential neurological benefit. In addition, there should be further exploration of citrus polyphenols to establish therapeutic efficacy, particularly in the context of well-designed human interventions.
Collapse
Affiliation(s)
- Matthew G Pontifex
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mohammad M A H Malik
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
25
|
Nomura R, Ohata J, Otsugu M, Okawa R, Naka S, Matsumoto-Nakano M, Nakano K. Inhibitory effects of flavedo, albedo, fruits, and leaves of Citrus unshiu extracts on Streptococcus mutans. Arch Oral Biol 2021; 124:105056. [PMID: 33517170 DOI: 10.1016/j.archoralbio.2021.105056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
OBJECTVES Citrus unshiu has been shown to exhibit antimicrobial effects against citrus diseases. In the present study, C. unshiu was divided into flavedo, albedo, fruits, and leaves; the inhibitory effects of these extracts on Streptococcus mutans, a major pathogen of dental caries, were investigated. DESIGN C. unshiu specimens were separated into flavedo, albedo, fruits, and leaves. First, pH values and polyphenol amounts in Citrus extracts were measured. In addition, Citrus extract was added to the bacterial suspensions of S. mutans MT8148, and inhibitory effects of C. unshiu extracts on MT8148 for antimicrobial activity, bacterial growth, and biofilm formation were analyzed. These assays were also performed using C. sinensis extracts. RESULTS Among these extracts, albedo exhibited a pH value closest to neutral, while the fruits exhibited the most acidic pH value; the pH values significantly differed between these extracts (P < 0.05). In addition, the amounts of polyphenols were significantly higher in albedo than in other extracts (P < 0.001). All extracts showed inhibitory effects on MT8148 for antimicrobial activity, bacterial growth and biofilm formation. These inhibitory effects were significantly stronger in flavedo, albedo, and fruits, compared with leaves (P < 0.05). Furthermore, extracts of Citrus sinensis also showed inhibitory effects on S. mutans, although these effects were weaker than the effects of C. unshiu. CONCLUSION These results suggest that extracts from C. unshiu fruits exhibit inhibitory effects on S. mutans, among which albedo may be especially useful for dental caries prevention due to its neutral pH and abundant polyphenols, in addition to its inhibitory effects.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Jumpei Ohata
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masatoshi Otsugu
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
26
|
Kim DS, Lim SB. Extraction of flavanones from immature Citrus unshiu pomace: process optimization and antioxidant evaluation. Sci Rep 2020; 10:19950. [PMID: 33203922 PMCID: PMC7673033 DOI: 10.1038/s41598-020-76965-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022] Open
Abstract
Dietary guidelines recommend the consumption of flavonoid-rich extracts for several health benefits. Although immature Citrus unshiu pomace (ICUP) contains high levels of flavanone glycosides, many studies have concentrated on the optimization of flavonoid extraction from mature citrus peels. Therefore, we developed an optimized extraction method for hesperidin and narirutin from ICUP, and evaluated their antioxidant activities using ten different assay methods. The extraction conditions for the highest flavonoid yields based on a response surface methodology were 80.3 °C, 58.4% (ethanol concentration), 40 mL/g (solvent/feed), and 30 min, where the hesperidin and narirutin yields were 66.6% and 82.3%, respectively. The number of extractions was also optimized as two extraction steps, where the hesperidin and narirutin yields were 92.1% and 97.2%, respectively. Ethanol was more effective than methanol and acetone. The ethanol extract showed high scavenging activities against reactive oxygen species but relatively low scavenging activities for nitrogen radicals and reactive nitrogen species. The antioxidant activities showed a higher correlation with hesperidin content than narirutin content in the extracts. This study confirms the potential of an optimized method for producing antioxidant-rich extracts for the functional food and nutraceutical industries.
Collapse
Affiliation(s)
- Dong-Shin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
27
|
Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants (Basel) 2020; 9:E1123. [PMID: 33202871 PMCID: PMC7698232 DOI: 10.3390/antiox9111123] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.
Collapse
Affiliation(s)
- Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India;
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Shimla H.P. 171009, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| |
Collapse
|
28
|
Elboughdiri N, Ghernaout D, Kriaa K, Jamoussi B. Enhancing the Extraction of Phenolic Compounds from Juniper Berries Using the Box-Behnken Design. ACS OMEGA 2020; 5:27990-28000. [PMID: 33163782 PMCID: PMC7643166 DOI: 10.1021/acsomega.0c03396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 05/25/2023]
Abstract
Juniper berry is an important medicinal plant used in pharmaceutical and petrochemical industries thanks to its strong antioxidant potential, which is attributed to the presence of phenolic compounds. In this study, four different solvents, namely, aqueous acetone, aqueous ethanol, aqueous NaOH, and water, were used in the extraction process with a view to optimize and determine the polyphenolic contents in the juniper berry using ultraviolet (UV) spectrophotometry. Many experiments were performed at different solvent concentrations, time, temperature, and liquid-solid ratio. The models to evaluate the effects and the optimum of these variables on the polyphenols extraction using the response surface methodology (RSM) were developed. The predicted values of the polyphenol content of juniper berry were thus highly correlated with costly measured values (SECV = 0.14 and R 2 = 0.97), and the optimal conditions of extraction were determined for the different solvents. Following the numerical optimization, the maximum predicted polyphenol contents obtained under the optimum extraction conditions are as follows: 17.57% for 58 °C extraction temperature, 78.5 min extraction time, 60% acetone concentration, and 29.8 liquid-solid ratio for the aqueous ethanol extraction; 20.68% for 71.46 °C extraction temperature, 79.2 min extraction time, 21.9% ethanol concentration, and 26.4:1 liquid-solid ratio for the aqueous acetone extraction; 34.51% for 96.4 °C extraction temperature, 37.7 min extraction time, 1.48% NaOH concentration, and 15.2:1 liquid-solid ratio for the aqueous NaOH extraction; and 9.8% was obtained under the optimum extraction conditions of 69 °C extraction temperature, 126 min extraction time, and 23:1 liquid-solid ratio for the water extraction. The GC-MS analysis of the chemical composition of juniper Berry revealed 60 identified components that represent 97.43% of the sample. The predominant fraction was monoterpene representing 80.87% especially for α-pinene (39.12%), β-pinene (12. 68%), and myrcene (12.92%). In the other fraction of sesquiterpene representing 16.54%, the predominant components were β-caryophyllene (4.41%) and germacrene D (4.23%).
Collapse
Affiliation(s)
- Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Háil 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia
| | - Djamel Ghernaout
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Háil 81441, Saudi Arabia
- Chemical
Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| | - Karim Kriaa
- Chemical
Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia
- College of Engineering, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Matešić N, Jurina T, Benković M, Panić M, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A. Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: optimization and kinetics study. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1804938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nikolina Matešić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Manuela Panić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
30
|
Optimization of Extraction of Phenolic Compounds from Ocimum Basilicum Leaves and Evaluation of Their Antioxidant Activity. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02181-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Bladé C, Arola-Arnal A, Muguerza B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct 2020; 10:6492-6502. [PMID: 31535681 DOI: 10.1039/c9fo00353c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fruits are rich in phenolic compounds with health-promoting activities. However, phenolic profiles vary between fruits. Hence, specific extraction methods are required for accurate profiling of the functional compounds. This study aims to develop an optimised method by response surface methodology to extract phenolics from apricots (Prunus armeniaca) and correctly characterise apricots' phenolic profile. For this, the effects of the solid-to-liquid ratio, temperature, extraction solvent, extraction time and sequential extraction steps on the extraction of major phenolic families were investigated. Methanol- and ethanol-based extractions were suitable, although methanol was the optimal solvent. The optimised extraction conditions were 20 g mL-1, 38 °C and 72% methanol (1% formic acid). When this method was used in apricots, the characterisation of their phenolic profile by HPLC-ESI-MS/MS showed a higher extraction of phenolic compounds than other studies in the literature that use non-specific extraction methods. The developed method is fast and economically feasible for accurate characterisation of the phenolic profile of apricot fruits and thus can be routinely used to extract apricot phenolic compounds for their characterisation.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Lončarić A, Matanović K, Ferrer P, Kovač T, Šarkanj B, Skendrović Babojelić M, Lores M. Peel of Traditional Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion. Foods 2020; 9:E80. [PMID: 31940769 PMCID: PMC7022635 DOI: 10.3390/foods9010080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Micro matrix solid phase dispersion (micro-MSPD) was optimized by response surface methodology for the extraction of polyphenols from the peel of twelve traditional and eight commercial apple varieties grown in Croatia. The optimized micro-MSPD procedure includes the use of 0.2 g of sample, 0.8 g of dispersant, a 57% solution of methanol in water as the solvent and 5 mL of extract volume. The total polyphenolic index (TPI) and antioxidant activity (AA) were measured by spectrophotometric assays. Eighteen polyphenolic compounds were identified in all investigated apples by HPLC-DAD and LC-(ESI)-MS. The peel of traditional apple varieties had higher contents of all investigated polyphenols. Calculated relative contribution of polyphenol groups indicated non-flavonoids (28.6%) and flavanols (46.2%) as the major contributors to the total polyphenolic content in traditional and commercial apple varieties, respectively. The most abundant polyphenol in traditional apple peel was chlorogenic acid, procyanidin B2 and epicatechin (1143 ± 755 µg/g dw, 954 ± 343 µg/g dw and 560 ± 362 µg/g dw, respectively). The peel of varieties 'Apistar', 'Bobovac' and 'Božićnica' could be highlighted as an important source of polyphenols.
Collapse
Affiliation(s)
- Ante Lončarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR 31000 Osijek, Croatia; (K.M.); (T.K.)
| | - Katarina Matanović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR 31000 Osijek, Croatia; (K.M.); (T.K.)
| | - Perla Ferrer
- Faculty of Chemistry, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (P.F.); (M.L.)
| | - Tihomir Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR 31000 Osijek, Croatia; (K.M.); (T.K.)
| | - Bojan Šarkanj
- Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | | | - Marta Lores
- Faculty of Chemistry, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (P.F.); (M.L.)
| |
Collapse
|
33
|
Multiresponse Optimization of Pomegranate Peel Extraction by Statistical versus Artificial Intelligence: Predictive Approach for Foodborne Bacterial Pathogen Inactivation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1542615. [PMID: 31737081 PMCID: PMC6815538 DOI: 10.1155/2019/1542615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Pomegranate (Punica granatum L.) peel is a potential source of polyphenols known for their activity against foodborne pathogen bacteria. In this study, the effects of pomegranate peel extraction time (10–60 min), agitation speed (120–180 rpm), and solvent/solid ratio (10–30) on phytochemical content and antibacterial activity were determined. Response surface methodology (RSM) and artificial neural network (ANN) methods were used, respectively, for multiresponse optimization and predictive modelling. Compared with the original conditions, the total phenolic content (TPC), the total flavonoid content (TFC), and the total anthocyanin content (TAC) increased by 56.22, 63.47, and 64.6%, respectively. Defined by minimal inhibitory concentration (MIC), the maximum of antibacterial activity was higher than that from preoptimized conditions. With an extraction time of 11 min, an agitation speed 125 rpm, and a solvent/solid ratio of 12, anti-S. aureus activity remarkably decreased from 1.56 to 0.171 mg/mL. Model comparisons through the coefficient of determination (R2) and mean square error (MSE) showed that ANN models were better than the RSM model in predicting the photochemical content and antibacterial activity. To explore the mode of action of the pomegranate peel extract (PPE) at optimal conditions against S. aureus and S. enterica, Chapman and Xylose Lysine Deoxycholate broth media were artificially contaminated at 104 CFU/mL. By using statistical approach, linear (ANOVA), and general (ANCOVA) models, PPE was demonstrated to control the two dominant foodborne pathogens by suppressing bacterial growth.
Collapse
|
34
|
Gibert-Ramos A, Palacios-Jordan H, Salvadó MJ, Crescenti A. Consumption of out-of-season orange modulates fat accumulation, morphology and gene expression in the adipose tissue of Fischer 344 rats. Eur J Nutr 2019; 59:621-631. [PMID: 30788591 PMCID: PMC7058598 DOI: 10.1007/s00394-019-01930-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE According to the xenohormesis theory, animals receive signals from plants that give clues about the changing environment, and thus, depending on the season of the year, animals develop physiological changes to adapt in advance to the seasonal changes. Our objective was to study how the same fruit cultivated during two different seasons could affect the adipose tissue of rats. METHODS Thirty-six Fischer 344 rats were acclimated for 4 weeks to long-day or short-day (SD) photoperiods. After adaptation, three groups (n = 6) from each photoperiod were supplemented either with orange from the northern (ON) or southern (OS) hemispheres harvested in the same month or a vehicle (VH) for 10 weeks. Biometric measurements, postprandial plasmatic parameters, gene expression of the inguinal white adipose tissue (IWAT) and brown adipose tissue (BAT), and the histology of the IWAT were analysed. RESULTS The OSSD group increased its fat content compared to the VHSD, while the ON groups showed no biometric differences. The OS groups were further studied, and the IWAT showed increased levels of Pparγ gene expression and a higher percentage of larger adipocytes compared to the VH group. The BAT showed down-regulation of Lpl, Cpt1b and Pparα in the OSSD group compared to that in the VHSD group, suggesting an inhibition of BAT activity, however, Ucp1 gene expression was up-regulated. CONCLUSIONS We observed a different effect from both fruits, with the OS promoting a phenotype prone to fat accumulation when consumed in an SD photoperiod, which might be explained by the xenohormesis theory.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Hector Palacios-Jordan
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - M Josepa Salvadó
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| |
Collapse
|