1
|
La Paglia L, Vazzana M, Mauro M, Urso A, Arizza V, Vizzini A. Bioactive Molecules from the Innate Immunity of Ascidians and Innovative Methods of Drug Discovery: A Computational Approach Based on Artificial Intelligence. Mar Drugs 2023; 22:6. [PMID: 38276644 PMCID: PMC10817596 DOI: 10.3390/md22010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The study of bioactive molecules of marine origin has created an important bridge between biological knowledge and its applications in biotechnology and biomedicine. Current studies in different research fields, such as biomedicine, aim to discover marine molecules characterized by biological activities that can be used to produce potential drugs for human use. In recent decades, increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as they are a source of bioactive products. We describe omics data and computational methods relevant to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence. Since there is increasing attention on finding new solutions for a sustainable supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of marine invertebrates' innate immunity.
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| |
Collapse
|
2
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
3
|
Galià-Camps C, Baños E, Pascual M, Carreras C, Turon X. Multidimensional variability of the microbiome of an invasive ascidian species. iScience 2023; 26:107812. [PMID: 37744040 PMCID: PMC10514470 DOI: 10.1016/j.isci.2023.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Elena Baños
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
4
|
Gao P, Khong HY, Mao W, Chen X, Bao L, Wen X, Xu Y. Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods 2023; 12:3684. [PMID: 37835337 PMCID: PMC10572860 DOI: 10.3390/foods12193684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Tunicates are widely distributed worldwide and are recognized as abundant marine bioresources with many potential applications. In this review, state-of-the-art studies on chemical composition analyses of various tunicate species were summarized; these studies confirmed that tunicates contain nutrients similar to fish (such as abundant cellulose, protein, and ω-3 fatty acid (FA)-rich lipids), indicating their practical and feasible uses for food or animal feed exploration. However, the presence of certain toxic elements should be evaluated in terms of safety. Moreover, recent studies on bioactive substances extracted from tunicates (such as toxins, sphingomyelins, and tunichromes) were analyzed, and their biological properties were comprehensively reviewed, including antimicrobial, anticancer, antioxidant, antidiabetic, and anti-inflammatory activities. In addition, some insights and prospects for the future exploration of tunicates are provided which are expected to guide their further application in the food, animal feed, and pharmaceutical industries. This review is critical to providing a new pathway for converting the common pollution issues of hydroponic nutrients into valuable marine bioresources.
Collapse
Affiliation(s)
- Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, Kota Samarahan 94300, Malaysia
| | - Heng Yen Khong
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, Kota Samarahan 94300, Malaysia
| | - Wenhui Mao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Xiaoyun Chen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Lingxiang Bao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Xinru Wen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Yan Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| |
Collapse
|
5
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Eze OC, Berebon DP, Emencheta SC, Evurani SA, Okorie CN, Balcão VM, Vila MMDC. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals (Basel) 2023; 16:1091. [PMID: 37631006 PMCID: PMC10458718 DOI: 10.3390/ph16081091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the increasing limitations and negative impacts of the current options for preventing and managing diseases, including chemotherapeutic drugs and radiation, alternative therapies are needed, especially ones utilizing and maximizing natural products (NPs). NPs abound with diverse bioactive primary and secondary metabolites and compounds with therapeutic properties. Marine probiotics are beneficial microorganisms that inhabit marine environments and can benefit their hosts by improving health, growth, and disease resistance. Several studies have shown they possess potential bioactive and therapeutic actions against diverse disease conditions, thus opening the way for possible exploitation of their benefits through their application. Pseudoalteromonas spp. are a widely distributed heterotrophic, flagellated, non-spore-forming, rod-shaped, and gram-negative marine probiotic bacteria species with reported therapeutic capabilities, including anti-cancer and -bacterial effects. This review discusses the basic concepts of marine probiotics and their therapeutic effects. Additionally, a survey of the anticancer and antibacterial effects of Pseudoalteromonas spp. is presented. Finally, marine probiotic production, advances, prospects, and future perspectives is presented.
Collapse
Affiliation(s)
- Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| | - Somtochukwu A. Evurani
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Chibundo N. Okorie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Victor M. Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M. D. C. Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| |
Collapse
|
7
|
Affiliation(s)
- Rustam Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
8
|
Sabdono A, Lestari ES, Sibero MT. Biogeographic assessment of Gorgonian-associated bacteria with antipathogenic Urinary Tract Infections (UTIs) in Karimunjawa Marine National Park, Java Sea, Indonesia. NATURE CONSERVATION 2022. [DOI: 10.3897/natureconservation.49.84825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gorgonian corals of Karimunjawa are impacted by anthropogenic activities, such as increasingly high mariculture intensity with consequent eutrophication, overfishing, tourism, sewage, and other pollutant discharges, which result in changes in the microbial community structure. In this study, bacterial communities associated with six species of Gorgonian, Viminella sp., Ellisella sp., Antipathes sp., Melithaea sp., Astrogorgia sp., and Junceella sp. from both the Marine Protected Area (MPA) and non-Marine Protected Area (non-MPA) zones were screened for their antipathogenic potential against Urinary Tract Infections (UTIs) pathogens. The selected bacterial isolates were identified and compared for their abundance and diversity between the two zones. A total of 156 bacterial strains were assayed for their prospective antipathogenic compounds against seven UTI pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus saptophyticus, Acinetobacter baumannii, Klebsiella pneumonia, and Candida albicans. The results showed that 17 of 92 (18.48%) and 6 of 64 (9.37%) bacterial isolates from MPA and non-MPA, respectively, exhibited antimicrobial activity in at least one of the UTI pathogens. By analyzing the gene of 16S rRNA, it was discovered that the 17 isolates of MPA were associated with phyla Actinobacteria, Firmicutes and Proteobacteria, including Streptomyces zhaozhoue, Nocardiopsis salina, Micrococcus endophyticus, Brevibacterium casei, Micrococcus yunnanensis, Saccharopolyspora coralli, Bacillus paramycoides, Virgibacillus salarius, Oceanobacillus iheyensis, and Vibrio alginolyticus. In contrast, only six selected isolates of non-MPA were associated with the phyla Actinobacteria and Proteobacteria, including Nocardiopsis salina, Micrococcus yunnanensis, and Acinetobacter soli. The Diversity Index (H’), Species Richness (S), and Relative Abundance of the MPA zone were higher than those of non-MPA. These results demonstrated that Gorgonian octocoral species in the MPA region harbour varied bacteria and we propose that many Gorgonian-associated bacteria have the prospective for advancing broad-spectrum antibiotics.
Collapse
|
9
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
10
|
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021; 11:biom11121860. [PMID: 34944505 PMCID: PMC8699383 DOI: 10.3390/biom11121860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, India;
| | - Sanjeet Mehariya
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Neeta Sharma
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Trisaia, SS Jonica 106, km 419 + 500, 75026 Rotondella, Italy;
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
11
|
Matos A, Antunes A. Symbiotic Associations in Ascidians: Relevance for Functional Innovation and Bioactive Potential. Mar Drugs 2021; 19:370. [PMID: 34206769 PMCID: PMC8303170 DOI: 10.3390/md19070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production-e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians' microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.
Collapse
Affiliation(s)
- Ana Matos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
13
|
Asayesh G, Mohebbi GH, Nabipour I, Rezaei A, Vazirizadeh A. Secondary Metabolites from the Marine Tunicate “Phallusia nigra” and Some Biological Activities. BIOL BULL+ 2021; 48:263-273. [DOI: 10.1134/s1062359021030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 12/08/2023]
|
14
|
TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces. J Antibiot (Tokyo) 2021; 74:464-469. [PMID: 33707649 DOI: 10.1038/s41429-021-00415-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/08/2022]
Abstract
TMKS8A (1), a new chlorinated α-lapachone derivative, along with five known related metabolites, A80915 C (2), SF2415B1 (3), chlorinated dihydroquinone 3 (4), SF2415B3 (5), and A80915 C (6), were identified from the culture extract of Streptomyces sp. TMKS8, which was isolated from a sea slug, Paromoionchis tumidus. The structure of 1 was determined by the analysis of NMR and MS spectral data, assisted by NMR chemical shift prediction using DFT-based calculation. The absolute configuration was determined to be R by comparison of experimental and calculated ECD spectra. Compound 1 displayed antimicrobial activity against Gram-positive bacteria with MIC values ranging from 6.25 to 12.5 μg ml-1 and cytotoxicity against murine leukemia P388 cells with IC50 9.8 μM.
Collapse
|
15
|
Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, Brisc C, Brisc MC, Munteanu MA, Bungau S. Promising Roles of Alternative Medicine and Plant-Based Nanotechnology as Remedies for Urinary Tract Infections. Molecules 2020; 25:E5593. [PMID: 33260701 PMCID: PMC7731396 DOI: 10.3390/molecules25235593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Urinary tract infections (UTIs) are considered to be the most common infections worldwide, having an incidence rate of 40-60% in women. Moreover, the prevalence of this disorder in adult women is 30 times more than in men. UTIs are usually found in many hospitals and clinical practice; as disorders, they are complicated and uncomplicated; in uncomplicated cases, there is no structural or functional abnormality in the urogenital tract. However, obstruction, retention of urine flow and use of catheters increase the complexity. There are several bacteria (e.g., E. coli, Klebsiella pneumoniae, Proteus vulgaris, etc.) successfully residing in the tract. The diagnosis must not only be accurate but rapid, so early detection is an important step in the control of UTIs caused by uropathogens. The treatment of UTIs includes appropriate antimicrobial therapy to control the infection and kill the causal microbes inside the body. A long-time usage of antibiotics has resulted in multidrug resistance causing an impediment in treatment. Thus, alternative, combinatorial medication approaches have given some hope. Available treatments considered Homeopathic, Ayurvedic, Unani, and other herbal-based drugs. There are new upcoming roles of nanoparticles in combating UTIs which needs further validation. The role of medicinal plant-based nanotechnology approaches has shown promising results. Therefore, there must be active research in phyto-based therapies of UTIs, such as Ayurvedic Biology.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, India;
| | - Chanchal Singh
- Department of Microbiology, Faculty of Science and Technology, Mewar University, Chittorgarh 312901, India;
| | - Pragati Kumari
- S-02, Scientist Hostel, Chauras Campus, Srinagar Garhwal, Uttarakhand 246174, India;
| | - Saurabh Yadav
- Department of Biotechnology, H.N.B. Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India
| | - Abhay P. Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh 247341, India
| | - Aleksey Laishevtcev
- Federal Research Center, Russian Scientific Research Institute of Experimental Veterinary Medicine Named after K. I. Skryabin and Y. R. Kovalenko of the Russian Academy of Sciences, 109428 Moscow, Russia;
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University, Named after I. S. Turgenev, 302026 Orel, Russia
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
16
|
Akbar N, Siddiqui R, Sagathevan K, Khan NA. Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. Int Microbiol 2020; 23:511-526. [PMID: 32124096 DOI: 10.1007/s10123-020-00123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases, in particular bacterial infections, are the leading cause of morbidity and mortality posing a global threat to human health. The emergence of antibiotic resistance has exacerbated the problem further. Hence, there is a need to search for novel sources of antibacterials. Herein, we explored gut bacteria of a variety of animals living in polluted environments for their antibacterial properties against multi-drug resistant pathogenic bacteria. A variety of species were procured including invertebrate species, Blaptica dubia (cockroach), Gromphadorhina portentosa (cockroach), Scylla serrata (crab), Grammostola rosea (tarantula), Scolopendra subspinipes (centipede) and vertebrate species including Varanus salvator (water monitor lizard), Malayopython reticulatus (python), Cuora amboinensis (tortoise), Oreochromis mossambicus (tilapia fish), Rattus rattus (rat), Gallus gallus domesticus (chicken) and Lithobates catesbeianus (frog). Gut bacteria of these animals were isolated and identified using microbiological, biochemical, analytical profiling index (API) and through molecluar identification using 16S rRNA sequencing. Bacterial conditioned media (CM) were prepared and tested against selected Gram-positive and Gram-negative pathogenic bacteria as well as human cells (HaCaT). The results revealed that CM exhibited significant broad-spectrum antibacterial activities. Upon heat inactivation, CM retained their antibacterial properties suggesting that this effect may be due to secondary metabolites or small peptides. CM showed minimal cytotoxicity against human cells. These findings suggest that gut bacteria of animals living in polluted environments produce broad-spectrum antibacterial molecule(s). The molecular identity of the active molecule(s) together with their mode of action is the subject of future studies which could lead to the rational development of novel antibacterial(s).
Collapse
Affiliation(s)
- Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates
| | - K Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
17
|
Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D. Antibiotics Development and the Potentials of Marine-Derived Compounds to Stem the Tide of Multidrug-Resistant Pathogenic Bacteria, Fungi, and Protozoa. Mar Drugs 2020; 18:E145. [PMID: 32121196 PMCID: PMC7142797 DOI: 10.3390/md18030145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
As the search for new antibiotics continues, the resistance to known antimicrobial compounds continues to increase. Many researchers around the world, in response to antibiotics resistance, have continued to search for new antimicrobial compounds in different ecological niches such as the marine environment. Marine habitats are one of the known and promising sources for bioactive compounds with antimicrobial potentials against currently drug-resistant strains of pathogenic microorganisms. For more than a decade, numerous antimicrobial compounds have been discovered from marine environments, with many more antimicrobials still being discovered every year. So far, only very few compounds are in preclinical and clinical trials. Research in marine natural products has resulted in the isolation and identification of numerous diverse and novel chemical compounds with potency against even drug-resistant pathogens. Some of these compounds, which mainly came from marine bacteria and fungi, have been classified into alkaloids, lactones, phenols, quinones, tannins, terpenes, glycosides, halogenated, polyketides, xanthones, macrocycles, peptides, and fatty acids. All these are geared towards discovering and isolating unique compounds with therapeutic potential, especially against multidrug-resistant pathogenic microorganisms. In this review, we tried to summarize published articles from 2015 to 2019 on antimicrobial compounds isolated from marine sources, including some of their chemical structures and tests performed against drug-resistant pathogens.
Collapse
Affiliation(s)
- Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka PMB 410001, Nigeria
| | - Florence N. Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka PMB 410001, Enugu State, Nigeria
| | - Gang Huang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yanming Li
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China;
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| |
Collapse
|